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Single-photon emitter based on an ensemble of lattice-trapped interacting atoms
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Precisely controlling the atom number challenges the single-photon generation based on an individual neutral
atom in experiments. A straightforward solution is to directly produce single photons via a number of atoms.
We theoretically investigate such a single-photon emitter in which a bunch of Sr atoms are tightly confined in a
blue-detuned optical lattice and weakly driven by an external field. The strong long-range interatomic interactions
inducing large excitation-energy shifts results in a significant suppression of multiphoton emission. We consider
two common approaches, which are widely used in experiments to generate single photons, in detail. The results
indicate a potential to built up a single-photon source based on an ensemble of interacting atoms.

DOI: 10.1103/PhysRevA.89.063809 PACS number(s): 42.50.Ar, 42.50.Ct, 42.50.Dv, 42.50.Pq

I. INTRODUCTION

A single-photon source [1], which deterministically de-
livers one single quantum of light at a time, is particularly
valuable in quantum information processing, since single
photons act as qubits storing information in their polarization
state or phase [2]. This encoding scheme has been maturely
used to establish identical random binary numbers (quantum
keys) at remote locations in the quantum cryptography [3]
and has an ambitious photonic application in the linear optical
quantum computing [4].

Several novel schemes, which can be potentially applied
to work as a single-photon source, have been experimentally
demonstrated based on a variety of individual two-state
particles, such as an atom [5], an ion [6], a molecule [7], and
a quantum dot [8]. An individual two-state particle emitting
single photons arises from the fact that it takes some time
for the driving field to reexcite the damped particle so as to
emit the next photon. However, the single-photon generation
is strongly influenced by the particle-number fluctuations in
experiments, since it is a tough task to isolate a single particle,
especially a neutral atom, from a large number of samples
[9–11]. Therefore exploiting a single-photon emitter based on
a number of neutral atoms is necessary and meaningful in both
theoretical and experimental aspects.

At present, a single-photon emitter based on the effect of
a Rydberg blockade [12] has been becoming more and more
attractive, since it provides a straightforward way to probe
the nature of the interatomic interactions through the emitted
photons and, in particular, generate single photons from a
multiatom system. The excitation blockade effect, which
results from the interatomic interactions shifting the energy
levels of Rydberg atoms, strongly weakens the simultaneous
excitation of two or more atoms, and hence the multiphoton
absorption is significantly suppressed. As a result, a bunch
of Rydberg atoms scatter the driving-field photons one by
one [13].

Similar to the excitation blockade in Rydberg atoms,
the strong long-range interatomic interactions induced by
exchanging virtual photons between identical atoms also
cause large excitation-energy shifts [14], which results in

*Deshui.Yu@nottingham.ac.uk

the suppression of both atomic excitation and multiphoton
processes. In Ref. [15], the author has proven that the
fluorescence antibunched photons emitted from an ensemble
of strongly interacting Sr atoms, which are tightly confined
in a blue-detuned optical lattice, in the low-excitation limit.
This is because for a weak driving strength the ensemble of
coupled atoms can be simplified as a two-state “particle” in
the Hilbert space [16] and the fluorescence photons are mainly
from several super-radiant–spontaneous–emission modes. In
the spirit of such an interaction-induced photon antibunching
effect, we present here an experimentally feasible scheme of
a single-photon emitter based on the platform established in
Ref. [15], which can be potentially improved to work as a
single-photon source.

We consider two common approaches, i.e., a cavity emitter
driven by a continuous laser field [17] and a pulse-driven
emitter without optical resonator [18], which are usually
applied in experiments to generate single photons. Each
method has both advantages and disadvantages. The spatial
mode of a single photon’s output from a cavity emitter is
well defined and the photon polarization is unique [19].
However, photons are emitted at random times and not
deterministically due to the weak atom-cavity interaction and
continuous driving. In contrast, a pulse-triggered emitter in
free space (without cavity) generates the single fluorescence
photons deterministically with the arrival times depending on
the excited-state lifetime and the pump-pulse duration [18].
However, the highly efficient collection of the “triggered”
fluorescence, which is directed into the full solid angle, is
still a challenge in experiments [20].

In this paper we focus on the dependence of the second-
order correlation of the photon emission, which is a key
diagnostic of the nonclassical nature of the light, on different
system parameters in detail as well as the temporal coherence
of single photons. Our physical system offers a prospect
for realizing a single-photon source based on a bunch of
interacting neutral atoms.

II. A CAVITY EMITTER DRIVEN BY
A CONTINUOUS LASER FIELD

We firstly consider a cavity emitter, where a bunch of
continuous-field–driven atoms are placed inside an optical
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resonator. The single photon’s output from such an emitter
has a well-defined spatial mode and unique polarization.

A. Physical model

An ensemble of N bosonic Sr atoms is tightly confined
in a two-dimensional (2D) blue-detuned hexagonal optical
lattice operating at a magic wavelength of λb = 412.8 nm
[21]. The 2D hexagonal lattice [22] is formed in the y − z

plane and Sr atoms are arranged along the z direction, with
each lattice site containing only one atom, as shown in Fig. 1.
Since the nearest-neighbor distance, i.e., the lattice constant
a = 4

3
√

3
( λb

2 ), is much shorter than the atomic (5s5p)3P0 −
(5s4d)3D1 transition wavelength (λa � 2.6 μm), the strong
anisotropic long-range dipolar interactions, which can extend
over a few lattice sites, and the collective dissipation can be
induced in the atomic ensemble via exchanging virtual photons
among atoms [14]. We should illustrate that the reason for
applying the 2D hexagonal lattice rather than the common
one-dimensional lattice [15] is that even a small reduction
of the nearest-neighbor distance can strongly enhance the
interatomic interactions, since the dipole-dipole interaction is
proportional to the inverse third power of the separation of two
atoms.

An external monochromatic field Ep, which propagates
along the x axis and whose polarization êp is in the z direction,

FIG. 1. (Color online) Schematic of a laser-driven atom-cavity
system. (a) A single-mode folded cavity couples to an ensemble
of Sr atoms. (a,a+) are the annihilation and creation operators for
the cavity mode, respectively, and κ is the cavity damping rate.
A photodetector (PD) is placed outside the cavity to measure the
output photons. An external laser field Ep polarized in the z direction
and propagating along the x axis is applied to couple the atomic
(5s5p)3P0 − (5s4d)3D1(m = 0) transition with a Rabi frequency �,
as shown in (b). Both the cavity mode and external driving field
have the same frequency ωp and the atom-field detuning is defined
as � = ωp − ωa . (c) Sr atoms are tightly confined in a blue-detuned
hexagonal optical lattice created by three laser beams intersecting in
the y − z plane. The lattice constant is a = 4

3
√

3
( λb

2 ).

is applied to excite atoms from |g〉 ≡ (5s5p)3P0 to |e〉 ≡
(5s4d)3D1(m = 0) with the atom-field detuning � ≡ ωp − ωa

(the coupling field frequency ωp and the atomic |g〉 − |e〉
transition frequency ωa) and Rabi frequency � = −dE0/(2�).
Here d � 4.04 Debye [21] is the electric-field-induced dipole
moment corresponding to the atomic (5s5p)3P0 − (5s4d)3D1

transition and E0 is the amplitude of the coupling laser
field Ep.

In order to efficiently control the spatial mode and po-
larization of photons emitted from the atomic ensemble, all
Sr atoms are localized inside a single-mode traveling-wave
optical resonator [23] with the cavity-mode frequency being
equal to ωp. The intracavity photons propagate along the y

direction and the corresponding photon loss rate is κ . The
creation and annihilation operators of the cavity mode are a

and a+, respectively, and the atom-cavity coupling strength
is g. An ideal photodetector is used to measure the output
photons leaking through the resonator mirror.

Since the branching ratio of the atomic (5s5p)3P0 −
(5s4d)3D1 transition, of whom the spontaneous emission rate
is about γ = 2π×46.18 kHz, nearly reaches 60% of the
total decay rate of the (5s4d)3D1 level [24], our Sr lattice
can be approximately considered as an open quantum system
comprised of two-level particles being simultaneously coupled
to an external laser field and an optical cavity.

B. Dissipative quantum dynamics

The dissipative dynamics of an ensemble of laser-driven Sr
atoms being coupled to an optical cavity can be described by
the master equation

ρ̇ = − i

�
[H,ρ] + D(ρ), (1)

where ρ is the combined atom-cavity field density operator.
The Hamiltonian H describing the coherent time evolution of
the open quantum system is expressed as

H = −�

∑
α

�b+
α bα + �

∑
α,β �=α

Vα,βb+
α bβ

− �

∑
α

[
b+

α

(
�eikp ·rα + gaeikc ·rα

) + H.c.
]
, (2)

where the coefficient

Vα,β = 3γ

4

[
− (1 − cos2 θα,β )

cos ηα,β

ηα,β

+ (1 − 3 cos2 θα,β)

(
sin ηα,β

η2
α,β

+ cos ηα,β

η3
α,β

)]
(3)

characterizes the long-range coherent interaction between
the αth and βth atoms with the relative position vector
rα,β ≡ rα − rβ . bα ≡ (|g〉〈e|)α is the atomic transition opera-
tor for the αth atom; kp and kc are the wave vectors of the
coupling field Ep and cavity mode, respectively; and here we
have defined the dimensionless parameter ηα,β = 2π |rα,β |/λa .
θα,β is the angle between the light-induced-dipole vector and
rα,β . The dissipation term D(ρ) in Eq. (1), which describes
the collective spontaneous emission of the excited atoms and
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photons escaping the optical cavity, takes the Lindblad form

D(ρ) =
∑
α,β

Rα,β

2
(2bαρb+

β − b+
α bβρ − ρb+

α bβ)

+κ

2
(2aρa+ − a+aρ − ρa+a), (4)

where the strength of dissipative coupling between two atoms
is given by

Rα,β = 3γ

2

[
(1 − cos2 θα,β )

sin ηα,β

ηα,β

+ (1 − 3 cos2 θα,β)

(
cos ηα,β

η2
α,β

− sin ηα,β

η3
α,β

)]
. (5)

To understand the effect of collective spontaneous emis-
sions in the quantum dynamics, we rewrite the dissipation
term D(ρ) in diagonal form

D(ρ) =
N∑

m=1

γm

2
(2JmρJ+

m − J+
m Jmρ − ρJ+

m Jm)

+ κ

2
(2aρa+ − a+aρ − ρa+a), (6)

where Jm = ∑
α Mm,αbα is the collective quantum jump

operator and γm = ∑
α,β Mm,αRα,βM+

β,m is the corresponding
collective decay rate. Here we assume that {γm,m = 1, . . . ,N}
have been already arranged from the minimum to the maxi-
mum. The transformation matrix M = (Mm,α) is composed of
eigenvectors of the square matrix R = (Rα,β ). Finally, one can
represent H in terms of Jm and J+

m ,

H = −�

∑
m,n

V ′
m,nJ

+
m Jn − �

∑
m

(�mJ+
m + �∗

mJm)

− �

∑
m

(gmJ+
m a + g∗

ma+Jm), (7)

where V ′
m,n = ∑

α,β Mm,αVα,βM+
β,n − �δm,n, �m = �

∑
α

Mm,αeikp ·rα , and gm = g
∑

α Mm,αeikc ·rα . The diagonal matrix
elements V ′

m,m correspond to the excitation strengths induced
by interatomic interactions, while the nondiagonal elements
V ′

m,n indicate the coupling strengths between different collec-
tive quantum jump modes. Here we apply the Monte Carlo
wave function (MCWF) approach [25] to numerically solve
the master equation (1).

C. Intracavity photon-number and photon-antibunching
effect for a system with N = 2

We focus on two experimentally measurable quantities, i.e.,
the expectation values of the photon number

Np ≡ 〈a+(t)a(t)〉t→∞ (8)

and the second-order correlation function

g(2)(τ ) ≡ 〈a+(t)a+(t + τ )a(t + τ )a(t)〉t→∞
〈a+(t)a(t)〉2

t→∞
(9)

of intracavity photons in the stationary (denoted by t → ∞)
state of the open quantum system and investigate their
dependence on the experimentally tunable parameters �,
�, κ , and g. The definition of g(2)(τ ) corresponds to the

FIG. 2. (Color online) The dependence of intracavity field inten-
sity Np and the second-order correlation function g(2)(τ ) at τ = 0 on
parameters �, �, κ , and g for a two-atom system. (a) Np as a function
of κ and � for � = g = γ . The corresponding g(2)(0) is shown in
(b). For comparison, Ñp and g̃(2)(0) for a noninteracting system with
Vα,β = 0 and Rα,β = γ δα,β are displayed in (c) and (d), respectively.
(e) Np changing with the saturation parameter s and the cooperativity
parameter C for � = −18γ and κ = 50γ . The corresponding g(2)(0)
is displayed in (f). (g) The ratio ξ of the intracavity photons leaving
the cavity to the fluorescence photons from the spontaneous emission.

measurement of the Hanbury Brown–Twiss (HBT) setup and
characterizes the photon statistics of light sources. For an ideal
single-photon emitter, g(2)(τ ) minimizes in the short delay time
limit g(2)(τ = 0) = 0.

First, we consider a simple system with N = 2, the results
of which can give us some instructions for the analog larger
systems. Figure 2(a) displays Np as a function of � and κ for
a pair of fixed � and g, and the corresponding dependence
of g(2)(τ ) at τ = 0 is shown in Fig. 2(b). For comparison,
we also display Ñp and g̃(2)(τ = 0) for a system composed
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of independent atoms, i.e., Vα,β = 0 and Rα,β = γ δα,β , in
Figs. 2(c) and 2(d), respectively. As one can see, reducing the
cavity loss rate κ can enhance the intracavity field intensity Np.
Additionally, unlike Ñp, Np does not maximize at the resonant
atom-field coupling for a fixed κ but at the detuning � = V1,2,
which results from the interaction-induced excitation-energy
shift [15].

Interestingly, at �= V1,2, g(2)(τ = 0) fails to a value very
close to zero as κ is increased, which indicates the strong
photon antibunching effect occurs in the bad-cavity limit
κ � γ . Conversely, bunched photons, i.e., g(2)(τ = 0) > 1, leak
from the output cavity mirror for the resonant atom-cavity
interaction � = 0 [see Fig. 2(b)]. For a noninteracting system,
although the photon antibunching emission happens in the off-
resonance region � �= 0, the minimum of g̃(2)(τ = 0) is strongly
enhanced compared with that of g(2)(τ = 0) [see Fig. 2(d)]
due to two atoms independently emitting photons.

Two factors contribute to the strong photon antibunching
effect in an interacting system: (i) Due to the large excitation-
energy shifts induced by the strong interatomic interactions,
the multiphoton absorption is strongly suppressed, i.e., the
drive-field photons can be absorbed and scattered only one by
one [15]. (ii) Due to the large damping rate of the cavity, once a
photon is scattered from the driving field into the cavity mode,
it rapidly escapes from the optical resonator. As a result, there
is less than one photon traveling inside the cavity.

In order to look into the cooperative effects of the atom-
driving-field interaction and the atom-cavity field coupling on
Np and g(2)(τ = 0) in detail, here we define the on-resonance
saturation parameter s = �2/γ 2 and the cooperativity param-
eter per atom C = g2/(κγ ) and consider their relations to
the intracavity photons. For a pair of fixed � and κ , the
strong driving field, i.e., s > 1, gradually raises the intracavity
intensity Np and reduces the photon antibunching effect, since
the larger Rabi frequency enhances the multiphoton transition.
For an ensemble of strongly interacting atoms, s can vary in
a wide range with g(2)(τ = 0) maintaining a small value. In
addition, for a weak atom-cavity interaction, increasing C is
good at converting the external field Ep into the cavity mode.
However, intracavity photons can be reabsorbed by atoms for
a large C, which vanishes in the intracavity field, as shown
in Fig. 2(c). Moreover, enhancing the atom-cavity coupling
weakens the photon antibunching effect.

Here we define a parameter ξ to describe the ability of
the spontaneously emitted photons being converted into the
intracavity field,

ξ = κ〈a+(t)a(t)〉t→∞∑
m γm〈J+

m (t)Jm(t)〉t→∞
, (10)

where the numerator denotes the loss rate of intracavity
photons and the denominator gives the total spontaneous
emission rate of atoms. As shown in Fig. 2(g), the loss rate
of the intracavity field well exceeds the spontaneous emission
of atoms, which means the intracavity photons are mainly
from the atoms elastically scattering the driving field into the
cavity mode rather than the spontaneously emitted photons.
Increasing the atom-cavity coupling strongly suppresses the
effect of the atomic spontaneous emission on the intracavity
field, which corresponds to the case of cavity QED in the

FIG. 3. (Color online) Np and g(2)(τ = 0) as a function of � for
several different numbers of atoms are displayed in (a) and (b), re-
spectively. For comparison, Ñp and g̃(2)(τ = 0) for the noninteracting
system are shown in (c) and (d), respectively. For all curves, κ = 50γ ,
s = 1, and C = 0.02.

strong-coupling limit [26]. In addition, ξ depends less on the
atom-field saturation parameter s.

D. Single-photon emitters with N > 2

Above we have systematically investigated a system com-
posed of two atoms. Now we consider systems with N > 2.
Figure 3 illustrates Np and g(2)(τ = 0) changing with �

for several different atomic numbers N in the bad-cavity
(κ � γ ) and weak-coupling (C  1) limit. For comparison,
we also display the corresponding Ñp and g̃(2)(τ = 0) for
the noninteracting systems in Fig. 3. As one can see, the
detuning �, at which the intracavity photon number Np

maximizes, approaches to the summation of all interatomic
interactions, i.e.,

∑
β Vα,β , for an arbitrary αth atom as N

is increased, whereas the maximum of Ñp always happens
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TABLE I. Collective decay rates γm, collective coupling strengths
�m, and collective atom-cavity interactions gm for a system composed
of N = 5 atoms.

m 1 2 3 4 5
γm/γ 4.0×10−4 1.4×10−3 1.8×10−2 0.21 4.8
�m/� 0 3.5×10−2 2.0×10−2 0 –2.2
gm/g 0 3.5×10−2 2.0×10−2 0 –2.2

at the resonant atom-field interaction � = 0. However, the
interatomic interactions and collective dissipation have less
affect on the maximum of intracavity photon number Np for
different N because less than one photon exists inside the
cavity for the single-photon emission. Moreover, the photon
antibunching effect is strongly enhanced in an interacting sys-
tem compared with the corresponding noninteracting system.
The minimum g(2)(τ = 0) gradually rises when more atoms
are placed inside the optical cavity, which is expected because
the interaction-induced excitation-energy shifts are reduced
as the system size is increased. Two atoms separated by a
long distance scatter photons independently, which results in
a reduced photon antibunching effect.

Without loss of generality, next we focus only on an
open quantum system composed of N = 5 atoms, which is
large enough to display the main features of an analogous
larger system. As shown in Table I, the cooperative atom-field
interactions �1,...,4 and the collective atom-cavity coupling
strengths g1,...,4 are much smaller than �5 and g5, respectively.
In addition, the collective decay rate γ5 is almost 5 times larger
than the intrinsic spontaneous emission rate γ of a single atom,
while the others are much smaller than γ (see Table I).

In the Hilbert space for the atomic ensemble, a complete
orthonormal basis can be chosen as {|ξ1,ξ2,ξ3,ξ4,ξ5〉}, where
the ξα state of the αth atom can be either |g〉 or |e〉. This set of
states can be divided into five groups, and all states in a certain
group have the same number of excited atoms. For example,
the single-excited-atom group is composed of |e,g,g,g,g〉,
|g,e,g,g,g〉, |g,g,e,g,g〉, |g,g,g,e,g〉, and |g,g,g,g,e〉. Fur-
thermore, one can apply the states in each group to compose the
eigenstates of the interatomic-interaction term in Hamiltonian
�

∑
α,β �=α Vα,βb†αbβ . The corresponding eigenvalues denote

the interatomic-interaction–induced energy shifts of different
eigenstates. For example, the eigenvalue E(G) for the ground
state |G〉 = |g,g,g,g,g〉 is zero and the single-excited-atom
eigenstates are expressed as

⎛
⎜⎜⎜⎝

|I,1〉
|I,2〉
|I,3〉
|I,4〉
|I,5〉

⎞
⎟⎟⎟⎠ = W

⎛
⎜⎜⎜⎝

|e,g,g,g,g〉
|g,e,g,g,g〉
|g,g,e,g,g〉
|g,g,g,e,g〉
|g,g,g,g,e〉

⎞
⎟⎟⎟⎠ , (11)

where the square matrix W is given by

W =

⎛
⎜⎜⎜⎝

0.24 −0.51 0.61 0.51 0.24
0.46 −0.54 0.00 0.54 −0.46

−0.57 0.07 0.58 0.07 −0.57
−0.54 −0.46 0.00 0.46 0.54
0.34 0.49 0.54 0.49 0.34

⎞
⎟⎟⎟⎠ , (12)

with the corresponding eigenvalues E(I,1) = 25.50γ ,
E(I,2) = 20.10γ , E(I,3) = 7.69γ , E(I,4) = −13.00γ , and
E(I,5) = −40.30γ . More details can be found in Ref. [15].

As shown in Fig. 3, the largest intracavity photon number
and strongest photon antibunching happen at � � −40γ for
a five-atom interacting system, which exactly corresponds to
the atomic |G〉 − |I,5〉 transition. Consequently, by setting
� � −40γ , the Hamiltonian (7) can be approximately written
as

H ≈ −�(�5 + g5a)J+
5 + H.c., (13)

and the dissipation term (6) is simplified as

D(ρ) ≈ γ5

2
(2J5ρJ+

5 − J+
5 J5ρ − ρJ+

5 J5)

+ κ

2
(2aρa+ − a+aρ − ρa+a) (14)

in the weak-coupling limit, i.e., a two-state particle resonantly
couples to an external driving field and a single-mode optical
cavity simultaneously [15]. Next, we restrict ourselves in the
bad-cavity limit κ � γ and set � � −40γ , since the strong
photon antibunching mainly occurs in this regime.

E. Photon-number fluctuations

Besides the photon antibunching effect, i.e., g(2)(τ = 0) <

1, investigating the second-order correlation function g(2)(τ )
changing with the time delay τ is necessary since it is closely
related to intensity fluctuations of the intracavity field. For
a coherent laser field, g(2)(τ ) is expected to be unity for
any τ , which means the characteristic time scale of intensity
fluctuations is infinite. For a thermal light, the characteristic
damping time of g(2)(τ ) is determined by the temperature of
the light source. For the fluorescence photons emitted from a
single two-level atom, g(2)(τ ) can maintain a value smaller than
unity during a time delay much longer than the excited-state
lifetime in the weak-excitation limit, while the damping time
of g(2)(τ ) is limited by the excited-state lifetime for the strong
driving field.

The two-time correlation function g(2)(τ ) can be numer-
ically investigated via the MCWF method [25]. Figure 4(a)
illustrates the dependence of g(2)(τ ) on the time delay τ in
a short-term scale. As one can see, g(2)(τ ) maintains a low
value during a short time delay limited by (2γ5)−1, which
means the atoms hardly emit the other photon into the cavity
mode right after an intracavity photon escapes the optical
resonator. It is understandable that the atomic ensemble is
relatively overexcited after an intracavity photon leaving the
cavity. Before atoms scatter the next driving-field photons into
the cavity mode, the time scale of which is determined by
g−1, the atomic system undergoes a collective spontaneous
emission with a rate of γ5 (�g) and the spontaneously emitted
photons do not match the cavity mode. After a short time
delay (2γ5)−1, g(2)(τ ) grows dramatically as τ is increased. It
is understandable that since less than one photon (Np  1)
exists inside the optical resonator at a time, one photon being
emitted into or leaving the cavity can induce large fluctuations
in the number of intracavity photons, resulting in a steep rise
of g(2)(τ ). Afterwards, g(2)(τ ) maintains the photon bunching
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FIG. 4. (a) The second-order correlation function g(2)(τ ) as a
function of the time delay τ in a short-term time scale. The
dependence of g(2)(τ ) on τ in a wide range is shown in (b). (c)
The corresponding distribution of photon arrival times numerically
derived from the MCWF simulation. For all results, the system
parameters are chosen to be � � −40γ , κ = 50γ , s = 1, and C = 0.02.

for a long time delay, as shown in Fig. 4(b). However, we can
prove that g(2)(τ ) approaches unity finally.

Figure 4(c) displays a specific photon arrival-time interval
distribution. One can see that the probability of photon
arrival times strongly grows after a short time delay, which
coincides with the behavior of g(2)(τ ) in the short time scale
(τ < γ −1). Afterwards, the distribution of photon emission
times decays exponentially with a rate parameter (κNp). Thus
the characteristic time delay of g(2)(τ ) is given by (κNp)−1.
Since our single-photon emitter works in a low-emission-rate
limit, the arrival time distributes over a wide time scale much
longer than the excited-state lifetime γ −1 of the atom. This
indeterministic single-photon emission arises from the fact that
the processes of atomic excitation and photon emission share
the same atomic transition line, for which the nonclassical
character of light only occurs in the weak-coupling limit
(C  1). By using a three-level [27,28] or four-level [29]
atomic system, those two processes can be separated and the
atom-cavity system can be adjusted to the strong-coupling
limit (C � 1), with the photon antibunching effect being
maintained. As a result, the photon arrival time can be greatly
reduced.

F. The first-order correlation

So far, we have discussed only the second-order correlation
function g(2)(τ ). However, it is not the whole story, since
the emergence of various photonic applications requires the
emitted single photons possess high coherence. Thus it is
necessary to consider the temporal optical coherence of
photons, which is described by the first-order correlation
function

g(1)(τ ) ≡ 〈a+(t + τ )a(t)〉t→∞
〈a+(t)a(t)〉t→∞

. (15)

FIG. 5. (Color online) The first-order correlation g(1)(τ ) as a
function of the time delay τ with � = −40γ and C = 0.02. Two
distinct regions with g(1)(τ ) � 1 and g(1)(τ ) � 0, respectively, can be
distinguished in the limit of weak atom-field interaction s � 0. The
boundary is given by γ −1

5 in the time domain.

For the resonance fluorescence from an individual quantum
emitter without an optical resonator [6,7], the spontaneous
emission rate γ mainly limits the spectral linewidth for a
large driving strength. Conversely, the subnatural-linewidth
single photons are generated from a single quantum emitter
working in the Heitler regime [30]. However, the situation
can be considerably altered if the object is placed inside an
optical cavity. Again, we apply the MCWF procedure [25]
to numerically calculate the two-time correlation function
g(1)(τ ), and the results for different saturation parameters s

are displayed in Fig. 5.
As one can see, g(1)(τ ) displays two distinct regions,

i.e., one region with extremely high coherence [g(1)(τ ) � 1]
and the other with noncoherence [g(1)(τ ) � 0], divided by
the collective spontaneous emission time γ −1

5 in the time
domain. The boundary between these two regions becomes
more obvious as the atom-field interaction approaches zero,
s ∼ 0. This dependence of g(1)(τ ) on τ can be understood from
the large photon-number fluctuations in the intracavity field.

As is known, both intensity and phase fluctuations of
intracavity field contribute to the decay of g(1)(τ ). For
the conventional lasers, an optical cavity is filled with a
macroscopical number of photons. In this case, the intensity
fluctuations (fluctuations in the number of intracavity photons)
has less influence on the first-order correlation of the laser field,
while the field phase diffusion, which is mainly induced by
the unavoidable spontaneous emission of emitters, primarily
contributes to the linewidth of the laser spectrum. However, the
situation is very different in our system, since the stimulated
emission, which is particularly important in the lasing process,
is significantly suppressed in the weak-excitation limit and the
intracavity field is mainly from the atoms elastically scattering
the driving field into the cavity mode.

In our single-photon emitter, less than one photon exists
simultaneously inside the optical resonator at any time due
to the large loss rate κ . A single-photon change inside the
cavity can induce large photon-number fluctuations, resulting
in a dramatic influence on the intracavity field coherence. As
shown in Fig. 4(a), the intracavity field undergoes relative
small fluctuations in photon number in a short time delay
γ −1

5 . In this time scale, the field phase fluctuations mainly
determine g(1)(τ ). Since the collective coupling strength �5

is much smaller than the corresponding collective decay rate
γ5, i.e., the Heitler regime [30], in the limit of s ∼ 0, the
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intracavity field correlation is mainly determined by the driving
field in this time scale, which results in g(1)(τ ) ∼ 1. In contrast,
for a relatively long time delay τ > γ −1

5 , the system suffers
from huge photon-number fluctuations [see Fig. 4(a)], which
extremely reduces the first-order correlation (see Fig. 5).

III. A SINGLE-PHOTON EMITTER IN A PULSED FASHION

So far, we have discussed a single-photon emitter based on
interacting neutral atoms driven by a continuous-wave laser
field and coupled to an optical resonator. The single photons
emitted from such a physical system have a well-defined spatial
mode and polarization. However, the photon emission rate is
very low (see Fig. 3) and single photons are created at random
times [see Fig. 4(c)] due to the weak atom-cavity coupling
and the continuous pumping. Additionally, the temporal
coherence of single photons is strongly affected by the huge
photon-number fluctuations.

In order to generate single photons deterministically, a
control of the emission process is necessary. In experiments,
a rectangular optical pulse is usually applied to excite a single
absorber with probability 1 and, subsequently, a single photon
is produced via the spontaneous emission. Hence we next
consider a single-photon emitter triggered by excitation pulses.
Moreover, to avoid the strong fluctuations in the number of
intracavity photons induced by the weak atom-cavity coupling,
the pulse-driven lattice-confined Sr atoms are localized in the
free space (without optical resonator), as shown in Fig. 6. The
fluorescence photons are collected by a lens (here we assume
a 100% photon collection efficiency) and the second-order
temporal correlation function is measured via a HBT-type
setup composed of a beam splitter and two photon-counting
detectors.

A. Deterministic single-photon emission

Again, we focus on an interacting system composed of
N = 5 atoms, which are excited by the rectangular pulses
polarized in the z axis and propagating along the y direction.
We still apply the master equation [Eq. (1)] to investigate the
system dynamics, except deleting all the terms related to the
optical cavity in the Hamiltonian [Eq. (7)] and dissipation
[Eq. (6)]. As discussed in the last section, due to the
large interaction-induced energy shifts, the complex quantum
system in the coupled representation can be simplified as a
two-state particle resonantly interacting with an external laser
field with a collective driving strength �5 in the low-excitation

FIG. 6. Schematic of a triggered single-photon emitter. A bunch
of lattice-confined atoms are excited by rectangular laser pulses. A
lens is applied to collect the fluorescence light, which is separated by
a beam splitter (BS) and imaged onto two photodetectors (PD).

FIG. 7. The arrival times of fluorescence photons recorded with
one photodetector for several different driving strengths �. The atom-
field detuning is fixed at � = −40γ , and the pulse duration is set to
be τp = π

2�5
. The insets show the corresponding histograms of the

number of photons emitted by one excitation pulse.

limit when the global atom-field detuning is set at � � −40γ .
Moreover, it has been shown in Ref. [31] that the optimal
choice for a single-photon emitter based on a two-level atom
is to apply π pulses. Therefore here we set the excitation-pulse
area to satisfy the condition

2�5τp = π, (16)

where τp is the excitation-pulse duration.
We first prove that the setup described in Fig. 6 determin-

istically produces photons for an excitation pulse. Figure 7
displays the statistical distribution of the arrival times of
emitted fluorescence photons for one trigger pulse with
different durations τp. As one can see, the photon emission
strongly rises during the pulse duration and is maximized
at the end of the pulse. Afterwards, the distribution decays
exponentially with a time constant of γ −1

5 . In this case, single
photons are generated at predetermined times within a scale
of τp + γ −1

5 . By efficiently reducing the excitation duration
τp, the time scale for generating single photons is completely
limited by the quantum system itself. In addition, a two-level
absorber with a large spontaneous emission rate can narrow
the distribution of predetermined times. However, the temporal
coherence of single photons is strongly reduced, since the
radiation field is totally from the spontaneous emission.
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Having checked that photons are generated deterministi-
cally, we should determine the number of photons emitted
from the system triggered by a single excitation pulse. The
numerical results are shown in the insets of Fig. 7, which
clearly illustrate the efficiency of producing single photons can
exceed 60%. The probability of single photon generated by one
excitation pulse is strongly dependent on the π -pulse intensity
(or duration). On one hand, reducing the π -pulse intensity
is an efficient way to suppress the multiphoton emission,
but the probability of a vacuum state (no photon emission)
rises dramatically since the atomic system will hardly be
excited at a small �5. On the other hand, the multiphoton
processes are enhanced as the π -pulse intensity is increased
and exceed any interaction-induced energy shifts. Therefore
the π -pulse duration needs to be carefully chosen so as to
optimize the single-photon generation. Moreover, enhancing
the interatomic interactions via reducing the atomic spacing is
a useful way to suppress the probabilities of both vacuum state
and multiphoton emission.

B. Time-resolved coincidence

In order to give a complete description of the nonclassical
statistics of our single-photon emitter, we consider the second-

FIG. 8. Photon correlation histogram of the photon emission for
different Rabi frequencies �. The area of each excitation pulse is
fixed at 2�5τp = π and the repetition rate is set to be 6γ . Since the
photon emission time is determined by τp + γ −1

5 , shortening the pulse
duration τp can narrow the 1/e half-width of peaks of the correlation
histogram but enhance the two-photon emission.

order correlation function of the fluorescence photons emitted
from a system being continuously excited by a sequence of
π pulses with a fixed period, which is much larger than the
collective decay time γ −1

5 .
We numerically derive the number of coincidence photon-

emission events as a function of time delay τ via the MCWF
simulation. Figure 8 displays the resulting histogram, from
which one can see a series of spikes separated by the period of
the excitation pulses. The signature of single-photon emission
is evident in the strongly reduced central peak, which indicates
the significant suppression of the two-photon emission at τ =
0. The 1/e half-width of the peaks is determined by the sum-
mation of the pulse duration τp and the collective lifetime γ −1

5 .
The height of the central peak grows when the π -pulse dura-

tion is shortened because the enlarged Rabi frequency exceeds
the interaction-induced energy shifts of different excitation
levels and induces multiphoton emissions. In contrast, the
central peak is suppressed as the π -pulse duration is extended,
which results from the inhibition of multiphoton processes.

Figure 8 proves the deterministic generation of single
photons from a number of interacting atoms. Reducing the
interatomic distance, which results in enhancing the interaction
strength between atoms, can maintain the single-photon
generation for a system composed of more atoms because of
the enlarged excitation-energy shifts [15]. This result is very
meaningful in experiments, since it is difficult to prepare the
single neutral atom from a large number of samples [9].

IV. SUMMARY

In conclusion, we have systematically studied a single-
photon emitter based on the interaction-induced photon an-
tibunching effect [15]. We focus on two common approaches,
i.e., a cavity emitter continuously driven by an external light
field and an emitter composed of pulse-driven atoms in
free space, applied usually in experiments to generate single
photons. Each method has distinguishing features.

For a cavity emitter, an ensemble of interacting atoms is lo-
calized inside a bad optical resonator (κ � γ ) and illuminated
by a continuous-wave light. Due to the weak coupling between
atoms and cavity (C  1), atoms inefficiently convert the
driving field into the cavity mode, which leads to a low single-
photon emission rate and large fluctuations in the intracavity
photon number. As a result, the temporal coherence of single
photons is restricted by huge photon-number fluctuations. This
weakness can be overcome by separating the excitation and
emission processes by using different transition lines [27–29].
In this case, the atom-cavity interaction can be adjusted to the
strong-coupling regime (C � 1) with the photon antibunching
effect being retained, which can strongly enhance the photon
emission rate and narrow the arrival-time distribution of single
photons. Additionally, in our cavity emitter the single photons
are nondeterministically produced at random times, since
the system is continuously driven by an external laser field,
for which it is better to apply laser pulses to trigger the
single-photon emission.

For a single-photon emitter composed of interacting atoms
driven by π -pulse sequence, the atomic system rarely emits
two fluorescence photons simultaneously after a single ex-
citation π pulse. Both the pulse duration and the collective
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spontaneous emission time affect the predetermined times
of the system emitting single photons. Efficiently reducing
the π -pulse width leads to a deterministic single-photon
generation limited by the quantum system itself. However, in
the meanwhile the two-photon emission weakens the nonclas-
sical property of fluorescence because of the enhanced atom-
field interaction. Moreover, efficiently collecting fluorescence
photons is still a challenge in experiments.

Since the relevant techniques of manipulating both external
and internal dynamics of Sr atoms have been fully developed
[32–36], our single-photon emitter is experimentally feasible.
In a future study, we will investigate a single-photon emitter

based on an ensemble of three-level atoms in a �-type
configuration composed of (5s5p)3P0,2 and (5s5p)3D1 states,
where a single-mode optical resonator is applied to couple one
atomic-transition leg while the other transition leg is driven by
π -pulse sequence. This emitter has a potential to work as a
single-photon source based on a number of interacting atoms.
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Y. Yamamoto, Nature (London) 419, 594 (2002).
[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[4] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409,

46 (2001).
[5] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39,

691 (1977).
[6] F. Diedrich and H. Walther, Phys. Rev. Lett. 58, 203 (1987).
[7] B. Lounis and W. E. Moerner, Nature (London) 407, 491 (2000).
[8] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff,

L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).
[9] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. A 18,

201 (1978).
[10] N. Schlosser, G. Reymond, and P. Grangier, Phys. Rev. Lett. 89,

023005 (2002).
[11] P. B. R. Nisbet-Jones, J. Dilley, D. Ljunggren, and A. Kuhn,

New J. Phys. 13, 103036 (2011).
[12] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz,

T. G. Walker, and M. Saffman, Nat. Phys. 5, 110 (2009).
[13] J.-F. Huang, J.-Q. Liao, and C. P. Sun, Phys. Rev. A 87, 023822

(2013).
[14] R. H. Lehmberg, Phys. Rev. A 2, 883 (1970).
[15] Deshui Yu [Phys. Rev. A (to be published)].
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