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We demonstrate that nonlinear polarization coupling in a fiber ring laser without polarization-selective
elements, subject to the effects of average anomalous dispersion, Kerr effect, and nonlinear gain saturation, can
lead to the antisynchronization of spatiotemporal chaos into a wide variety of ordered laminar states of orthogonal
polarization temporal domains. These antiphase polarization domains include stable lattices of soliton trains with
high duty cycle at repetition rates of hundreds of MHz, as well as sparse trains of coupled dark and bright solitary
waves.
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I. INTRODUCTION

The synchronization of individual chaotic nonlinear oscil-
lators by means of their coupling is a subject of great interest
in several domains of physical sciences and engineering appli-
cations [1,2]. In particular, by adjusting the coupling among
the oscillators one may control and stabilize otherwise chaotic
physical systems and devices, which extends in a significant
way the well-known effect of synchronization of regular
oscillators [3]. Although the synchronization of chaos has
been extensively investigated over the past 20 years, and has
found numerous applications such as secure communication
systems [4,5], the demonstrated examples have been mostly
restrained to the case of discrete oscillators, whose evolution
is described by ordinary differential equations. Much less is
known for extended spatiotemporal chaotic physical systems
described in terms of partial differential equations. In this case,
one may invoke thermodynamic analogies allowing to classify
the numerically found regions of chaotic or ordered behavior
in terms of phase diagrams and transitions [6].

In this work, we demonstrate a relatively simple example of
spatiotemporal synchronization, which occurs in the polariza-
tion state of a ring cavity fiber laser built without polarization-
dependent-loss elements, so that full vector propagation is
allowed [7]. Spatiotemporal propagation of the vector optical
field in the laser is subject to average anomalous chromatic
dispersion, the Kerr effect, and nonlinear gain saturation.
As we shall see, the experiments demonstrate the transition
from spatiotemporal polarization disorder into ordered laminar
states of orthogonal polarization temporal domains, including
stable lattices of soliton trains with high duty cycle and
hundreds of MHz repetition rates, as well as trains of coupled
hole-pulse (or dark and bright) solitary waves.

The richness of the observed behavior may be qualitatively
well reproduced in terms of a minimal model for vector
dissipative structures, which is provided by the coupled
complex Ginzburg-Landau equations (CGLE) [8–12]. As is
well known, the scalar and vector GLEs describe pattern
formation phenomena in a variety of nonequilibrium systems
near a Hopf bifurcation, such as phase transitions [13,14],
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superconductivity, superfluidity, Bose-Einstein condensation,
field theory, Bénard convection [15], Taylor-Couette flow
between rotating cylinders [16], plane Poiseuille flow [17],
drift waves in plasmas, chemical reactions and turbulence [18],
ionization waves [19], liquid crystals [20], biophysical sys-
tems [21] and laser devices [22–24].

In Sec. II, we provide a detailed justification for the
use of the coupled CGLE equations as our minimal laser
model. Then, by exploring the equation parameters, we
present numerical simulations showing the formation of a
diversity of laminar states with antiphase dynamics between
orthogonal polarization components. In Sec. III, we report our
experimental observations performed with an erbium-doped
fiber ring laser cavity, highlighting the strong analogies with
the simulated dynamics. Finally, we provide a synthesis of
our understanding of the vector dynamics in the concluding
Sec. IV.

II. MODELING VECTOR DYNAMICS WITH COUPLED
GINZBURG-LANDAU EQUATIONS

The diversity of the temporal dynamics of the light
field emerging from fiber ring lasers is challenging models
developed to date. Resorting to overly complex numerical
simulations with too many uncertain parameters may hamper
the general classification of a dynamics that appears to be
universal, being observed in a variety of experimental setups.
We here consider active fiber ring cavities that allow for the
propagation and coupling of both polarization components, in
the absence of an obvious saturable absorption mechanism.
This excludes, for instance, the use of a polarization sensitive
isolator, which freezes one polarization degree of freedom,
while at the same time it may trigger passive mode locking
through nonlinear polarization evolution in the optical fibers.
Instead, by assuming a low level of polarization-dependent
losses, the coupling between the two polarization components
takes place throughout the entire cavity length, and it can be
tuned by means of discrete wave plates, or lossless polarization
controllers. By playing with the orientation of these wave
plates, a diversity of vector pulsations can be observed
[7,25–28].
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The most striking observations comprise antiphase po-
larization dynamics. Some of these antiphase pulses have
recently been interpreted as polarization-domain-wall (PDW)
complexes [7,27]. The formation of PDWs in the normal
path-averaged dispersion regime was analytically reproduced
in terms of the PDW solutions of a purely conservative
Hamiltonian model based on two incoherently coupled non-
linear Schrödinger (NLS) equations [7,29,30]. In Ref. [7], the
noise-generated spontaneous emergence of PDWs was also
numerically confirmed by the full numerical simulations of
field propagation in the various cavity components, including
gain saturation in the fiber amplifier.

We report here the observation of similar structures in
the anomalous dispersion propagation regime as well. In
addition to the PDWs, in the anomalous dispersion regime
we have also observed the spontaneous emergence of a rich
variety of temporal structures, involving a large diversity
of square pulse durations and repetition rates. Finally, the
observed stability of these structures which are spontaneously
generated from amplified spontaneous emission noise, and
are repeatedly monitored round trip after round trip for an
almost unlimited time, contradicts with the marginal stability
of the PDWs’ structures, which are predicted in the frame of
purely conservative models. Clearly, the diversity of temporal
dynamics that is accessible by simply adjusting the intracavity
wave plates, and the stability that is observed once that
the wave-plate parameters are fixed, are the signature of
the inherently dissipative origin of the observed nonlinear
structures.

Essential dissipative effects comprise gain saturation,
which prevents energy blowup, and bandpass filtering, which
localizes the solution in the spectral domain. It is also known
that cross-gain saturation between two laser modes favors
the appearance of antiphase pulsations [25,31–36]. These
dissipative terms, accompanied by chromatic dispersion as
well as self- and crossed-Kerr nonlinearities, make up one of
the simplest vector model for dissipative nonlinear systems,
namely the vector-CGLE.

Just before laying down our phenomenological model, let
us remark that the pulsation rates reported in Sec. III are
fundamentally self-starting, and embedded into the cavity
round-trip frequency. These features are obviously beyond the
scope of our distributed model. Indeed, whereas it is well
known that CGLE models can describe a variety of pulsed and
mode-locked dynamics [24], modeling self-starting requires
the inclusion of a noise source, and the cavity round-trip
periodicity implies the loss of translational symmetry. We
conjecture that the early stage of the development of peri-
odic pulsations may be triggered by the Risken-Nummedal-
Graham-Haken (RNGH) instability [37,38]. At high pumping
levels, which is always the case experimentally, Rabi splitting
induces additional gain for adjacent cavity modes, which start
to oscillate and beat at the fundamental cavity frequency. The
RNGH instability finds suitable conditions to develop in fiber
lasers due to the relatively long cavity lengths, which entail
small intermode spacings, as well as to the large gain and loss
contributions per cavity round-trip.

The minimal model for the emergence of vector dissipative
structures in fiber lasers is provided, in the mean-field
approximation and in dimensionless units, by the following

CGLE:

∂tU = U + (1 + iβ)∂2
τ U − (1 − iα)|U |2U − (γ − iρ)|V |2U,

∂tV = V + (1 + iβ)∂2
τ V − (1 − iα)|V |2V − (γ −i ρ)|U |2V,

(1)

where U (t,τ ) and V (t,τ ) represent the two orthogonal polar-
ization components of the field in the cavity. The independent
variables t and τ are the slow and fast temporal coordinates that
describe field variations on the slow time scale of the cavity
round-trip time and on the fast time scale associated with
bandpass filtering and chromatic dispersion, respectively. The
first term on the right-hand side of Eq. (1) represents small-
signal linear gain; the first contribution to the second term
describes bandwidth limited gain, and β is associated to group
velocity dispersion (GVD). Positive (negative) β corresponds
to anomalous (normal) GVD. The first contribution to the third
term in the right-hand side of Eq. (1) represents the nonlinear
saturation of gain, whereas α is the nonlinear Kerr effect. For
the self-focusing nonlinearity of silica fibers, one has α > 0.
Whereas γ and ρ describe nonlinear polarization cross-gain
saturation and rotation, respectively.

An important issue with dissipative effects is their finite
response time. For a gain medium such as an erbium-doped
glass fiber, the population relaxation time is particularly long,
in the range of 10 ms. However, excited-state absorption
and ion-pair interaction are known to produce much faster
nonlinear loss contributions [39]. In addition, it has been
pointed out that multiple passes through optical amplifiers,
despite the slow transient responses of the individual element,
are able to trigger fast transients as a result of cascading of
the slow transient response of the individual amplifier [40].
In a cavity, such a phenomenon is fully exacerbated, so that
slow dynamics such as gain transient effects are known to
significantly affect the formation of ultrashort pulse structures
down to the picosecond time range [41]. Gain saturation
alone has been used to explain self mode locking with
nanosecond pulse formation [42]. It is therefore essential
not to confuse the buildup time of structures, which can
take thousands of cavity round-trips, with the duration of
typical pulse structures. Therefore, we assume that at the
leading-order effective instantaneous saturation terms can be
incorporated into the previously introduced minimal model
of Eq. (1).

Equation (1) has the τ -independent or continuous wave
(cw) solutions

U (t,τ ) = U0 expiKU t ; V (t,τ ) = V0 expiKV t , (2)

where KU = αU 2
0 + ρV 2

0 and KV = αV 2
0 + ρU 2

0 . In the ab-
sence of nonlinear polarization coupling (i.e., with γ = ρ = 0),
one obtains two independent Ginzburg-Landau equations
whose attractor is provided by the field amplitudes U0 =
V0 = 1. In this case, it is known that solutions of the
type (2) are stable whenever the Benjamin-Feir (BF) condition
1 − αβ > 0 is satisfied. Otherwise, whenever the BF condition
is violated one observes different types of chaotic behaviors in
solutions of the uncoupled Eq. (1) (phase and defect chaos,
see Ref. [43]). Even in the BF stable case, it has been
observed that the cw solutions coexist with a spatiotemporal
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FIG. 1. (Color online) Contour plots showing, in dimensionless
units, the evolution of intensities |U (t,τ )|2 (left column) and |V (t,τ )|2
(right column) of the two polarization components vs. fast time τ

and slow time t , respectively, for different nonlinear polarization
coupling coefficients γ : (a) γ = 0.1; (b) γ = 0.6; (c) γ = 1.05. Other
parameters are α = 2, β = 0.2, and ρ = αγ .

chaotic attractor, a phenomenon which has been described
as spatiotemporal intermittency (STI) [6]. The corresponding
intermittent behavior is the same which is observed in the
numerical solution of the CGLE (1) for relatively weak
polarization coupling (e.g., with γ = 0.1 and ρ = αγ ), see
Fig. 1(a). In our numerical simulations, we have solved Eq. (1)
with the split-step Fourier method involving N = 512–1024
modes, using a typical integration step dt = 10−3 and the pe-
riodic boundary conditions U (t,τ = −T/2) = U (t,τ = T/2)
and V (t,τ = −T/2) = V (t,τ = T/2), where T = 128–256.

As an initial condition, unless otherwise specified, we used for
both polarizations independent complex white noise seeds:
both real and imaginary components of the noise field had a
normal distribution with variance σ 2 = 0.05.

The presence of sufficiently strong polarization coupling
permits to substantially change the behavior of STI [8–11].
Indeed, for weak polarization coupling γ � 1, the cw solu-
tion (2) with U 2

0 = V 2
0 = 1/(1 + γ ) is stable whenever the

BF condition 1 − αβ > 0 is verified; whereas the uncoupled
solutions where either U0 = 0 or V0 = 0 are unstable. Indeed,
Fig. 1(a) shows that, whenever γ = 0.1, the U and V

polarization components follow fully independent chaotic
dynamics: see also the intensity profiles which are extracted
at t = 250 in Fig. 2(a). We also notice large transient bright
regions in Fig. 1(a). These regions correspond to a nearly
uniform polarization in laminar domains that spontaneously
form, then gradually disappear as a result of moving opposite
fronts, hence the peculiar triangular-shaped domains displayed
on the contour plot figures. The moving fronts are associated
with the propagation of the so-called homoclinic holes, which
are generated by phase slip events [44].

As the polarization coupling grows larger, it is interesting
to notice that the polarization dynamics of the U and V

components displays a clear anticorrelation or antiphase
behavior: see, for example, Fig. 1(b), where γ = 0.6. Indeed,
in Fig. 1(b) the dark hole-like traveling structures in one
polarization component are exactly superimposed with bright
pulse-like laminar structures in the orthogonal polarization.
The anticorrelation behavior which is present even in the
spatiotemporal intermittence dynamics is clearly shown by the
corresponding intensity plots that are extracted for t = 250
in Fig. 2(b). A more precise quantitative description of the
transition from chaotic to anti-correlated behavior in the
numerical solutions of the two components of Eq. (1) in
terms of joint probability distributions, with associated mutual
information and correlation coefficients, can be found in
previous literature [9].

Thus one obtains an antisymmetric coupled STI regime
as the result of the synchronization of spatiotemporal chaos.
As the polarization cross-coupling γ grows up to values right
below unity (e.g., for γ = 0.95), the simulations show that the
anticorrelated STI regime has a metastable behavior. Indeed,
it is only after a relatively large evolution time such as t ∼=
300 that STI decays into the stable cw solution with identical
amplitude for the two polarization components U 2

0 = V 2
0 =

1/(1 + γ ).
On the other hand, for relatively large polarization cou-

plings, namely for γ > 1, there is only one stable polarization
component that emerges from their competition: a stable
solution of Eq. (1) requires that either U0 = 1,V0 = 0 or U0 =
0,V0 = 1. In fact we may extend the cw solution (2) to include
a finite frequency shift for each polarization component,
say, 	U,V , as well as a t dependence of the U0 and V0

amplitudes

U (t,τ ) = U0(t) expi(KU t−	U τ ); V (t,τ )=V0(t) expi(KV t−	V τ ) .

(3)

By substituting Eq. (2) into Eq. (1), one obtains the coupled
ordinary differential equations (ODEs) for the polarization
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FIG. 2. (Color online) Intensity profiles, in dimensionless units,
of |U (t,τ )|2 (red solid curves) and |V (t,τ )|2 (dashed blue curves)
of the two polarization components vs. τ , for different nonlinear
polarization coupling coefficients γ at t = 250: (a) γ = 0.1; (b) γ =
0.6; (c) γ = 1.05. Other parameters are α = 2, β = 0.2, and ρ = αγ .

amplitudes

∂tU0 = (
1 − 	2

U − U 2
0 − γV 2

0

)
U0,

∂tV0 = (
1 − 	2

V − V 2
0 − γU 2

0

)
V0. (4)

By supposing, for example, that U0 = 0, 	U = 0, and V0 �= 0,
then from Eq. (4) one obtains that the U0 mode has the
effective growth rate gU = 1 − γV 2

0 = 1 − γ (1 − 	2
V ). The

stability of the V0 polarization requires that the growth rate
of the competing U0 mode gU < 0. Otherwise a V0-polarized
wave with frequency 	V is unstable whenever gU > 0, or
γ < 1/(1 − 	2

V ). Clearly the same reasoning applies to predict
the stability of a single polarization state where V0 = 0,
	V = 0, and U0 �= 0. In the examples of Fig. 1, it turns out
that for the single polarization domains one has |	U,V | ∼= 0.1,
so that individual domains are stable for γ > 1.01. On the
other hand, the linear stability analysis of Eq. (4) shows that
mixed polarization states, that is, states where both U0 and V0

components are nonzero, are all unstable whenever γ > 1, see
Ref. [12].

Indeed, in the numerical simulations of Eq. (1) we observed
that, whenever γ = 1, depending on the initial noise seed,
after an initial transient only one of the two orthogonal
polarization states survives for relatively long times t . Whereas
as soon as γ > 1.01 (e.g., for γ = 1.05), the polarization
state switches among the two individual stable states as
shown in Figs. 1(c) and 2(c), producing alternating temporal
domains of orthogonal polarizations, separated by relatively
fast domain-wall-like transitions. These stationary temporal
polarization patterns are also known as stable pairs of sources,
which are separated by a shock [9,12]. The exact shape of
the PDW or shock can be well reproduced by inserting the
traveling wave ansatz

U (t,τ ) = Û (ξ ) expiKU t ; V (t,τ ) = V̂ (ξ ) expiKV t (5)

(where ξ = τ − t/v) into Eq. (1). This leads to a set of six
coupled real ODEs in the single variable ξ , which can be
integrated by considering orthogonal polarization asymptotic
states for ξ → ±∞: for details, see Ref. [12].

By replacing the white noise seed with a deterministic weak
pulse (of different amplitude in each of the two polarization
components), one may also obtain from the numerical solution
of Eq. (1) the generation of an isolated polarization hole-
pulse pair which resembles a coupled vector bright-and-dark
solitary wave structure (see Fig. 3): here the cross-polarization
coupling is increased up to γ = 1.4.

It is quite interesting to consider exploring further the
parameter space of Eq. (1): Fig. 4 shows that, when operating
in the BF unstable regime (i.e., we have set α = 0.6, β = 3,
so that 1 − αβ < 0, ρ = −3, and γ = 0.95), it is also possible
to generate a uniform and spatiotemporally stable lattice of
anticorrelated (or antiphase) temporal solitons. The individual
pulses in each polarization component are well matched by
the exact soliton-like solution of the scalar complex Ginzburg-
Landau equation [45], namely,

U (t,τ ) = U0sech(Kτ ) exp [iθ (τ ) − i	t],

θt = −Q tanh (Kτ ). (6)

Therefore we may conclude that two stable antiphase periodic
soliton trains can be generated in the orthogonal polarization
components of the recirculating laser field.

It is interesting to point out that, with the same choice of
parameters but in the scalar case of uncoupled polarizations
[that is, if set ρ = γ = 0 in Eq. (1)], in spite of the fact
that propagation occurs in the BF unstable regime, no stable
generation of soliton trains is observed to emerge from the
instability (see Fig. 5). This shows that nonlinear polarization
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FIG. 3. (Color online) (a) Same as Fig. 1, with γ = 1.4. (b):
Intensity profiles of |U (t,τ )|2 (red solid curves) and |V (t,τ )|2 (dashed
blue curves) of the two polarization components vs. fast time τ for
the slow time t = 250.

coupling and cross-gain saturation is indeed essential for
creating stable, attracting trains of Pereira-Stenflo solitary
waves (6).

III. EXPERIMENTAL OBSERVATIONS OF VECTOR
PATTERNS IN A FIBER RING LASER

A. Experimental setup

The experimental setup of the vector fiber laser is displayed
in Fig. 6. The laser consists of a ring cavity including
a 3-m-long erbium-doped fiber (EDF) which acts as the
gain medium and forces its operation at a wavelength λ ≈
1.55 μm. The EDF pumping is provided by a 5-W Raman
fiber laser source at 1.48 μm, coupled through a 1480/1550
multiplexer (WDM). Two additional multiplexers are spliced
after the EDF to reject the remaining pumping light from the
rest of the cavity, with a suppression ratio better than 30 dB.
Unidirectional laser emission is ensured by the presence of
two polarization-insensitive optical isolators (ISO) enclosing
the amplifier section. Output couplers are placed before (95/5)
and after (97/3) the amplifier section. The cavity comprises
an open-air section, where the polarization of the intracavity
light field can be tuned by rotating quarter-wave and half-wave
plates. We measured a level of polarization-dependent losses
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FIG. 4. (Color online) (a) Same as Fig. 1, with α = 0.6, β = 3,
ρ = −3, and γ = 0.95. (b) Intensity profiles of |U (t,τ )|2 (red solid
curves) and |V (t,τ )|2 (dashed blue curves) of the two polarization
components vs. τ for t = 100.

lower than 0.2 dB over 10 nm of bandwidth and an average
birefringence smaller than 4.10−6 [7].

The EDF has an anomalous group-velocity dispersion
that amounts to D = +15 ps nm−1 km−1. Fiber compo-
nents are pigtailed with short lengths of SMF-28 (D =
+17 ps nm−1 km−1). The cavity also includes a 1.5-m-long
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FIG. 5. (Color online) (a) Same as Fig. 4(a), without polarization
cross-coupling, i.e., γ = ρ = 0.
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FIG. 6. (Color online) Fiber laser experimental setup. ISO:
polarization-insensitive optical isolator, OC: output coupler, EDF:
erbium-doped fiber, DSF: dispersion-shifted fiber, PC: quarter- and
half-wave plates, WDM: wavelength multiplexer.

dispersion-shifted fiber (DSF, D = −2.5 ps nm−1 km−1). In
contrast to the normal-dispersion case that was studied in
Ref. [7], the resulting total cavity chromatic dispersion is
anomalous in the present case, and amounts to −0.013 ps2.
The fundamental repetition rate of the cavity is 23.9 MHz.

The laser signal is monitored using one port of a 1:4 splitter
spliced at the 3% output of the 97/3 coupler. Then, it passes
through a combination of quarter- and half-wave plates before
it is sent to a polarization beam splitter, which separates the two
linear orthogonal polarization components. These polarization
components are finally detected by fast photodiodes whose
electrical signals are recorded without averaging by a 45-GHz,
120-GSa/s real-time oscilloscope. Another output port of the
1:4 splitter is sent to an optical spectrum analyzer, which has
a resolution of 65 pm.

B. Observation of the transition from disorder
to antiphase synchronization

In the experiment, the most accessible degrees of freedom
are the pumping power and the orientation of the intracavity
wave plates, which can be tuned while the laser is operated.
We found specific regions in the space of the laser parameters
where the transition from polarization disorder to antiphase
polarization domains could be observed by tuning either the
pumping power, or one of the intracavity wave plates. An
example of such a transition is provided in Fig. 7, where
the pumping power is set at 2 W, and the orientation of the
half-wave plate is varied. The situation in Fig. 7(a) exhibits
fully independent chaotic temporal dynamics in the two polar-
izations, as it occurs in the case which is depicted in Fig. 2(a).
A sharp transition in the intracavity polarization dynamics
from uncorrelated to strongly antiphase correlated polarization
evolutions occurs below θ = 288◦. This is corroborated by
evaluating the evolution of the Pearson correlation coefficient
[see Fig. 7(g)], which is calculated from the two temporal
series of optical intensities (one series for each polarization
component), which are simultaneously recorded. The vector
antiphase multipulse solitary waves of Fig. 7(e) fill out the
entire cavity at a repetition rate of 260 MHz. Results very
similar to Fig. 7, not shown here, are obtained by varying
the pumping power: as the pumping power grows larger, a
clear transition from seemingly chaotic, uncorrelated temporal

(a)

(c)

(e)

(g)

(f)

(d)

(b)

FIG. 7. (Color online) Transition from polarization disorder to
antisynchronization, following the orientation θ of the intracavity
half-wave plate. Upper left: Temporal traces of the two orthogonal
polarization states. Upper right: Corresponding scatter plots. (a,b)
θ = 288◦, (c,d) θ = 285◦, (e,f) θ = 284◦, (g) Pearson correlation
coefficient as a function of θ .

fluctuations in both polarizations of the field into antiphase
polarization correlated pulse trains is also observed. This
demonstrates that the synchronization mechanism is based on
nonlinear polarization coupling, as predicted by the CGLE
model (1).

To highlight the remarkable stability of the emerging anti-
correlated pulse trains, we have recorded the radio-frequency
spectrum of the output intensity. In the example shown in
Fig. 8, the repetition frequency of these pulse trains reaches
475 MHz, namely around 20 times the cavity fundamental
repetition rate. Using a radio-frequency spectrum analyzer,
we can see in Fig. 9 that the supermode suppression level is as
high as than 40 dB in the 9-GHz span and above 30 dB in the
1-GHz span.

FIG. 8. (Color online) Vector multipulse solitary wave trains
filling the cavity at 475 MHz. (a) Optical spectra of the two orthogonal
polarization states; (b) corresponding temporal traces.

063812-6



DYNAMICS OF THE TRANSITION FROM POLARIZATION . . . PHYSICAL REVIEW A 89, 063812 (2014)

FIG. 9. Radio-frequency analysis of the regime presented in
Fig. 8. RF spectra for 9 and 1 GHz (inset) spans.

The pulse trains of Figs. 7(e) and 8 are analogous to
the anticorrelated periodic trains of temporal Pereira-Stenflo
solitary waves that are depicted in Fig. 4 after numerical
solving of the CGLE Eq. (1). In the following, other distinct
regimes of transition from polarization disorder to antiphase
polarization domains are found, however, the remaining
noise level in the antisynchronized states prevented us from
obtaining a correlation signature as sharp as in Fig. 7(g).

C. Coupled vector bright and dark solitary structures

We also carried out a comprehensive study of vector short
pulse dynamics in the anomalous dispersion regime at high
pumping powers. By short pulse dynamics, we mean that we
search for quasistationary temporal structures with temporal
durations significantly shorter than the cavity round-trip time,
which is 42 ns. They are observed for pumping powers above
1 W. According to the settings of the intracavity wave plates,
orthogonal polarization components exhibit very different
coupled dynamics. Figure 10 displays the shortest vector
pulse structure found, which is a coupled dark-and-bright
solitary wave circulating at the cavity round-trip frequency.
Indeed, one polarization component displays a bright peak
sitting on a noisy low background [see Fig. 10(b), gray (red)
solid curve]. Whereas the orthogonal polarization component
displays a dip on a noisy high cw background [see Fig. 10(c),
black (blue) dotted curve]. The two temporal traces shown in
Figs. 10(b) and 10(c) are recorded with a rise-time of 22 ps.
The observed duration of the bright structure in Fig. 10(b) is
∼40 ps, and that of the dark structure Fig. 10(c) is ∼60 ps.
Optical spectra of both bright and dark pulse components of
the vector temporal structures are presented in Fig. 10(a).
Both spectra are centered around 1558 nm. The FWHM of
the bright temporal structure is 1.1 nm while that of the dark
structure is 1.2 nm. We note that the bright-dark localized
dissipative structure compares qualitatively well with the
strongly localized bright-dark soliton-like structure that was
numerically obtained in Sec. II and displayed in Fig. 3.

FIG. 10. (Color online) Short dark-bright coupled pulsations in
the anomalous dispersion regime. (a) Optical spectra of the two
orthogonal polarization states, and (b,c) their corresponding temporal
traces (b). The gray (red online) solid curve in (a) is the spectrum
corresponding to the gray (red online) solid temporal trace in (b). The
black (blue online) dotted curve in (a) is the spectrum corresponding
to the black (blue online) dotted temporal trace in (c).

D. Polarization domain walls

The detailed features of vector pulsations, such as the du-
ration of the localized temporal structures, essentially depend
on the orientation of the wave plates PC 1,2. It is possible to
obtain long-lived polarization states once that the polarization
switching transition has occurred, corresponding to relatively
long, isolated, and periodic polarization domains separated by
polarization domain walls. Figures 11 and 12 illustrate two
distinct experimental observations of such PDW-like temporal
dissipative structures. The second PDW-like structure, shown
in Fig. 12, is obtained from the first structure of Fig. 11
after a slight adjustment (around 2◦) of the quarter-wave
plate (PC1) angle. Figures 11(a) and 12(a) present the optical
spectra of both orthogonal polarization states corresponding
to Figs. 11(b), 11(c), 12(b), and 12(c), respectively.

The temporal duration of the shorter polarization domain
structure presented in Figs. 11(b) and 11(c) is around 1.5 ns.
Corresponding optical spectra, for both polarization compo-
nents, appear in Fig. 11(a). The polarization domain duration
increases to 2 ns [see Figs. 12(b) and 12(c)], while developing
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FIG. 11. (Color online) PDW-like temporal dissipative struc-
tures. (a) Optical spectra of the two orthogonal polarization states, and
(b,c) their corresponding temporal traces. Dark PDW-like structures
are indicated by black (blue) dotted temporal traces and spectra; bright
PDW-like structures are indicated by gray (red) solid temporal traces
and spectra.

a nearly symmetric or square overall shape. Here, the central
wavelength of the dark pulse is 1559 nm and its FWHM is
1.1 nm [see Fig. 12(c)]. The spectrum of the bright pulse is
centered at 1558.0 nm and its width is broader (FWHM =
2 nm). Optical spectra hardly change over the whole range
of wave-plate orientations. Let us notice that Fig. 11 displays
three PDW-like structures per cavity round-trip, whereas in
the case of Fig. 12, there are eight such structures per
round-trip. The experimental PDW-like vector structures of
Figs. 11(b) and 11(c) and Figs. 12(b) and 12(c) are qualitatively
reproduced by the polarization domains and domain walls
which we numerically obtained in Figs. 1(c) and 2(c) by
solving the CGLE (1). For appropriate settings of the PC
angles, the localized square-waves as in Figs. 12(b) and 12(c)
breakup into a set of vector multipulse solitary waves which
have antiphase occurrence as in Figs. 7(c) to 8.

FIG. 12. (Color online) Eighth-harmonic PDW. (a) Optical spec-
tra of the two orthogonal polarization states, and (b,c) their corre-
sponding temporal traces. Dark PDW-like structures are indicated by
black (blue) dotted temporal traces and spectra; bright PDW-like
structures are indicated by gray (red) solid temporal traces and
spectra.

E. Disordered antiphase dynamics

To complete the observation of polarization dynamics,
disordered polarization structures can also be obtained from
the first dark-bright structure shown in Fig. 10. In fact, by
tuning the PC angles, we observed disordered polarization
evolutions that appear to be the signature of chaotic or
intermittent vector solitary waves, whereas they still feature
some degree of antiphase dynamics as far as the main pulse
component appearing once per round-trip is concerned. The
pattern of each polarization component is a succession of
localized structures that are continuously created or annihi-
lated in an irregular manner, as it is shown in Figs. 13(b)
and 13(c). Nevertheless, the complex structure still exhibits
quasiperiodicity at the cavity round-trip time. Within one
round-trip time, the observed behavior appears to be in
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FIG. 13. (Color online) Disordered antiphase dynamics. (a) Op-
tical spectra of the two orthogonal polarization states, and (b,c)
their corresponding temporal traces. Dark PDW-like structures are
indicated by black (blue) dotted temporal traces and spectra; bright
PDW-like structures are indicated by gray (red) solid temporal traces
and spectra.

qualitative agreement with the numerical intensity profiles
illustrated in Fig. 2(b).

IV. DISCUSSION AND CONCLUSION

Our interpretation of the dynamics observed experimentally
is the following. In an initial step, considering the similarity
of our setup with that of Ref. [38], we conjecture that a
RNGH-type instability is prone to convert part of the noisy,
quasi-cw laser emission into nanosecond pulsations that repeat
at the cavity fundamental frequency. Then, these pulsations are
able to trigger subsequent nonlinear effects, which are mainly
self- and crossed-Kerr and gain saturation nonlinearities,
accompanied by the action of chromatic dispersion. This
subsequent pulse shaping takes numerous cavity round-trips.
In a vector fiber ring laser without polarizing components, the
dominating dynamics is characterized by antiphase polariza-
tion dynamics separated by picosecond temporal polarization
domain walls. For this type of dynamics, with nonlinear and
dispersive lengths much longer than the cavity length, the use
of a vector-distributed model appears to be justified.

Indeed, we have shown that the rich experimentally ob-
served polarization dynamics may be qualitatively well repro-
duced in terms of solutions of the coupled one-dimensional
complex Ginzburg-Landau equations. In particular, polariza-
tion cross-phase modulation and cross-gain saturation lead to
the synchronization of spatiotemporal chaos into ordered states
of temporally alternating orthogonal polarization domains. We
have also shown that the control of polarization coupling may
lead to generating stable lattices of antiphase soliton trains
with high duty cycle at repetition rates of hundreds of MHz,
as well as coupled dark and bright soliton structures.

We may therefore conclude that vector fiber lasers provide
an ideal testbed for testing the fundamental dynamics of
chaos synchronization and control. From the practical side,
the polarization dynamics of vector fiber lasers may find
applications to chaos-based communication systems where
decrypting of information is based on the synchronization of
chaotic laser sources.
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