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Continuous monitoring of the dynamical Casimir effect with a damped detector
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We consider the problem of photon creation from vacuum inside an ideal cavity with harmonically vibrating
walls in the resonance case, taking into account the interaction between the resonant field mode and a detector,
modeled by a quantum damped harmonic oscillator. The frequency of wall vibrations is chosen to be exactly
twice the cavity normal frequency. The field and detector modes are supposed to be initially in thermal quantum
states with different temperatures. We analyze different regimes of excitation, characterized by the competition of
three parameters: the modulation depth of the time-dependent cavity eigenfrequency, the cavity-detector coupling
strength, and the detector damping coefficient. We show that statistical properties of the detector quantum state
(variances of the photon numbers, photon distribution function, and the degree of quadrature squeezing) can be
quite different from that of the field mode. In addition, the mean number of quanta in the detector mode increases
with some time delay, compared with the field mode.
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I. INTRODUCTION

The so-called dynamical Casimir effect (DCE), i.e., the
creation of quanta from the initial vacuum (or thermal) state
due to the motion of some boundaries or, more generally,
fast variations of boundary conditions in cavities or quantum
circuits, was the subject of numerous studies for the past
decades (see Refs. [1–3] for recent reviews). However, the
problem of detecting the Casimir photons and the back action
of detectors on the rate of photon generation received much
less attention until recently (although the first attempts were
performed as far back as in Ref. [4]).

Different schemes based on atomic detectors were con-
sidered, e.g., in Refs. [5–8], but none of them were realized
until now. On the other hand, in the real experiment under
way in Padova/Legnaro (named MIR), the amplified electro-
magnetic field in superconducting niobium microwave cavities
(whose fundamental resonance frequencies lie in the interval
1.5–2.5 GHz) is detected by means of a small induction loop,
situated inside the cavity [9–11]. Since this loop is a part
of an LC contour, it seems reasonable to model this kind of
detector by a harmonic oscillator, coupled to the resonance
field mode in the cavity. Such a model was analyzed recently
in Refs. [12–14], where effects of dissipation were not taken
into account. Indeed, the dissipation in the cavity walls can be
neglected at the initial (exponential) stage of the amplification
process, as soon as a sufficient amplification level is expected
to be achieved after about 104 periods of the fundamental field
mode oscillations in the cavity with quality factor exceeding
the value of 106 [10]. (Of course, even small dissipation will
become important for large times, and the final saturation level
was a subject of some research [15,16], but at the current stage
the experiments are performed in the exponential/unsaturated
regime [11,17].)
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Dissipation in the detector mode can be important because
the induction loop is not in the superconducting state, so that
the quality factor of the detector mode is much smaller than that
of the cavity. Our aim is to analyze the influence of damping in
the detecting tract on the rate of energy increase in the cavity
and detector modes, as well as statistical properties of quantum
states in both modes.

The model studied in the paper could seem very simple
at first glance—two coupled harmonic oscillators. But, as
a matter of fact, its analysis is not so simple, because one
has to take into account many parameters. The resonance
excitation of the selected field mode is described by minimum
two parameters, even in the case of harmonic modulation of
the cavity eigenfrequency (harmonic motion of boundary):
the frequency of modulation and modulation depth. Coupling
the mode (the first oscillator) to the detector (the second
oscillator), one has to choose, in addition to a possible detuning
between the frequencies of two modes, the form of coupling,
together with the related coupling coefficients. In the most
general case of bilinear coupling, one needs four coefficients,
corresponding to possible terms x̂1x̂2, p̂1p̂2, x̂1p̂2, and x̂2p̂1,
where x̂j and p̂j are generalized coordinates and momenta of
the two oscillators (j = 1,2). In the case of time-independent
frequencies, such a general coupling was considered, e.g.,
in Ref. [18].

In Refs. [12,14] we chose the coupling in the form x̂1p̂2

[4], in view of the standard minimal coupling term −(e/c)pA,
assuming that operator x̂1 is proportional to the vector potential
of the field mode. It was shown that in many cases the detector
responds to the change of the field state with a significant delay.
Therefore it was supposed that effects of dissipation can be
important. However, calculations turned out rather difficult for
the coupling in that form, so that only approximate analytical
solutions were obtained with the aid of the multiple scales
method. On the other hand, calculations are much simpler if
the coupling is taken in the form corresponding to the so-
called rotating wave approximation (RWA) [13,19–21]. For
this reason, we consider here the case of RWA coupling. It
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is remarkable that such a choice permits us to obtain explicit
analytical solutions (whose realm of validity is discussed in
the concluding section).

The paper is organized as follows. In Sec. II we present
the main dynamical equations and their analytical solutions
in a general case. The concrete form of solutions for the
specific choice of parameters used in this paper is given
in Sec. III. These solutions are used in Sec. IV to obtain
the time-dependent mean energies of each mode for the
initial thermal equilibrium states, in two different regimes. In
Secs. V–VII we calculate, respectively, the degree of squeezing
in each mode, photon distribution functions, and the variances
of the photon number operator. In Sec. VIII we discuss the
results.

II. MAIN DYNAMICAL EQUATIONS

The simplest model describing the dynamical Casimir
effect in an ideal cavity takes into account a single res-
onant cavity mode whose frequency is rapidly modulated
according to the harmonical law ωt = ω0[1 + ε sin(ηt)] with a
small modulation depth, |ε| � 1. We shall use dimensionless
variables, setting � = ω0 = 1. Then the Hamiltonian for the
resonance mode has the form [22]

Ĥc = ωt n̂ − iχt (â
2 − â†2), χt = (4ωt )

−1dωt/dt, (1)

where â and â† are the cavity annihilation and creation
operators, and n̂ ≡ â†â is the photon number operator. It is
well known that the number of photons created from the
initial vacuum state is maximal if the modulation frequency is
exactly twice the unperturbed mode frequency, i.e., η = 2.
The mean number of photons 〈n̂〉 and the Mandel factor
Q = [〈(�n̂)2〉 − 〈n̂〉]/〈n̂〉 increase with time in this ideal case
as (hereafter we use the subscript 0 for the quantities related
to the empty cavity)

〈n̂0(t)〉 = sinh2(εt/2), Q0(t) = 1 + 2〈n̂0(t)〉. (2)

However, simple equations (2) hold for the ideal empty
cavity only. To detect the emerging photons one has to
couple the field mode to some detector. Here we consider
the model of the detector as another harmonic oscillator, tuned
to the same frequency as the selected field mode (obviously,
any detuning between the two frequencies will diminish the
detector efficiency). Choosing the RWA coupling between the
oscillators, we arrive at the time-dependent Hamiltonian

Ĥ = ωt â
†
1â1 + â

†
2â2 + g(â1â

†
2 + â2â

†
1) − iχt

(
â2

1 − â
†2
1

)
, (3)

where the coupling constant g is assumed to be real. Perform-
ing the time-dependent canonical transformation ψt = Ûtψ

′
t

with Ût = exp[−it(â†
1â1 + â

†
2â2)], we transform the initial

Schrödinger equation i∂ψ/∂t = Ĥψ into i∂ψ ′/∂t = Ĥ ′ψ ′
with the new Hamiltonian Ĥ ′ = Û †Ĥ Û − iÛ †∂Û/∂t , which
does not contain the terms â

†
1â1 + â

†
2â2. The next step is

to use again the rotating wave approximation, deleting all
rapidly oscillating terms [containing factors exp(±ikt) with
integral nonzero values of k] from Hamiltonian Ĥ ′. In
addition, since the frequency modulation depth ε is small
under realistic laboratory conditions (as well as coupling
constant g), we maintain only linear terms with respect to

this parameter, neglecting terms proportional to ε2. Assuming
that the modulation frequency equals η = 2, we obtain the
time-independent Hamiltonian

Ĥ ′′ = g(â1â
†
2 + â2â

†
1) − iβ

(
â2

1 − â
†2
1

)
, β ≡ ε/4. (4)

To take into account damping in the detector mode, we
follow the usual scheme, replacing the Schrödinger equation
i∂ψ ′/∂t = Ĥ ′′ψ ′ by the standard master equation for the
statistical operator ρ̂:

dρ̂

dt
= −i[Ĥ ′′,ρ̂] − γ ν(â2â

†
2ρ̂ + ρ̂â2â

†
2 − 2â

†
2ρ̂â2)

− γ (1 + ν)(â†
2â2ρ̂ + ρ̂â

†
2â2 − 2â2ρ̂â

†
2), (5)

where γ > 0 is the damping coefficient, and ν � 0 is the mean
number of excitations in a thermal reservoir coupled to the
detector.

It is convenient to introduce the four-dimensional vector
ŷ = (â1,â

†
1,â2,â

†
2). Its mean value 〈ŷ〉 ≡ Tr(ρ̂ŷ) obeys the

equation

d〈ŷ〉/dt = A〈ŷ〉, (6)

where the 4×4 evolution matrix A has the form

A =

⎡
⎢⎣

0 2β −ig 0
2β 0 0 ig

−ig 0 −γ 0
0 ig 0 −γ

⎤
⎥⎦ ≡

[
2βσx −igσz

−igσz −γ σ0

]
. (7)

Here σx and σz are the standard 2×2 Pauli matrices, whereas
σ0 means the 2×2 unity matrix. The 4×4 symmetrical co-
variance matrix M with elements Mjk = Tr[ρ̂(ŷj ŷk + ŷkŷj )]/
2 − 〈ŷj 〉〈ŷk〉 obeys the equation

dM/dt = AM + MÃ + D, (8)

where the tilde above A means the transposed matrix. The
diffusion matrix D has one nonzero 2×2 block only:

D =
[

0 0
0 D2

]
, D2 = 2γ ν̃σx, ν̃ = ν + 1/2. (9)

The solutions to Eqs. (6) and (8) are given by equations

〈ŷ〉t = U(t)〈ŷ〉0, (10)

Mt = U(t)M0Ũ(t) +
∫ t

0
dτU(t − τ )DŨ(t − τ ), (11)

where

U(t) = exp(At). (12)

It is convenient to use the block forms for matrices M and U,
as well,

M =
[

M1 M12

M21 M2

]
, U =

[
U1 U12

U21 U2

]
. (13)

Matrix M is symmetric, M̃ = M, due to its definition. But
the evolution matrix U(t) is symmetric as well, due to
the specific property Ã = A of matrix (7). We assume that
initially the field mode and the detector were uncorrelated, i.e.,

063816-2



CONTINUOUS MONITORING OF THE DYNAMICAL . . . PHYSICAL REVIEW A 89, 063816 (2014)

M12(0) = M21(0) = 0. Then the 2×2 blocks of matrix M(t)
can be written as follows,

M1(t) = U1M1(0)U1 + U12M2(0)U21

+
∫ t

0
U12(t − τ )D2U21(t − τ )dτ, (14)

M2(t) = U2M2(0)U2 + U21M1(0)U12

+
∫ t

0
U2(t − τ )D2U2(t − τ )dτ, (15)

M12(t) = U1M1(0)U12 + U12M2(0)U2

+
∫ t

0
U12(t − τ )D2U2(t − τ )dτ. (16)

III. EVOLUTION MATRIX AND CONDITIONS
FOR THE PHOTON GENERATION

The evolution matrix U(t) can be easily found, if one knows
the roots of the characteristic equation p(z)≡ det(A−zE)=0
(where E is the 4×4 unity matrix). This is the complete fourth-
order algebraic equation

z4 + h1z
3 + h2z

2 + h3z + h4 = 0, (17)

with the following coefficients:

h2 = 2(g2 − 2β2) + γ 2, h4 = g4 − 4γ 2β2, (18)

h1 = 2γ, h3 = 2γ (g2 − 4β2). (19)

Fortunately, Eq. (17) with coefficients given by Eqs. (18) and
(19) can be solved analytically (actually, this was done with
the aid of the MAPLE program). Four roots can be written as
β− ± R+ and β+ ± R−, where

β± = ±β − (γ /2), R± =
√

β2± − g2. (20)

Then the standard procedure leads to the following explicit
equations for the elements of evolution matrix in terms of the
Pauli matrices:

U1 = 1

2
(F+σ0 + F−σx) , (21)

U2 = 1

2
(K+σ0 − K−σx) , (22)

U12 = −g

2
(iG+σz + G−σy), (23)

where

F± = E+ (C− − β−S−) ± E− (C+ − β+S+) , (24)

K± = E+ (C− + β−S−) ± E− (C+ + β+S+) , (25)

G± = E+S− ± E−S+, (26)

E± = eβ±t , C± = cosh (R±t) , S± = sinh (R±t)

R±
.

FIG. 1. (Color online) The regions in the parameter plane
γ /(βω0)-g/(βω0), where photon generation from vacuum is possible.
The yellow horizontal region corresponds to the monotone regime of
photon generation (real values of coefficient R−): see Sec. IV A. The
red vertical domain corresponds to imaginary values of R−. Here the
exponential growth of the mean photon numbers is modulated by
oscillations, discussed in Sec. IV B.

Obviously, the real parts of the roots β− ± R+ never can be
positive for non-negative values of parameters β and γ . On
the other hand, the real part of the root β+ + R− is positive for
γ < 2β and any value of the real coupling constant g.
Moreover, if γ > 2β (i.e., β+ < 0), nonetheless the sum
β+ + R− can be positive, provided 2γβ > g2. This can be
easily seen from the equation

R− − |β+| = 2βγ − g2

R− + |β+| .

The regions of photon generation in the γ − g parameter plane
are shown in Fig. 1. They are confined by the vertical line
γ = 0,−∞ < g < ∞, two vertical lines γ = 2β,|g| � 2β,
and two pieces of parabolas g = ±√

2γβ,γ � 2β. The yellow
part of this region (in the online version of the paper), confined
between the straight line segments |g| = β + γ /2 for γ � 2β

and the parabolas |g| = √
2γβ for γ � 2β, corresponds to

real values of coefficient R−. In this domain, the monotone
regime of photon generation is observed: see Sec. IV A. The
red domain, confined by the vertical lines γ = 0, γ = 2β,
and the straight line segments |g| = β + γ /2, corresponds to
imaginary values of R−. Here the exponential growth of the
mean photon numbers is modulated by oscillations, discussed
in Sec. IV B.

In order to avoid confusion, it is worth emphasizing that
all figures are made for dimensionless variables. Parameter
β = ε/4 is the dimensionless frequency modulation depth,
which is very small under realistic conditions. For real oscil-
lating boundaries, it hardly can exceed the value 10−8 [4]. In
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attempts to simulate the motion of boundaries, using periodic
laser excitations of thin semiconductor slabs [9] or nonlinear
optical crystals/fibers [23,24], one may hope to achieve the
level of β ∼ 10−3. The coupling constant g and damping
coefficient γ have the dimensionality of frequency, but they
are normalized by the cavity fundamental eigenfrequency
ω0. Therefore the values of dimensionless coupling constant
and dimensionless damping coefficient in the vertical and
horizontal axes in Fig. 1 (and other figures) mean the ratios
g/(βω0) and γ /(βω0) = (2Qdβ)−1, respectively (where Qd

is the quality factor of the detector mode).

IV. COVARIANCE MATRIX AND MEAN ENERGIES

We suppose that each mode (k = 1,2) was initially in a
thermal state with the dimensionless mean energy ϑk � 1/2
(actually �ω0ϑk), i.e., Mk(0) = ϑkσx . Then Eqs. (14)–(16) and
(21)–(23) lead to the equations

Mk(t) = Ek(t)σx + Bk(t)σ0. (27)

Obviously, Ek(t) is nothing but the time-dependent mean
energy of the kth mode (normalized by �ω0), whereas Bk(t)
is the time-dependent mean value of dimensionless operator
â2

k . The characteristic temperature T0 = �ω0/kB ∼ 0.1 K for
ω0/(2π ) ∼ 2 GHz. Therefore parameters ϑk are big for low-
frequency microwave cavities, even for helium temperatures.
Nonetheless, there are no physical limitations for smaller
values of ϑk . One can achieve the values ϑk ∼ 1, using cavities
with higher resonance frequencies and lowering temperatures
down to the sub-Kelvin region. Therefore, comparing the
temperature effects with the ideal results (obtained for the
initial vacuum states of the cavity and detector modes),
we use not very big values of ϑk for illustrations in this
and subsequent sections, in order to make figures more
compact.

Explicit expressions for the functions Ek(t) and Bk(t) are as
follows,

E1(t) = 1

4
[ϑ1(F 2

+ + F 2
−) + g2ϑ2(G2

+ + G2
−)]t

+ γ

2
ν̃g2

∫ t

0
dτ (G2

+ + G2
−)τ , (28)

E2(t) = 1

4
[ϑ2(K2

+ + K2
−) + g2ϑ1(G2

+ + G2
−)]t

+ γ

2
ν̃

∫ t

0
dτ (K2

+ + K2
−)τ , (29)

B1(t) = 1

2
[ϑ1F+F− + g2ϑ2G+G−]t + γ ν̃g2

∫ t

0
dτ (G+G−)τ ,

(30)

B2(t) = −1

2
[ϑ2K+K− + g2ϑ1G+G−]t

− γ ν̃

∫ t

0
dτ (K+K−)τ , (31)

where the subscripts t or τ stand for the arguments of
time-dependent functions F±, G±, and K±. Performing the

integrations over dτ we get

E1(t) = 1

4
[ϑ1(F 2

+ + F 2
−) + g2ϑ2(G2

+ + G2
−)]t

+ γ

2
ν̃g2(�+ + �−), (32)

B1(t) = 1

2
[ϑ1F+F− + g2ϑ2G+G−]t + γ

2
ν̃g2(�+ − �−),

(33)

E2(t) = 1

4
[ϑ2(K2

+ + K2
−) + g2ϑ1(G2

+ + G2
−)]t

+ γ

2
ν̃(�+ + �−), (34)

B2(t) = −1

2
[ϑ2K+K− + g2ϑ1G+G−]t − γ

2
ν̃(�+ − �−),

(35)

where

�± = E±
�∓

[E±S∓(β±S∓ − C∓) + S̃±], (36)

�± = E±
�∓

{E±S∓[η±S∓ + C∓(g2 ± 4ββ∓)]

+ S̃±(g2 ± 4ββ±)}, (37)

�± = g2 ± 2βγ, S̃± = sinh(β±t)/β±, (38)

η± = g2(∓3β − γ /2) ± 4ββ2
∓. (39)

In all illustrations below we assume that ν̃ = ϑ2. Then
E2 = const. in the absence of coupling, g = 0, so that changes
of E2 are due to the interaction with the field mode only. The
most interesting quantities are asymptotic values of mean
energies in the long time limit. It is easy to see that only terms
containing functions G+, K+, F+, �+ and �+ can give an
exponential increase of mean energies in Eqs. (32) and (34),
whereas terms containing counterparts of these functions
with the subscript “−” can be neglected in this limit, since
they either decay with time or remain constant. There are two
asymptotic regimes of excitations.

A. Asymptotic monotone regime

Coefficient R− is real if |g| < β + γ /2 (we assume that
β,γ � 0). In this case we have in the long time limit

E1(t) ≈ 1

8R2−
exp[2(β+ + R−)t]

×
[
ϑ1(R− − β−)2 + g2

(
ϑ2 + γ ν̃

β+ + R−

)]
, (40)

E2(t) ≈ 1

8R2−
exp[2(β+ + R−)t]

{
ϑ2(R− + β−)2

+ g2ϑ1 + γ ν̃

�−
[η+ + R−(g2 + 4ββ−)]

}
. (41)

Typical plots of functions ln[2E1,2(t)] in the monotone regime
are shown in Fig. 2 for different values of parameters
(remember that dimensionless time means in fact the product
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FIG. 2. (Color online) Dimensionless functions L ≡ ln[2E1,2]
versus the dimensionless time variable βω0t in the monotone regime
with β = g/ω0 and ν̃ = ϑ2, for the cavity (1) and detector (2) modes.
The labels (a,b,c) correspond to the case of γ = 0, whereas γ =
20βω0 in the cases (d,e). Also, (a,d) and (b,e) correspond respec-
tively to the vacuum (ϑ1 = ϑ2 = 0.5) and thermal (ϑ1 = ϑ2 = 10)
initial states in both modes. In case of (c) the cavity is initially in the
vacuum (ϑ1 = 0.5) and detector in the thermal state (ϑ2 = 10).

βω0t). We see that the response of the detector diminishes
(the delay time increases) with increasing damping coefficient.
Such a behavior seems quite expected. What is unexpected
is the behavior of the mean energy in the cavity mode: this
quantity increases with increasing damping in the detector
mode (for fixed other parameters). This can be explained,
partially, by the behavior of the quantity β+ + R− = β −
γ /2 +

√
(β + γ /2)2 − g2, which stands in the argument

of exponential function in Eq. (40). This quantity grows
monotonously as function of γ , from some minimal value
(β +

√
β2 − g2 if |g| < β, or 2β − |g| if |g| > β) to 2β as

γ → ∞. But preexponential factors in Eqs. (40) and (41)
are also important. Figure 3 shows the dependence of the
mean energies of two modes on the damping coefficient, for
different sets of other parameters and a fixed value of time. One
can see that situations when E1(t) decreases with γ are also
possible, depending on the initial conditions. If |g| � β + γ /2
(including the case of very strong damping in the detector
channel), then

E1(t) ≈ exp

[(
2β − g2

|β−|
)

t

] [
ϑ1

2
+ g2

8β2−

(
ϑ2 + γ ν̃

2β

)]
,

(42)

E2(t) ≈ g2ϑ1

8β2−
exp

[(
2β − g2

|β−|
)

t

]
. (43)

Neglected terms in Eq. (43) (which depend on the initial
parameter ϑ2 of the detector and the reservoir temperature

FIG. 3. (Color online) Dimensionless functions L ≡ ln[2E1,2]
versus the dimensionless damping coefficient γ /(βω0) in the mono-
tone regime, for t = 2/(βω0), β = g/ω0, and ν̃ = ϑ2. Labels 1 and
2 correspond to the cavity and detector modes, respectively. In case
(a) both modes are initially in the vacuum states (ϑ1 = ϑ2 = 1/2). In
case (b) both modes are initially in the identical thermal states with
ϑ1 = ϑ2 = 10. In case (c) the cavity starts in the vacuum (ϑ1 = 0.5)
and detector in the thermal state with ϑ2 = 10.

parameter ν̃) are either proportional to g4, or they do not
show the exponential growth with time. In this case, the
detector is excited for any damping coefficient, but its response
is suppressed by the factor g2/4β2

− (or g2/γ 2 if γ  β),
compared with the mean energy of the field mode. This
suppression can be also interpreted as the time delay δt ≈
β−1 ln (2|β−|/|g|) of the response of the detector. This effect
of time delay was discovered in the special nondissipative
case in Refs. [12,14]. On the other hand, even very strong
damping does not influence the mean energy of the field mode,
according to Eq. (42).

B. Asymptotic oscillating regime

If |g| > β + γ /2, then coefficient R− is imaginary. In
this case the asymptotical exponential growth of energies is
modulated by oscillating functions c−(t) = cos(|R−|t) and
s−(t) = sin(|R−|t)/|R−|:

E1(t) ≈ exp (2β+t)

{
1

4
[ϑ1(c− − β−s−)2 + g2ϑ2s

2
−]

+ γ ν̃g2

2�−

[
s−(β+s− − c−) + 1

2β+

]}
, (44)

E2(t) ≈ exp (2β+t)

{
1

4
[ϑ2 (c− + β−s−)2 + g2ϑ1s

2
−]

+ γ ν̃

2�−

[
η+s2

− + s−c−(g2 + 4ββ−) + g2

2β+
+ 2β

]}
.

(45)
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FIG. 4. (Color online) Dimensionless functions L ≡ ln[2E1,2]
versus the dimensionless time variable βω0t in the oscillating regime
with β = γ /ω0 and ν̃ = ϑ2, for the cavity (1) and detector (2)
modes. The cases (a,b) and (c,d) correspond to the values g = 2βω0

and g = 10βω0, respectively. The initial thermal parameters are
ϑ1 = ϑ2 = 0.5 in the cases (a,c), and ϑ1 = 0.5, ϑ2 = 10 in the
cases (b,d).

Typical plots of functions E1,2(t) in the oscillating regime are
shown in Fig. 4. For |g|  β,γ we see a fast energy exchange
between the two modes, with a relatively slow exponential
increase of the total energy (a similar behavior of energies
of two coupled modes in different DCE configurations was
found in Refs. [12,14,25,26]). In this case �− ≈ |R−|2 ≈ g2.
Therefore, neglecting terms of the order of |β−/g|, we obtain
simple equations

E1(t) ≈ 1
4e2β+t [ϑ1 cos2(gt) + ϑ2 sin2(gt) + γ ν̃/β+], (46)

E2(t) ≈ 1
4e2β+t [ϑ2 cos2(gt) + ϑ1 sin2(gt) + γ ν̃/β+]. (47)

V. SQUEEZING

The degree of squeezing in each mode is characterized by
the minimal value of variance of any dimensionless quadrature
component taken over the period of fast oscillations with
the frequency 2ω0 [26,27] (this is equivalent to the principal
squeezing introduced in Ref. [28]). It is given by a simple
equation

χk = Ek − |Bk|. (48)

The state is squeezed if χk < 1/2. Equation (48) shows that
values of coefficients χk depend on the signs of functions Bk .
It appears that function B1(t) with t > 0 is positive for all
possible sets of parameters. Then, using Eqs. (32) and (33),
we can write (48) in the following explicit form:

χ1 = E2
−[ϑ1(C+ − β+S+)2 + ϑ2g

2S2
+] + γ ν̃g2�−. (49)

FIG. 5. (Color online) Dimensionless squeezing coefficient
χ = E − |B| versus the dimensionless time variable βω0t in the
oscillating regime with β = γ /ω0 and ν̃ = ϑ2, for the cavity (1)
and detector (2) modes. The cases (a,b) and (c,d) correspond to the
values g = 2βω0 and g = 10βω0, respectively. The initial thermal
parameters are ϑ1 = ϑ2 = 0.5 in the cases (a,c), and ϑ1 = 0.5,
ϑ2 = 1 in the cases (b,d).

Function B2(t) is negative for t > 0 and all other parame-
ters under the condition ϑ2 < 3ϑ1. This inequality follows
from the Taylor expansion in the short time limit,
B2(t) = 2t3βg2(ϑ2/3 − ϑ1) + O(t4). If ϑ2 > 3ϑ1, then ini-
tially B2(t) > 0, but this function changes sign at some
moment t∗, which is of the order of β−1 for ϑ2  ϑ1, becoming
much smaller when ϑ2 → 3ϑ1. The explicit expression of
function χ2(t) for B2(t) < 0 reads

χ2 = E2
−[ϑ2(C+ + β+S+)2 + ϑ1g

2S2
+] + γ ν̃�−. (50)

This equation is valid for any value of time variable t if
ϑ2 < 3ϑ1 and for t > t∗ if ϑ2 > 3ϑ1. Plots of functions χk(t)
in the oscillating regime are shown in Fig. 5.

If γ = 0, then both squeezing coefficients, χ1 and χ2, go
asymptotically to zero as t → ∞, for any values of parameters
g and ϑk , in agreement with Ref. [14]. But if γ > 0, then the
product E−S̃− in functions �−(t) and �−(t) tends to a finite
limit as t → ∞, whereas the terms containing ϑk in (49) and
(50) go to zero. Therefore, both squeezing coefficients tend to
the asymptotic finite values χk(∞), which do not depend on
the initial states:

χ1(∞) = γ ν̃g2

(g2 + 2βγ )(2β + γ )
, (51)

χ2(∞) = γ ν̃(g2 + 2βγ + 4β2)

(g2 + 2βγ )(2β + γ )
. (52)

Equations (51) and (52) hold in all regimes, even in the cases
when there is no asymptotic growth of the mean energies. Note
that χ1(∞) < χ2(∞), i.e., the field mode is asymptotically
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more squeezed than the detector one. In addition, both
coefficients χk(∞) obey the inequality χk(∞) < ν̃ (k = 1,2).
Consequently, for a zero-temperature reservoir (ν̃ = 1/2), both
modes become squeezed asymptotically for any values of g

and γ . An interesting feature of χ1(∞) as function of the
damping coefficient is the existence of maximum χmax

1 (∞) =
ν̃g2/(2β + g)2 at γ = |g|. Moreover, χ1(∞) goes to zero for
γ → ∞. On the contrary, χ2(∞) is monotone function of γ ,
going to ν̃ as γ → ∞. For ν̃ > 1/2 (or ν > 0), squeezing of
the field mode can be achieved inside the following domain:

γ < β/ν: arbitrary g

γ > β/ν: g2 <
βγ (2β + γ )

γ ν − β
.

(53)

On the other hand, χ2(∞) < 1/2 if

γ < β/ν and g2 >
2νβγ (2β + γ )

β − γ ν
(54)

[for example, χ2(∞) = ν̃ if g = 0]. The intersection of both
domains is illustrated in Fig. 6.

VI. PHOTON DISTRIBUTION FUNCTIONS

The photon distribution function (PDF) of the Gaussian
states was derived in Refs. [29–31]. For zero mean values of
quadrature components x̂ and p̂ it can be expressed in terms

FIG. 6. (Color online) The red region to the right of the vertical
axis corresponds to intersection of the domains (53) and (54) in the
parameter plane γ /(βω0)-g/(βω0), where both the field and detector
modes can be squeezed asymptotically, for ν = 2. In the yellow
region, only the field mode can be squeezed. Regions I and III,
delimited by point lines, correspond to the oscillating regime, while
the region II refers to the monotone regime of photon generation.

of the Legendre polynomials Pk(x) as [32]

P(k) = Y
k/2
−

Y
(k+1)/2
+

Pk

(
Y√

Y+Y−

)
, (55)

where

Y = E2 − |B|2 − 1/4, (56)

Y± = (E ± 1/2)2 − |B|2 = Y ± E + 1/2. (57)

It can be shown that Y � 0 for any quantum state (this in-
equality is one of several equivalent forms of the Schrödinger-
Robertson uncertainty relation [33]). Therefore Y+ > 0, but
the quantity Y− can be positive or negative. The normalization
condition

∑∞
k=0 kP(k) = 1 is fulfilled due to the known

generating function of the Legendre polynomials

∞∑
k=0

zkPk(x) = [1 − 2xz + z2]−1/2.

The behavior of PDF as function of k depends on the value
of the argument of the Legendre polynomial. If this argument
is close to zero, then strong oscillations of function P(k) are
observed, since Legendre polynomials of zero argument turn
into zero for odd values of k. Otherwise P(k) changes slowly
and monotonously.

In view of Eq. (48), it is convenient to rewrite Eqs. (56) and
(57) as follows:

Y = χ (2E − χ ) − 1/4, (58)

Y± = E(2χ ± 1) − χ2 + 1/4. (59)

In the special case of χ = 1/2 we have

P(k)|χ=1/2 = (2E − 1)k(2k)!

(2E)k+1/2(2kk!)2
. (60)

The exact formula (55) is not very convenient for big values
k ∼ E  1, since it contains the Legendre polynomials of high
orders. In this case (55) can be replaced by the approximate
asymptotical expression [32]

f (k) ≈ 1√
2πk∗r

[(
r + Y

Y+

)k∗
+ (−1)k

( |Y−|
r + Y

)k∗]
, (61)

where r =
√
E2 − Y − 1/4 and k∗ = k + 1/2. In fact, numer-

ical tests show that approximation (61) is very good even for
k ∼ 1 (provided E  1). It is useful to rewrite Eq. (61) in
terms of E and χ :

f (k) ≈ 1√
2πk∗(E − χ )

[(E(2χ + 1) − (χ + 1/2)2

E(2χ + 1) − χ2 + 1/4

)k∗

+ (−1)k
( |E(2χ − 1) − χ2 + 1/4|
E(2χ + 1) − (χ + 1/2)2

)k∗]
. (62)

We can simplify the first term inside the square brackets,
using the approximation (1 − ε)k∗ ≈ exp(−k∗ε), since the
corresponding fraction is very close to unity for E  1. On
the other hand, we can replace the second fraction by its limit
value for E → ∞ (assuming that χ � E). Thus we arrive at
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FIG. 7. (Color online) The scaled photon distribution functions
ln [fm(k)] in the monotone regime of photon generation for the cavity
(blue circles ◦) and detector (red crosses +). The parameters are:
β = g/ω0, ν = ϑ2 − 1/2, γ = 3βω0, ϑ1 = ϑ2 = 1/2, βω0t = 2. The
mean energies of the modes at this instant are equal to E1 � 394.6
and E2 � 17.6.

the approximate expression

f (k) ≈ 1√
2πk∗E

[
exp

(
− k∗

2E

)
+ (−1)k

∣∣∣∣2χ − 1

2χ + 1

∣∣∣∣
k∗ ]

. (63)

We see that the squeezing coefficient is responsible for
oscillations of the PDF, whereas the mean energy determines
the slowly varying part of the PDF, averaged over two
adjacent values f (k) and f (k + 1). The terms containing
the factor (−1)k in (63) practically do not contribute to
the sum

∑∞
k=0 kP(k). Replacing this sum by the integral

over dk∗ from 0 to ∞ (i.e., using the Euler-MacLaurin
approximation), one can easily verify that distribution (63)
has correct normalization.

Figure 7 shows PDFs for the field and detector modes in the
case of initial vacuum states (ϑ1 = ϑ2=1/2), when βω0t=2.
We see that the photon distribution of field mode shows clear
oscillations. However, no oscillations appear in the detector
photon distribution function. Examples of PDFs for initial
identical thermal states of the field and detector modes are
given in Fig. 8.

VII. FLUCTUATIONS OF PHOTON NUMBERS

One of the quantities characterizing quantum fluctuations
is the variance of the number of quanta,

σn =
∞∑

k=1

k2P(k) −
( ∞∑

k=1

kP(k)

)2

.

For the most general Gaussian states, this variance was
calculated in Ref. [31]. In the case under study, the first-order

FIG. 8. (Color online) The scaled photon distribution functions
ln [fm(k)] in the monotone regime of photon generation, at the instants
t0 = 0 (a), t1 = 1/(βω0) (b), and t3 = 3/(βω0) (c), for the cavity
(blue circles ◦) and detector (red crosses +). The parameters are:
g = βω0, ν = ϑ2 − 1/2, γ = 0.1βω0, ϑ1 = ϑ2 = 5. Dimensionless
mean energies of the cavity mode at different instants of time are as
follows: E1(t0) = 5.00, E1(t1) � 93.5, and E1(t3) � 29557.4. For the
detector we have E2(t0) = 5.00, E2(t1) � 19.3, and E2(t3) � 12765.4.

mean values of the quadrature components are equal to zero,
and equations of Ref. [31] can be simplified as

σn = 2(E2 − 1/4) − Y, (64)

where Y is given by Eqs. (56) or (58). The photon statis-
tics is characterized frequently by the Mandel parameter
Q = (σn − n̄) /n̄, where n̄ = E − 1/2. However, this parame-
ter is not very useful for the Gaussian states with zero mean
values of quadrature components, since it is always greater
than unity and (roughly) proportional to n̄. For the Gaussian
states, it is much more interesting to know whether these states
are close to thermal states with equal variances of quadrature
components and the monotone Planck distribution of photon
numbers in the selected mode, or to highly squeezed states
with strongly oscillating photon distribution function. It can
be shown [12] that the variances of the photon number in
the Gaussian states with zero first-order mean values of the
quadrature components obey the inequality σn � n̄ (n̄ + 1),
the equality sign being attained for thermal quantum states.
On the other hand, for pure squeezed vacuum states we have
the equality σ

(sqzvac)
n = 2n̄ (n̄ + 1). Therefore, the parameter

Z ≡ σn/ [n̄ (1 + n̄)] seems to be useful for Gaussian states
with zero mean values of quadrature components. If Z is
close to unity, the state is close to a thermal one, but if
Z ≈ 2, the state can show strong squeezing. One can see that
n̄ (1 + n̄) = E2 − 1/4. The equivalent expressions

Z = 1 + B2

E2 − 1/4
= 2 − Y

E2 − 1/4
(65)
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FIG. 9. (Color online) Dimensionless coefficients Z1,2 versus the
dimensionless time variable βω0t for the cavity (1) and detector (2)
modes in the monotone and oscillating regimes with ν̃ = ϑ2

and ϑ1 = ϑ2 = 5. Lines a and b correspond to γ = 0.1βω0 and
γ = 10βω0, respectively, with γ = βω0. Lines 1c and 2c corre-
spond to g = 10βω0 and γ = βω0 (oscillating regime of photon
generation).

show that, indeed, Z can vary between the values 1 and 2. Due
to Eq. (58), Z ≈ 2 − 2χ/E if E  χ and E  1.

The evolution of functions Z1(t) and Z2(t) in different
regimes is illustrated in Fig. 9.

VIII. DISCUSSION

We have demonstrated that coupling the resonance field
mode with a damped oscillator detector can change signifi-
cantly the photon generation rate and statistical properties of
the quantum state of the mode, evolving under the conditions

of the dynamical Casimir effect. Moreover, under realistic
conditions, statistical properties of the detector quantum state
can be quite different from that of the field mode. If the
cavity-detector coupling is not too strong, the response of the
detector can be observed with a significant delay, compared
with the response of the field mode itself. This response
diminishes with increase of the damping coefficient in the
detector mode. It is curious, nonetheless, that under certain
conditions, a stronger damping in the detector can result
in a bigger number of photons in the cavity than in the
undamped case (provided the intermode coupling is strong
enough). These peculiarities can be important for the correct
interpretation of experimental results.

In this connection, it is worth discussing the validity of
approximations made in the paper, as well as possible realistic
values of parameters characterizing the model. Remember
that dimensionless damping and coupling coefficients, γ and
g, are normalized by the fundamental eigenfrequency ω0 of
the microwave cavity. Therefore γ = (2Qd )−1, where Qd is
the quality factor of the detector mode. So we may think
that realistic values could be γ ∼ 10−2−10−3. The interval
of variations of the coupling coefficient can be estimated as
the interval of variations of the cavity eigenfrequency, when
the position of antenna (induction loop) is varied inside the
cavity. This interval does not exceed usually a few dozens of
MHz, so that for the resonance frequency ω0/(2π ) ∼ 2 GHz
we may believe that gmax ∼ 10−2. For such small values
of the dimensionless coupling coefficient, the rotating wave
approximation used in the initial Hamiltonian (3) seems to
be quite reasonable [34,35]. (For recent studies concerning
the conditions of validity of RWA see, e.g., Refs. [36–38].)
Note that although the coupling constant and damping coef-
ficient in Figs. 1, 3, and 6 assume formally the values much
bigger than unity, they are, in fact, much smaller than ω0, since
in these figures they are normalized by the small frequency
modulation depth β, which is expected to be of the order of
10−3 or less.
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