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Spontaneous emission and energy transfer rates near a coated metallic cylinder
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The spontaneous emission and energy transfer rates of quantum systems in proximity to a dielectrically coated
metallic cylinder are investigated using a Green’s tensor formalism. The excitation of surface plasmon modes
can significantly modify these rates. The spontaneous emission and energy transfer rates are investigated as a
function of the material and dimensions of the core and coating, as well as the emission wavelength of the donor.
For the material of the core we consider gold and silver, whose surface plasmon wavelengths lie in the visible
part of the electromagnetic spectrum. The spontaneous emission rate is enhanced by several orders of magnitude
when the emission wavelength is close to the surface plasmon wavelength. The energy transfer rate enhancement
is found to be concentrated in hot spots around the circumference of the coated cylinder. Introducing the energy
transfer efficiency as a parameter, we find that, when the donor emission and acceptor absorption spectra are
resonant with the surface plasmon modes excited on the coated cylinder, the energy transfer efficiency can be
significantly enhanced compared to the off-resonance situation. Tuning the surface plasmon wavelength to the
emission wavelength of the donor via the geometrical and material parameters of the coated cylinder allows,
therefore, control of the energy transfer efficiency.
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I. INTRODUCTION

In 1946 Purcell showed that a quantum system’s intrinsic
properties, such as its spontaneous emission (SE) or decay
rate, can be modified by the presence of material bodies in
its vicinity [1]. Various structures have been investigated with
respect to their role in modifying the SE rate: planar dielectric
and metallic interfaces [2–8], spheres [9–13], and dielectric
and metallic cylinders [14–22].

The energy transfer (ET) rate between two quantum
systems, donor and acceptor, can also be influenced by the
environment. A variety of geometrical arrangements have
been considered when investigating the ET rate, e.g., planar
geometries [5,8,23,24], dielectric spheres [25–28], photonic
crystals [29], microcavities [30–33], etc. These investigations
have found that both enhancement and reduction of the ET
rate can occur.

In particular, the SE and ET rates can be dramatically
enhanced when the quantum systems are placed in close
proximity to metallic bodies, due to the possibility of exciting
surface plasmon modes [34,35]. Surface plasmons (SPs) are
collective oscillations of electrons and the electromagnetic
field that can be excited at the interface between a dielectric
and a conductor. Depending on the size and shape of the
dielectric and conducting bodies, the SPs can either propagate
along the interface or be localized. The frequency at which SP
modes can be excited depends on the geometrical and material
characteristics of the bodies.

The SE and ET rates have been studied extensively for
cylindrical geometries during the past decade, the focus
being mainly on the SE rate in the presence of dielectric
and metallic cylinders. Furthermore, it has been shown that
the ET rate between a pair of quantum emitters can be
significantly enhanced due to coupling to SP modes on a
metallic cylinder [19,22]. It is also known that the presence
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of a metallic coating on a dielectric core can support SP
modes [18]. The presence of the dielectric coating will modify
the SP dispersion relations as a function of the thickness and
refractive index of the coating. This will, in turn, modify the
coupling of the quantum systems to the coated cylinder and
offer a way to control the SE and ET rates through the optical
and geometrical parameters of the dielectric coating.

In this contribution we consider a metallic core coated with
a dielectric layer and we investigate the influence of the SP
modes on the SE and ET rates of quantum systems placed in
proximity to the coated cylinder. These rates are calculated
using a semianalytical Green’s tensor method [36,37]. A
variety of quantum systems can be investigated this way, e.g.,
atoms, molecules, quantum dots, and fluorescent dyes. The
metallic core will be either Ag or Au, since the SP wavelength
of these metals lies in the visible part of the electromag-
netic spectrum, making them of significant practical interest.
Tabulated experimental data are used to describe the optical
response of these materials [38].

Top-down techniques, e.g., electron-beam lithography, or
bottom-up techniques, e.g., colloidal synthesis, can be used to
fabricate hybrid nanostructures with dimensions of a few tens
of nanometers. These structures form the building blocks for
a variety of potential technological applications. Nanowires
and coated nanowire structures can be used in light har-
vesting [39,40] and switching devices [41], imaging [42,43],
light conversion [43,44], cloaking [45,46], and quantum optics
applications [47]. A good understanding of the SE and ET
processes in these environments is important for manipulation
of light below the diffraction limit.

The paper is structured as follows. In Sec. II we present an
outline of the formalism used, while in Sec. III the results
of our simulations of the SE and ET rates are presented
and discussed. Finally, Sec. IV is reserved for a summary
of the results and the conclusions that can be drawn. In
addition, the derivations of several expressions are given in two
Appendices.
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II. SPONTANEOUS EMISSION, ENERGY TRANSFER,
AND THE GREEN’S TENSOR FORMALISM

A. Spontaneous emission rate

Spontaneous emission is the process by which an excited
quantum mechanical system spontaneously decays to its
ground state. We therefore start by considering a two-level
quantum system for which |e〉 and |g〉 denote the excited
and ground states, respectively. The system interacts electro-
magnetically with its environment even in the absence of an
external electromagnetic field, which leads to the spontaneous
relaxation of the excited two-level system. The initial state of
the system is |i〉 = |e〉 ⊗ |0〉, where the system is in the excited
state and the electromagnetic field is in its vacuum state. The
two-level system will not stay excited indefinitely, but will
relax to its ground state by emitting a photon and, therefore,
the electromagnetic field will be in the state |1(k,α)〉, where
k and α are the wave vector and polarization of the emitted
photon, respectively. We can express this state by introducing
the creation operator f̂

†
i (r,ω) which acts on the vacuum state to

generate the one-excitation state. The final state then has the
form |f 〉 = |g〉 ⊗ f̂

†
i (r,ω)|0〉. The creation and annihilation

operators f̂
†
i (r,ω) and f̂i(r,ω), respectively, can also account

for medium dressed states such as SPs which are a main focus
of this paper [48].

Applying Fermi’s golden rule and summing over all final
states, we obtain an expression for the SE rate, γ [13,49],

γ (r,ω) = 2ω2μ2

�ε0c2
Im[nμ · G(r,r,ω) · nμ], (1)

where nμ is a unit vector along the direction of the transition
dipole moment of the emitter, μ, and G (r,r,ω) is the
Green’s tensor representing the response of the geometry
under consideration to a pointlike excitation, located at r. The
Green’s tensor is a solution of the differential equation

∇×∇×G(r,s,ω) − ω2

c2
ε(r,ω)G(r,s,ω) = Iδ(r − s), (2)

where I is the unit 3×3 tensor and ε (ω) represents the
spatially dependent complex permittivity of the system. The ij

component of the Green’s tensor represents the j component
of the electric field at position r created by a point dipole
source oriented along direction i and located at position s.

A useful quantity to introduce is the normalized SE rate,
defined as

γ̃ = γ

γ0
= ni + 6πc

ω
Im[nμ · Gs(r,r,ω) · nμ], (3)

where the expression for γ0 is given by the Einstein A

coefficient as γ0 = ω3μ2/(3π�ε0c
3). The subscript s on the

Green’s tensor denotes the scattering part of this quantity,
which we introduce in Eqs. (8), Sec. II C. The final equality in
Eq. (3) above was obtained from Eq. (1), and ni = √

εi is the
refractive index of the medium into which the quantum system
is embedded. The normalized SE rate from Eq. (3) gives either
an enhancement (γ̃ > 1) or a reduction (γ̃ < 1) of the SE rate
compared to its free-space value, γ0.

When dealing with statistical ensembles of emitters, the
emission spectrum will be different from that of a single

emitter, which we have taken to have a δ shape. The emission
rate for the ensemble can then be expressed as

kSE =
∫ ∞

0
dλfD(λ)γ (λ), (4)

where fD(λ) is the area-normalized emission spectrum of the
emitter, with

∫ ∞
0 dλfD(λ) = 1.

B. Energy transfer rate

The process of ET considers the transfer of the excitation
energy of an excited donor quantum system to an acceptor
quantum system that is in its ground state. We can, therefore,
consider a pair of two-level quantum systems, D and A,
and study the ET between them. The initial state is |i〉 =
|eD〉 ⊗ |gA〉 ⊗ |0〉, where |eD(A)〉 and |gD(A)〉 are the excited
and ground states of the donor D (acceptor A), while |0〉 is
the vacuum state of the electromagnetic field. In the final state
|f 〉, the donor D has relaxed to the ground state, transferring
its excitation energy to the acceptor A, now in the excited
state; the electromagnetic field is still in the vacuum state
|f 〉 = |gD〉 ⊗ |eA〉 ⊗ |0〉 [50].

We find that the ET rate, 	, between a donor-acceptor pair
has the form [48]

	(ω) = 2π

�2

(
ω2

0

c2ε0

)2

|μA · G(rA,rD,ω) · μD|2, (5)

where again G(rA,rD,ω) is the Green’s tensor for the particular
geometry, rD(A) is the position of the donor D (acceptor A),
and μD(A) is the transition dipole moment of the donor D
(acceptor A). The above expression for the ET rate depends
on the donor-acceptor pair through the emission frequency
of the donor and the transition dipole moment of the donor
and acceptor. The influence of the geometry is completely
encapsulated in the Green’s tensor, being proportional to the
electric field intensity, through the square of the Green’s tensor.

To consider only the influence of the geometry on a general
donor-acceptor pair, we now introduce the normalized ET
function for the coated cylinder, 	̃, defined as

	̃(ω) = 	(ω)

	0(ω)
= |nA · G(rA,rD,ω) · nD|2

|nA · G0(rA,rD,ω) · nD|2 , (6)

where G0(rA,rD,ω) is the Green’s tensor in free space and
nD(A) is a unit vector in the direction of μD(A). As the reader can
readily recognize, this is, in essence, the ratio of the intensities
of the electric field created by the donor dipole in the presence
and absence of the coated cylinder.

Analogously to the case of the SE rate, when considering
statistical ensembles of donors and acceptors, the donor
emission spectrum fD(λ) and acceptor absorption cross section
σA(λ) need to be taken into account when calculating the ET
rate. We, therefore, have [51]

kET = 36π2YD

kSE

∫ ∞

0

dλ

λ2
fD (λ) |nA · G(rA,rD,ω) · nD|2σA(λ).

(7)
We use this expression to calculate the ET rate between donors
and acceptors with specific emission and absorption spectra
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FIG. 1. Cross section of an infinitely long coated cylinder
geometry, with its axis along the z direction, core radius a, and outer
radius b. The dielectric permittivity of the core is ε1, the dielectric
permittivity of the coating is ε2, and that of the surrounding medium
is ε3.

and investigate how the ET process competes with the emission
process of the donor.

C. The Green’s tensor of a coated cylinder

The Green’s tensor encapsulates all the information for
the response of material bodies to electromagnetic fields and
determines the normalized SE rate, Eq. (3), and normalized
ET function, Eq. (6). In what follows we present a method
for calculating the Green’s tensor for the coated cylinder
geometry [52].

We consider a coated cylinder with core radius, a, and outer
radius, b, embedded in a homogeneous medium with dielectric
permittivity ε3, as in Fig. 1. The cylinder axis is along the z

direction. The dielectric permittivity for the core cylinder is ε1

which will be given by tabulated experimental data [38], while
the coating will have a constant dielectric permittivity ε2. Due
to the cylindrical symmetry of the structure, throughout this
paper we use the cylindrical coordinate system, (ρ,θ,z).

In order to calculate the Green’s tensor for the coated
cylinder geometry we use the method of scattering super-
position [36,37]. When the source point is located in the
background medium outside the coated cylinder, the Green’s
tensor has the form

G
(13)(r,s,ω) = G(13)

s (r,s,ω), (8a)

G
(23)(r,s,ω) = G(23)

s (r,s,ω), (8b)

G(33)(r,s,ω) = G
(33)
h (r,s,ω) + G(33)

s (r,s,ω), (8c)

where the first of the two labels in the superscript (i3) denotes
the field point, while the second denotes the source point. The
subscript s denotes the scattering term, always present, while
the homogeneous term G

(33)
h (r,s,ω) contributes only when

the source and field points are in the same medium. When
calculating the ET rate, the source and field points correspond
to the donor and acceptor positions, respectively, while for the
SE rate, the source and field points coincide and correspond to
the position of the quantum emitter.

The scattering term has the following general expression

G(i3)
s (r,s,ω) = i

8π

∑
n,K

∫ ∞

−∞
dkz

[
Ri3

MKMn(kρi,r)

+Ri3
NKNn(kρi,r)

] ⊗ K(1)
n (kρ3,s), (9)

where kρi =
√

k2
i − k2

z is the radial propagation constant in
medium i, and ki = ω

c

√
εi is the wave number in medium i

(i = 1,2,3). The above expression involves a summation over
K, which represents M(1)

n (kρ3) and N(1)
n (kρ3), or the transverse

electric (TE) and transverse magnetic (TM) modes. As is
evident, the field has a hybrid nature and cannot be separated
into TE and TM modes. The vector wave functions are
solutions of the Helmholtz equation in cylindrical coordinates
and involve Bessel and Hankel functions. The superscript (1)
in M(1)

n (kρ) denotes the fact that we use the Hankel function of
the first kind. This form of the Green’s tensor already takes into
account the radiation condition at infinity and the regularity
condition on the z axis, i.e., at ρ = 0, where the regular Bessel
functions are used.

We impose the following continuity conditions at the
surface of the core (ρ1 = a) and coating (ρ2 = b),

ρ̂×[G(i3)(r,s,ω) − G[(i+1)3](r,s,ω)]|ρ=ρi
= 0, (10a)

ρ̂×[∇×G(i3)(r,s,ω) − ∇×G[(i+1)3](r,s,ω)]|ρ=ρi
= 0. (10b)

Using Eqs. (8) in the continuity conditions we obtain two
inhomogeneous systems of linear equations, one for each
polarization M or N. We can write this system of equations in
matrix form as


(n,kz) · RM(N)(n,kz) = VM(N)(n,kz), (11)

where 
(n,kz) represents the characteristic matrix, the same
for both polarizations TE and TM, RM (n,kz) and RN (n,kz) are
the unknown coefficients vectors, and VM (n,kz) and VN (n,kz)
are the free-term vectors, known quantities emerging from
the homogeneous part of the Green’s tensor G(33)(r,s,ω),
and associated with the field of a point dipole source. The
expressions for the characteristic matrix and the coefficients
and free-term vectors are given in Appendix A.

As an example, we give the expression of the scattering
part of the Green’s tensor for the case when the donor and the
acceptor are both oriented along the z direction:

G
(13)
s(zz)(r,s,ω) = i

8π

∞∑
n=−∞

∫ ∞

−∞
dkz

k2
ρ1

k1k3
R13

NN Jn(kρ1ρ)

×Hn(kρ3ρs) einθ eikzz. (12)

The integrals above do not depend on θs , because of the
rotational symmetry, or zs , because of translation symmetry
along the axis of the cylinder. The integrals are also symmetric
with respect to kz, which means that they can be replaced with
their symmetrized versions, with kz in the interval (0,∞). The
various scattering coefficients have a complicated form, and
we implement numerical methods to calculate these integrals
and thereafter the SE and ET rates. One can distinguish
three contributions to the above integrals: for kz ∈ (0,k3), one
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FIG. 2. (Color online) Dispersion curves of SPs of different orders n on a coated cylinder with a Ag core, dielectric coating ε2 = 2 and
embedded in air, for two different sets of geometric parameters: (a) a = 40 nm and b = 50 nm; (b) a = 80 nm and b = 90 nm.

integrates over contributions from radiative modes traveling
freely in the surrounding medium, i.e., air; for kz ∈ (k3,k2),
the integral gives the contribution from guided modes within
the dielectric coating. These modes are evanescent in the
surrounding medium and thus only contribute when the donor
and acceptor are both close to the surface of the coating.
Finally, for kz ∈ (k2,∞), the integral has contributions from
SP modes on the metallic core [20], as well as from lossy
surface waves with larger values of kz [17].

If we wish to obtain the normal modes of the geometry
under consideration, we have to set the free vectors to zero
in Eq. (11) and solve the resulting homogeneous system of
equations [18]. This kind of system has a nontrivial solution
only when the determinant of the characteristic matrix 
(n,kz)
is set to zero. Due to the complex form of the 
(n,kz) we solve
this equation numerically. We consider the case of a Ag core,
where experimental data are used for the dielectric permittivity,
ε1 = εAg(ω) [38], coated with a dielectric with ε2 = 2 and
embedded in air, ε3 = 1. Figure 2 presents the dispersion
curves for SPs of different orders n. In Fig. 2(a) the core radius
is a = 40 nm and the outer radius is b = 50 nm, while for
Fig. 2(b) we have a = 80 nm and b = 90 nm. The dielectric
permittivity of the coating is ε2 = 2 in both panels. The
horizontal line with the value ω = ωSP = 5.3 fs−1 represents
the SP frequency, i.e., the asymptotic value of ω for k → ∞,
for all the SP dispersion curves. This frequency corresponds
to a SP wavelength of λSP = 355 nm. In Fig. 2(a) the SP
dispersion curves with n > 1 lie close to the SP frequency
ωSP, while in Fig. 2(b) the SP dispersion curves reach their
asymptotic value for n > 2. The value of n above which the
dispersion curves are close to ωSP increases with the size of
the metallic core.

III. RESULTS AND DISCUSSION

Using the formalism developed in the previous section we
now calculate the SE and ET functions and rates for quantum
systems in the presence of a dielectric coated metallic cylinder,
with core radius a and outer radius b. All the results have been
obtained for transition dipoles that are radially oriented, and
we therefore use the ρρ component of the Green’s tensor.

A. Spontaneous emission rate

In this section we investigate the influence of the coated
cylinder on the SE rate of a nearby quantum emitter. We present
the normalized SE rate, γ̃ = γ /γ0, of the quantum emitter,
which is the ratio of the SE rate in the presence of the coated
metallic cylinder, γ , to the free-space SE rate, γ0. Thus, the
normalized SE rate, γ̃ , gives the enhancement or the inhibition
of the SE rate with respect to the free-space value due to the
presence of the coated metallic cylinder.

We first consider the case of a coated cylinder of core
radius a = 40 nm and outer radius b = 50 nm. Figure 3 shows
contour plots of the normalized SE rate, γ̃ , as a function of
the position of the emitter and its emission wavelength, for
both Ag and Au cores. The normalized SE rate is enhanced
close to the metallic core and for an emission wavelength
close to the SP wavelength. Excitation of SPs on the coated
cylinder requires momentum matching between the excitation
field and the SP mode. This momentum matching is provided,
in this case, by the dipole near field of the quantum emitter.
Consequently, as the dipole is moved away from the metallic
core, its near field cannot excite the SP modes and, at larger
distances, we recover the free-space value of the SE rate. The
SP wavelength for the Ag core is λAg = 356 nm, while the Au
SP wavelength is λAu = 520 nm.

In Fig. 4 we investigate the normalized SE rate as a function
of the emission wavelength of the emitter, for a fixed coating
thickness of d = 10 nm, and a fixed position of the emitter,
r = a + 5 nm, in the middle of the coating. We consider four
cases for the core radius, a = 10 nm, a = 20 nm, a = 40 nm,
and a = 90 nm. As the core radius is increased, the SP
wavelength does not change, as it does not depend on the
cylinder radius; see Fig. 2. When the emission wavelength is
above the SP wavelength, corresponding to frequencies below
ωSP in Fig. 2, the SE rate exhibits a strong dependence on the
size of the core. More precisely, the SE rate is reduced as the
size of the core is increased and this can be explained by the fact
that in this wavelength regime, the emitter can couple to the SP
modes of the coated cylinder. SPs with a larger wave number
give a larger contribution to the SE rate, though their influence
is more constrained to the surface of the core. For a given
frequency in this range, the SP wave number varies inversely
as the core size, and, therefore, smaller cores produce larger
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FIG. 3. (Color online) Normalized SE rate, γ̃ = γ /γ0, near a coated metallic cylinder as a function of the radial distance, r , and emission
wavelength, λ, of the emitter. The core radius is a = 40 nm and outer radius is b = 50 nm. The coating has constant dielectric permittivity
ε2 = 2 and the surrounding medium is air, ε3 = 1. (a) Ag core, ε1 = εAg(ω); (b) Au core, ε1 = εAu(ω). The dipole moment of the emitter is
radial.

SE rates of the emitter. For core radii above a = 40 nm, the
SE rate no longer depends on the core size and is, in essence,
the same as the SE rate for a core of infinite size, also shown
in Fig. 4. When the emission wavelength is close to or below
the SP wavelength, SPs of higher order and with a dispersion
curve very close to the SP wavelength begin to contribute to
the SE rate. Coated cylinders with a larger core support a larger
number of these high-order SPs which, therefore, give a larger
contribution to the SE rate of the emitter. The dependence of
the SE rate on the size of the core is then reversed, increasing
with core size, though not very strongly. The limit a → ∞ is
seen to hold in both wavelength regimes, above and below the
SP wavelength.

Apart from a larger SE rate for the Ag core, the main
difference between the Au and the Ag cores is that the features
for a Ag core are sharper than those for a Au core. For the
latter, the dependence of the normalized SE rate, γ̃ , on the
emission wavelength has a broader and shallower peak around
the SP wavelength. This is due to the larger absorption of Au
compared with Ag, Im[εAu(ω)] > Im[εAg(ω)].

In Fig. 5 we present the normalized SE rate, γ̃ , as a function
of the distance of the emitter from the surface of the core
for the four different core radii. The emission wavelength of
the quantum emitter is the same for all curves in each panel,

Fig. 5(a) λ = 356 nm and Fig. 5(b) λ = 520 nm, respectively,
placing it in the regime where the SE rate increases with the
size of the core. In Fig. 5 the emitter is always outside the
coating, in contrast to Fig. 4 where the emitter was placed
in the middle of the coating. Because the transition dipole
moment of the emitter is normal to the surface of the coating,
its SE rate will have a discontinuity as the emitter moves
from the coating to the background medium. As a result of
this, the values of the SE rate in the background medium can
be considerably different from the values inside the coating.
Another consequence is that the limit a → ∞ is attained for
much larger values of a � 200 nm when the emitter is in the
background, compared to the value a � 40 nm for an emitter
positioned in the middle of the coating; see Fig. 4. Again, it
is evident that for the Ag core, the normalized SE rate, γ̃ ,
has larger values compared with the Au core. This different
behavior of the coated cylinders with Ag and Au core can once
again be attributed to the larger absorption of Au.

The insets in the figure show the different contributions to
the SE rate. For these calculations, we have set the losses in
the metal to zero [22], to better illustrate the SP contributions.
As the inset shows, the total SE rate, in the absence of
losses, and the sum of the contributions from radiative and
SP modes of order n = 0 and n = 1 overlap perfectly. When

FIG. 4. (Color online) Normalized SE rate, γ̃ = γ /γ0, as a function of the emission wavelength, λ, of the emitter, for several core radii, a.
The position of the emitter is fixed at r = a + 5 nm, and its dipole moment is radial. The surrounding medium is air, ε3 = 1, the coating has
ε2 = 2, with a fixed thickness d = 10 nm, and the core is metallic. (a) Ag core ε1 = εAg(ω); (b) Au core ε1 = εAu(ω). The SE rate in the limit
a → ∞ is also shown for comparison.

063817-5



KARANIKOLAS, MAROCICO, AND BRADLEY PHYSICAL REVIEW A 89, 063817 (2014)

FIG. 5. (Color online) Normalized SE rate, γ̃ = γ /γ0, as a function of the distance of the emitter from the surface of the core, d , for
several core radii, a = 10,20,40,80 nm. The surrounding medium is air, ε3 = 1, the coating has a constant dielectric permittivity ε2 = 2 and
thickness b − a = 10 nm, and the core is metallic with: (a) a Ag core and (b) a Au core. The dipole moment of the emitter is radial. The insets
of both panels show the different contributions of the radiative and SP modes to the total SE rate in the absence of losses, for a = 40 nm and
b = 50 nm.

losses are considered, there is an additional contribution from
lossy surface modes, especially very close to the surface of the
core.

In Fig. 6 we consider the effect of different values of the
dielectric permittivity of the coating on the SE rate. The x axis
shows the radial position of the emitter. In Fig. 6(a) we consider
a Ag core and in Fig. 6(b) a Au core, where the coated cylinder
has a core radius a = 40 nm and an outer radius b = 50 nm.
In both panels the normalized SE rate, γ̃ , increases as we
increase the dielectric permittivity of the coating. The emission
wavelength of the emitter is chosen to be close to the SP
wavelength and as we increase the dielectric permittivity, the
SP wavelength redshifts, as can be seen in the legends in Fig. 6.
This redshift is due to the fact that the SP condition depends
on ε2 (for a planar interface, this condition is Re(ε1) = −ε2

at ωSP).

B. Energy transfer function

In this section we consider the ET function for a pair of
quantum emitters where the donor is excited and the acceptor
is in the ground state. The donor is at a fixed position, and the
position of the acceptor is varied.

In Fig. 7 we present a contour plot of the normalized ET
function for four different coated cylinder geometries. The
figure shows an xy cross section of a coated cylinder with a
core radius a = 40 nm and an outer radius b = 50 nm. The
position of the donor is fixed on the x axis at rD = 55 nm and
is indicated by the arrow. The ET function is calculated for
the acceptor positioned at each point in the plot. The emission
wavelength of the donor has been chosen close to the SP
wavelength in each case.

We first consider the Ag core and Au core geometries,
shown in Figs. 7(a) and 7(b) respectively. The donor wave-
length, λD, is 356 nm for the Ag core and 520 nm for the Au
core. Figure 7(a) shows that the normalized ET function, 	̃,
is concentrated in hot spots around the circumference of the
coated cylinder. The number of hot spots is associated with
the contributions of modes of different orders, n, of the Bessel
and Hankel functions. In general, the number of hot spots, δ, is
given by δ = 2n + 1. It can be seen that excitation of SP modes
can significantly enhance the ET function by up to 4 orders of
magnitude.

Figure 7(b) shows the normalized ET function, 	̃, when the
material of the core is Au. The behavior is similar to the case
of a Ag core, showing the same number of hot spots around

FIG. 6. (Color online) Normalized SE rate, γ̃ = γ /γ0, as a function of the radial position of the emitter, r , for several dielectric permittivities
of the coating. The surrounding medium is air, ε3 = 1, the coating thickness is b − a = 10 nm, and the core is metallic, with (a) a Ag core and
(b) a Au core. The radius of the core is a = 40 nm. The dipole moment of the emitter is radial.
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FIG. 7. (Color online) An xy contour plot of the normalized ET function, 	̃, near a coated metallic cylinder with a core radius a = 40 nm
and an outer radius b = 50 nm. The dielectric permittivity of the coating is ε2 = 2 and the surrounding medium is air, ε3 = 1. The position of
the donor is fixed for all panels at rD = 55 nm on the x axis. The material of the core cylinder and the emission wavelength of the donor are
different for each panel: (a) Ag core with λD = 356 nm; (b) Au core with λD = 520 nm; (c) Ag core, no coating and λD = 340 nm; (d) dielectric
core with ε1 = 4 and λD = 356 nm. For each case where the core is metallic, the emission wavelength matches the SP wavelength. Both the
donor and the acceptor dipole moments are radial.

the circumference. However, because of the higher losses in
Au, the enhancement across the cylinder is much lower.

To investigate the influence of the dielectric coating on the
ET function we have considered two additional cases, that of
a metallic core with no coating and that of a simple dielectric
cylinder. Figure 7(c) shows a contour plot of the xy cross
section of the normalized ET function for a Ag cylinder of
radius a = 40 nm, for which the position of the donor is the
same as in Fig. 7(a). The emission wavelength of the donor
is chosen close to the SP wavelength for this case, which is
λSP = 340 nm. It is clear that in the absence of the dielectric
coating, the normalized ET function, 	̃, across the Ag cylinder
is considerably smaller. Therefore, for the case of the coated
metal core cylinder the dipole near field is able to couple with
the coating. Additionally, the dielectric material enhances the
strength of the near field, as we have already shown in the
section on the SE rate, i.e. Fig. 6.

It is also instructive to consider a purely dielectric cylinder,
where we replace the metallic core with a material with a con-
stant dielectric permittivity, ε1 = 4. The emission wavelength,
λD = 356 nm, and the donor position are identical to those in
Fig. 7(a) to allow for direct comparison. It can be seen that
the normalized ET function, 	̃, is significantly smaller than
in the other panels. Outside the cylinder it has a value 	̃ ≈ 7

very close to the dielectric interface and, as the distance is
increased, it reverts to the free-space value. The importance of
the excitation of the SP modes for a large enhancement of the
ET function is thus evident when we compare the dielectric
core case with the metallic core cases considered in the rest of
Fig. 7. The reader should note the different orders of magnitude
for the color maps shown in Fig. 7.

In Fig. 8 we investigate the effect of changing the size of
the coated cylinder on the ET mechanism. The normalized ET
function, 	̃, is presented in a xy cross section of the coated
cylinder. In both panels the core material is Ag, with ε2 = 2
and ε3 = 1. For Fig. 8(a) we have a = 20 nm, b = 30 nm,
the position of the donor rD = 35 nm on the x axis, and
the emission wavelength of the donor is close to the SP
wavelength at λD = 356 nm. It can be seen that the normalized
ET function, 	̃, exhibits one hot spot at a position on the
opposite side of the cylinder relative to the donor and is
confined around the periphery of the coated cylinder. When we
consider larger dimensions for the coated cylinder, a = 80 nm,
and b = 90 nm as shown in Fig. 8(b), the number of hot spots
increases and the spatial extent of the enhancement of the nor-
malized ET function, 	̃, also increases. For Fig. 8(b), the
position of the donor is rD = 100 nm on the x axis and the
donor emission wavelength is close to the SP wavelength,
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FIG. 8. (Color online) An xy contour plot of the normalized ET function, 	̃, near a coated cylinder with a Ag core, and a dielectric coating
(ε2 = 2), embedded in air (ε3 = 1). (a) a = 20 nm, b = 30 nm, rD = 35 nm; (b) a = 80 nm, b = 90 nm, rD = 100 nm. Both the donor and the
acceptor dipole moments are radial and the donor emission wavelength is λD = 356 nm.

λD = 356 nm. The number of hot spots is given by the coupling
to SPs of different orders n, the dispersion curves of which are
shown in Fig. 2.

C. Energy transfer efficiency

In the previous two sections we have considered generic
donor-acceptor pairs with δ-like emission and absorption
spectra, i.e., single-frequency spectra. As such, the normalized
SE or ET rates were determined by the optical response of
the coated metallic cylinder, through the Green’s tensor; see
Eqs. (3) and (6).

We now relax this constraint and consider realistic donor
emission spectra, fD(λ), and acceptor absorption spectra,
σA(λ) [53,54]. These spectra describe statistical ensembles
of donor-acceptor pairs.

When the donor dipole is excited it has two ways of
relaxing to the ground state: It can either transfer its excitation
energy to the acceptor dipole with an ET rate kET or it can
relax with decay rate kSE. The decay rate kSE takes account
of photon emission into the far-field, intrinsic nonradiative
recombination paths, coupling to SP modes and losses in the
metallic core. The SE and ET processes are, therefore, in
competition with each other and we introduce an ET efficiency
to describe this competition. We will consider, in what follows,
donors with a quantum yield of one, Y0 = 1.0, which assumes
no intrinsic losses such as phonon relaxation, etc.

Using the expressions we have introduced in Eqs. (4) and (7)
for the SE and ET rates of ensembles of emitters and donor-
acceptor pairs, we now define an ET efficiency η as [55]

η = kET

kSE + kET
. (13)

This quantity gives the relative contribution of the ET process
to the total decay rate of the donor. If the ET efficiency, η,
has a value larger than η > 50%, then the decay of the excited
state of the donor occurs mainly by ET to the acceptor, rather
than relaxation into photon or SP modes.

We next consider two donor-acceptor pairs. The donor
emission and acceptor absorption spectra are both given by

a Gaussian distribution,

Aqi e−(λ−λqi )2/
λ2
qi , (14)

where q = D represents the donor, q = A represents the
acceptor, i = 1 corresponds to the on-resonance case, and i =
2 corresponds to the off-resonance case. Aqi is a normalization
constant, λqi gives the position of the spectral peak, and 
λqi

is the half width at half maximum (HWHM) of the spectrum.
The normalization constant of the donor emission spectrum
is given as A−1

Di = ∫ ∞
0 dλfD(λ). The HWHM will be 
λDi =

20 nm for both donor-acceptor pairs, which corresponds to a
typical spectrum of a fluorescent dye, e.g., fluorescein [53].
The constant for the acceptor absorption spectrum is AAi =
0.021 nm2, while the HWHM is 
λAi = 50 nm. The pre-
ceding values are common to both donor-acceptor pairs. The
two donor-acceptor pairs do, however, differ with respect to
the positions of their emission and absorption peaks. For the
first pair, the donor emission peak is at λD1 = 363 nm, while
the absorption maximum is at λA1 = 373 nm; for the second
pair we have λD2 = 453 nm and λA2 = 463 nm. Figures 9(a)
and 9(b) show the normalized emission spectrum of the
donor, fD(λ), and the absorption cross section spectrum of
the acceptor, σA(λ), together with the ET function, 	(λ).
Since the ET function, 	(λ), is given by the Green’s tensor
of the coated metallic cylinder, Eq. (6), it is the same for both
donor-acceptor pairs, with a peak at λ ≈ 365 nm, close to the
SP wavelength. The peak is redshifted from the SP wavelength,
λSP = 356 nm, as due to the finite distance of the donor
and acceptor from the surface of the core, the pair can only
couple to SPs with smaller wave vectors, which have a lower
frequency and hence a longer wavelength. The permittivity of
the coating is the same, ε2 = 2, and the background medium is
air, ε3 = 1. The donor emission spectrum, fD(λ), and acceptor
absorption spectrum, σA(λ), of the first donor-acceptor pair
considered both have a good overlap with 	(λ), i.e., this
pair is on-resonance. The overlap is poor for the second
donor-acceptor pair; i.e., it is off-resonance.

The Förster radius, R0, is defined as the donor-acceptor
separation at which η is 50% [56]. The Förster radius is
calculated to be 6.07 and 7.04 nm in free space for the first and
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FIG. 9. (Color online) (a),(b) Normalized donor emission spectrum, fD(λ), acceptor absorption spectrum, σA(λ), and ET function, 	(λ),
for two different donor/acceptor pairs: (a) on-resonance and (b) off-resonance. (c) ET efficiency, η, for a coated metallic cylinder, with a core
radius a = 10 nm, outer radius b = 15 nm, for a donor placed at rD = 20 nm on the x axis, as a function of acceptor distance, d , from the core
surface, diametrically opposite the donor. (d) ET efficiency, η, as a function of core radius, a, for an outer radius b = a + 5 nm, donor position
rD = a + 10 nm and acceptor position rA = −a − 2 nm, both on the x axis. The shaded region in (c) represents the coating.

second donor-acceptor pair, respectively. These values were
calculated from the spectral overlap of the normalized donor
emission and acceptor absorption spectra as

R0 =
[

3c

32π4n4

∫ ∞

0
dλλ2fD (λ) σA (λ)

]1/6

, (15)

where n is the refractive index of the host medium, in our case
air with n = 1.

The next step will be to consider the influence of the coated
cylinder on the ET efficiency, η. The core radius is a = 10 nm
and the outer radius is b = 15 nm. The position of the donor
is kept fixed at rD = 20 nm on the x axis. In Fig. 9(c) we plot
the value of the ET efficiency, η, as a function of the radial
position of the acceptor diametrically opposite to the donor,
for the two donor-acceptor pairs. For the on-resonance
case, the ET efficiency has a value of η = 23% close to
the Ag-dielectric interface while for the off-resonance case
[cf. Fig. 9(b)], the value of the ET efficiency is η = 1.3% close
to the Ag-dielectric interface. These values can be compared
with the free-space ET efficiency of 0.0077% and 0.017%
at a donor-acceptor separation of 30 nm, corresponding to
the diameter of the coated metallic cylinder, for the first and
second donor-acceptor pair, respectively. It can also be noted
that the Förster radius in free-space for the first donor-acceptor
pair is smaller than for the second. Therefore, the enhanced

ET range near the coated metallic cylinder is a consequence
of the excitation of SP modes on the coated cylinder.

In Fig. 9(d) we investigate the influence of the core radius, a,
of the coated cylinder on the ET efficiency, η, by keeping
the thickness of the coating fixed at 5 nm. The dielectric
permittivities of the coated cylinder layers are the same as
before. The position of the donor is rD = a + 10 nm, in air,
and the position of the acceptor is rA = −a − 2 nm, inside
the coating. In Fig. 9(d) we observe that for the case where
the emission and absorption spectra are on resonance, the ET
efficiency reaches values as high as η = 19.4% at a = 5 nm
and it has values η > 10% for core radii a < 10 nm. When the
donor-acceptor pair from Fig. 9(b) is considered, we observe
that the maximum values of the ET efficiency are smaller,
η = 7.9% at a = 5 nm, and it drops off more abruptly as a
function of core size. Comparing the on- and off-resonance
cases shows that a large overlap of the donor emission spectrum
and acceptor absorption cross section with the SP spectrum
of the ET function, 	(λ), can significantly enhance the ET
efficiency, η, and mediate the interactions over larger distances.

In Fig. 10(a) we consider the influence of the dielectric
permittivity of the coating, ε2, on the SE rate of a donor,
kSE, and the ET rate between a donor and an acceptor, kET,
for the geometry considered in the previous paragraph with
parameters a = 10 nm and b = 15 nm. For the donor emission
and acceptor absorption spectra, we use the data from Fig. 9(a),
the on-resonance case. The donor is located at rD = 20 nm and
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FIG. 10. (Color online) Coated cylinder of inner radius, a, donor position rD = b + 5 nm and acceptor position rA = −b − 5 nm, both on
the x axis. (a) SE rate, kSE, of the donor and ET rate, kET, between donor-acceptor for outer radius b = 15 nm; (b) normalized ET efficiency,
η̃, as a function of the dielectric permittivity of the coating, for several values of the coating thickness.

the acceptor is located at rA = −20 nm, both on the x axis.
The SE and ET rates are expressed in units of free-space
SE, γ0. The SE rate, kSE, is two orders of magnitude larger
compared to the ET rate, kET. This is due to the fact that
the distance between the donor and the acceptor is large and
thus the factor |nA · G(rA,rD,ω) · nD|2 of Eq. (7) is weak
compared with the factor γ (λ) of Eq. (4). The SE rate reaches
a maximum value at ε2 = 2.5, while the maximum value of the
ET rate, kET, is attained at ε2 = 2.25. The interplay between
the SE and the ET contributions to the ET efficiency, η, will
determine for which value of the dielectric permittivity of the
coating, ε2, the ET efficiency reaches its maximum, as seen
in Fig. 10(b).

Figure 10(b) shows the influence of the dielectric permit-
tivity of the coating, ε2, and its thickness, on the ET efficiency,
η, for the same inner core radius, a, and donor and acceptor
spectral properties. The donor position is rD = b + 5 nm and
the acceptor position rA = −b − 5 nm, both on the x axis.
In order to quantify the influence of the coated cylinder
geometry on the ET efficiency, we introduce the normalized
ET efficiency, η̃, as η̃ = η/η0, where η is the ET efficiency in
the presence of the coated cylinder and η0 is the free-space
ET efficiency. The normalized ET efficiency, η̃, decreases
as we increase the outer radius, b, due to the decoupling
between the near field of the quantum emitters and the
SP modes of the metallic core. As the outer radius, b, is
increased even more, the ET efficiency reverts to its free-space
value and we have η̃ → 1. The peak in the normalized ET
efficiency for b = 15 nm occurs at a value of the dielectric
permittivity of the coating of ε2 = 2. By varying the dielectric
permittivity, the ET function is shifted in wavelength. The
ε2 = 2 is the value for the on-resonance case, as shown in
Fig. 9(a). Furthermore, as we increase the outer radius, b,
we see that the peak in the normalized ET efficiency is
shifted from ε2 = 2 to ε2 = 2.5, due to the redshifting of
the SP resonance wavelength with increasing outer radius
b. Thus, the dielectric permittivity of the coating, ε2, and
the thickness of the coating, constitute additional parameters
that can be adjusted to optimally couple donor-acceptor
pairs with different optical properties, maximizing the ET
efficiency.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented the role of a dielectric
coated metallic cylinder in modifying the SE rate of a single
emitter and the ET rate in a donor-acceptor pair. The excitation
of SP modes, when the emission wavelength is close to the SP
wavelength, enhances the SE and ET rates and functions by
several orders of magnitude compared with their free-space
values.

First, we considered the SE rate of an emitter in the presence
of a coated cylinder. We saw that the SE rate is enhanced
through the excitation of SP modes. The enhancement is larger
when the emitter is in close proximity to the metallic core and
its emission wavelength is close to the SP wavelength. The
SE rate also depends on the radius of the core, and is seen
to increase with the radius when the emission wavelength is
close to the SP wavelength. When the dielectric permittivity
of the coating is increased, the SP wavelength is redshifted, as
expected. The maximum of the SE rate follows the same trend,
undergoing a redshift. Furthermore, the value of this maximum
increases with the dielectric permittivity of the coating.

We next considered the ET function between a donor-
acceptor pair. By exciting SP modes, the ET function can
be enhanced by orders of magnitude, the enhancement being
localized at hot spots around the circumference of the coated
cylinder. The number of these hot spots is in direct relation to
the order of the SP mode or modes being excited. The presence
of the coating dielectric layer around the metallic core further
increases the ET enhancement provided by the core by itself.

Furthermore, since SE and ET are competitive processes,
we considered the ET efficiency, η, to investigate the interplay
between them. As examples, we chose two donor-acceptor
pairs, with different donor emission and acceptor absorption
spectra. For the first pair, the emission and absorption spectra
overlap with the ET function, given by the Green’s tensor,
while for the second pair, they do not. By considering a fixed
geometry for the coated cylinder and varying the position of
the acceptor and the core radius, a, a significant difference
between on- and off-resonance emission spectrum for SP mode
excitation is evident.

Additionally, we have shown that the SP-mediated coupling
between different donor-acceptor pairs can be engineered
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in a predictable way by controlling the refractive index
of the coating, as well as its thickness. These parameters
can be chosen such that one can obtain an optimal cou-
pling between donors and acceptors with specific optical
properties.

For applications in which the ET efficiency needs to be
optimized, we have shown that fine tuning of the geometrical
parameters of the dielectric coated metallic cylinder, e.g.,
thickness of dielectric coating, can lead to large enhancements
of the ET rate. Control of the wavelength at which the ET
efficiency is maximum can be achieved through the refractive
index of the dielectric coating and, for a more coarse-grained
tuning, through the material of the core, i.e., Ag vs Au.
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APPENDIX A: CHARACTERISTIC MATRIX
AND VECTORS

In this appendix we give the expressions for the char-
acteristic matrix and the free-term vectors from Eq. (11).
These expressions have been given in various articles
(cf. [52,57]). The characteristic matrix, 
(n,kz), has the
form


 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kρ1J
′
n1a

nkz

ak1
Jn1a −kρ2H

′(1)
n2a − nkz

ak2
H

(1)
n2a −kρ2J

′
n2a − nkz

ak2
Jn2a 0 0

0
k2
ρ1

k1
Jn1a 0 − k2

ρ2

k2
H

(1)
n2a 0 − k2

ρ2

k2
Jn2a 0 0

nkz

a
Jn1a k1kρ1J

′
n1a − nkz

a
H

(1)
n2a −k2kρ2H

′(1)
n2a − nkz

a
Jn2a k2kρ2J

′
n2a 0 0

k2
ρ1Jn1a 0 −k2

ρ2H
(1)
n2a 0 −k2

ρ2Jn2a 0 0 0

0 0 0
k2
ρ2

k2
H

(1)
n2b 0

k2
ρ2

k2
Jn2b 0 − k2

ρ3

k3
H

(1)
n3b

0 0 kρ2H
′(1)
n2b

nkz

bk
H

(1)
n2b kρ2J

′
n2b

nkz

ak2
Jn2b −kρ3H

′(1)
n3b − nkz

k3b
H

(1)
n3b

0 0 k2
ρ2H

(1)
n2b 0 k2

ρ2Jn2b 0 −k2
ρ3H

(1)
n3b 0

0 0 nkz

b
H

(1)
n2b k2kρ2H

′(1)
n2b − nkz

b
Jn2b k2kρ2J

′
n2b − nkz

b
H

(1)
n3b −k3kρ3H

′(1)
n3b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where we use the compact notation Jn1a = Jn(kρ1a), H
(1)
n2a = H (1)

n (kρ2a), and so on. The free-term vectors, V3
M (n,kz) and

V3
N (n,kz), have the form

V3
M (n,kz) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

kρ3J
′
n(kρ3b)

k2
ρ3Jn(kρ3b)

nkz

b
Jn(kρ3b)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V3
N (n,kz) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

k2
ρ3

k3
Jn(kρ3b)

nkz

bk3
Jn(kρ3b)

0

k3kρ3J
′
n(kρ3b)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

while the coefficients vectors are

RM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R13
MM

R13
NM

RH23
MM

RH23
NM

RJ23
MM

RH23
NM

R33
MM

R33
MM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, RN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R13
MN

R13
NN

RH23
MN

RH23
NN

RJ23
MN

RH23
NN

R33
MN

R33
MN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

Using these expressions, Eq. (11) can be readily solved.

APPENDIX B: SP CONTRIBUTION
TO THE DECAY RATES

In this appendix we present the formalism used to extract
the SP contribution to the normalized SE rate, γ̃ , from Eq. (3).
These contributions are shown in the insets of the panels in
Fig. 5. To extract the SP contribution, we make use of the
dispersion diagram in Fig. 2(a) and the relevant geometrical
and material parameters. For a specific emission frequency
of the quantum emitter the dispersion diagram determines the
number of SP modes that can be excited by the emitter and
their wave number. As Fig. 2(a) shows, the quantum system
cannot excite any SP mode when its emission frequency
is above the SP frequency ωSP = 5.3 fs−1. For emission
frequencies smaller than ωmin = 3.5 fs−1, the quantum system
can only couple to the fundamental mode, n = 0 [17,20].
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We consider the case where we ignore the losses in the
metallic core, to better show the SP contribution. By choosing
the emission frequency of the quantum system in the interval
(ωmin,ωSP), the SP with angular momentum numbers n = 0,1
can be excited. These SPs have wave numbers kSP0 and kSP1,
respectively, which correspond to two poles of the generalized
scattering coefficients from Eq. (A3). The integrand from
Eq. (12) when r = rs = r has the general expression

dGii
n (kz,r) = 1

Det[
n(kz)]
F ii

n (kz,r), (B1)

where i = 1,2,3 for the three different media and F ii
n (kz,r)

is a function containing all the different contributions to the
integrand, except the pole contribution, which is given by

the determinant of the characteristic matrix. Using Cauchy’s
residue theorem, the contributions of the two poles to the
Green’s tensor can be written as

Gii
s(rr)(r,r,ω)SP

= πi

(
F ii

0 (kSP0,r)
∂

∂kz
{Det[
0(kz)]}

∣∣
kz=kSP0

+ 2F ii
1 (kSP0,r)

∂
∂kz

{Det[
1(kz)]}
∣∣
kz=kSP1

)
,

(B2)

where the factor of 2 for the second SP contribution comes
from the fact that the n = 1 and n = −1 modes have equal
contributions.
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[14] W. Żakowicz and M. Janowicz, Phys. Rev. A 62, 013820 (2000).
[15] V. Bordo, J. Opt. Soc. Am. B 29, 1799 (2012).
[16] D. P. Fussell, R. C. McPhedran, and C. Martijn de Sterke,

Phys. Rev. A 71, 013815 (2005).
[17] D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin,

Phys. Rev. B 76, 035420 (2007).
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