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Quantum paddlewheel with ultracold atoms in waveguides
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We propose and study a quantum pump which emulates a traditional paddlewheel, that can be implemented
with ultracold atoms in waveguides. We use wave-packet propagation to study its single-mode dynamics, which
also determines its multimode current for mesoscopic setups. Energy flow with or without particle transport
is possible. The spectrum reveals unusual features such as nonuniform Floquet sidebands and counterintuitive
scattering. Explanations are found by examining the scattering dynamics comparatively using quantum, classical,
and semiclassical pictures, indicating a rich system and experimentally accessible method to explore quantum
versus classical dynamics.
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I. INTRODUCTION

The paddlewheel is among the oldest human inventions
for harnessing natural flow for useful work. We study
a quantum-mechanical version of a paddlewheel that can
be similarly useful in generating and controlling coherent
currents. A specific motivation is the long-standing interest
in the phenomenon of quantum pumps [1] that has eluded
clear implementation in mesoscopic electronics. The general
motivation is to probe the scattering dynamics of clouds of
ultracold atoms colliding with localized external potentials
that vary in time.

Quantum pumps originated as a means of generating quan-
tized transport of charge using a topological invariant [1,2], but
advances in nanotechnology in the decades since have shifted
the interest towards generating controlled unidirectional flow
of charge [3–17], spin [18–20], and even entanglement [21,22]
in mesoscopic circuits by means of time-varying potentials.
Theoretical interest in the subject has continued to be strong,
expanding its scope to include superconductors [23] and
graphene [24] and carbon nanotubes [25,26] in recent years.
This sustained interest is particularly remarkable because
experimental demonstration of adiabatic charge pumps in nor-
mal mesoscopic conductors has stubbornly remained elusive
[27,28], although there has been varied success involving spin
currents [19], hybrid normal-superconducting systems [23],
and carbon nanotubes [26].

Despite their wide range and number, studies of quantum
pumps have always been in the context of electronic systems,
until recently when one of us proposed a way to implement
them with trapped ultracold fermionic atoms [29]; neutral car-
riers bypass the primary complications facing electron pumps
[27]. In a subsequent study [30], we developed an approach for
simulating general mesoscopic transport (including quantum
pumps) with wave packets of ultracold bosons, which can
access details of transport dynamics at a single-mode level
instead of the usual multimode average inherent for electrons.

In this paper, we study a paddlewheel pump with our
wave-packet approach, but broadening its scope significantly
to simulate the scattering dynamics classically as well as
quantum mechanically in an equivalent treatment that allows
direct comparison, for which we use a semiclassical picture.
This enables a direct visualization of the dynamics at play in

quantum pumps, yet allows easy simulation of the multimode
fermionic current relevant for an electronic paddlewheel.
Semiclassical methods are not new to the study of electronic
quantum pumps, notably used to study classically chaotic
pumps [31], where current is generated entirely by quantum
interference, and to examine the limit of a large number
of transport channels [32]. Our semiclassical treatment is
differently motivated, being concerned with wave packets of
ultracold atoms in single-channel operation without chaos,
with the main purpose of distinguishing classical features from
purely quantum features in quantum pumps. This broadens
the scope of quantum pumping from an esoteric transport
mechanism in nanoelectronics to be a promising test bed for
examining quantum-classical paradigms with ultracold atoms.
A paddlewheel pump is particularly well suited for that purpose
since it generates significant current in both classical and
quantum operations, unlike the popular turnstile pump [6–8].

The paddlewheel mechanism considered here is distinct
from typical quantum pumping mechanisms, which involve at
least two spatially separated independent potentials like in a
turnstile pump [3–7] or use traveling potential waves [17,26].
The paddlewheel requires only one potential barrier, making it
perhaps the simplest of quantum pumps with two time-varying
parameters, easier to implement and study in atomic systems.
Time-varying single-barrier potentials have been considered
previously for electron transport, but in closed ring geometry
[33,34] where the operation is dubbed “quantum stirring” to
underscore significant differences from quantum pumps that
operate in open systems. Such single-barrier stirring mimics a
piston [35] with a lateral back and forth motion, impossible in a
real paddlewheel, which intrinsically has a discontinuous reset,
as each new paddle enters the medium at the same position. The
discontinuity has crucial relevance for several distinct features
of a paddlewheel, such as counterintuitive scattering.

We describe our physical model in Sec. II and study the
features of single-mode and multimode current generated
by a paddlewheel in Sec. III. Their prominent features are
then examined by analyzing the quantum scattering spectra
and momentum distributions in Sec. IV and compared with
classical and semiclassical distributions in Sec. V. Differ-
ent counterintuitive scattering features are described and
explained in Sec. VI, and we conclude in Sec. VII with a
demonstration of experimental feasibility and a discussion
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placing our results in the context of past studies and future
possibilities.

II. PHYSICAL MODEL

A mesoscopic quantum pump uses time-varying potentials
to generate directed flow through quasi-one-dimensional (1D)
nanowires connected without bias to macroscopic contacts that
act as source and absorbing reservoirs for fermionic carriers.
Ballistic motion [36] is assumed in the wires, so the current is
determined by the scattering at the potential. The net current
can be defined as the integral over contributions at each
incident momentum p0 = �k0,

JF (t) =
∫ ∞

−∞

dk0

2π
f (k0)J (k0,t),

(1)
J (k0,t) = (�/m)〈ψ(k,t)|k|ψ(k,t)〉/〈ψ(k,t)|ψ(k,t)〉;

f (k0) is the Fermi distribution function and ψ(k,t) the
scattering wave function generated by incident eik0x . The
single-mode current can therefore be defined to be

Js(k0,t) = 1
2 [J (+|k0|,t) + J (−|k0|,t)]. (2)

The incoherent sum captures the lack of coherence between
particles from different reservoirs. We simulate this by repre-
senting carriers at each incident mode with wave packets with
the appropriate velocity that interact with the potential to yield
the scattered wave function. Broad wave packets, that interact
with the time-varying potential for several cycles, emulate the
usual assumption of plane waves in standard approaches. The
multimode current of fermions can be computed by sampling
the single-mode current over the relevant range of incident
momenta and approximating the integral in Eq. (1) by a
Riemann sum.

This model can be directly implemented in systems of
ultracold atoms in quasi-1D waveguides. Start with a wave
packet ψ(x,t = 0−) of ultracold atoms in an axial trap
[29], centered about (or close to) the scattering potential
created by a tightly focused blue-detuned laser. Transport is
initiated by turning off the axial trap and giving the atoms
the appropriate momentum ±�k0 using Bragg beams [37],
ψ(x,0+) = e±ik0xψ(x,0−). The wave packet is allowed to
evolve until the scattered wave packet has cleared the potential
barrier, and then the spatial and momentum distribution are
imaged.

In a classical paddlewheel shown in Fig. 1, the vertical
extent of a paddle inside water is L sin(ωt) − L0 > 0 where L

is the distance of the paddle tip to the center located L0 above
the surface; ω is the angular velocity. We capture the essential
features with a time-varying potential

V (x,t) = U0e
−[x−f (t)]2/(2σ 2)[1 + sin(ωosct + φ)]. (3)

Like typical quantum pumps, it has two independent time-
varying parameters—the barrier height oscillating with fre-
quency ωosc, and the barrier position, f (t) = mod (vt,d)
resetting after distance d = v × 2π/ωtran. We set φ = 3π/2
and ωosc = η × ωtran with integer η, so for η = 1 the barrier
tip traces a curve shown schematically in Fig. 1: As the barrier
vanishes at x = d at the end of a cycle it reemerges at x = 0
like the next paddle entering the medium (η > 1 emulates a
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FIG. 1. (Color online) Schematic of a paddlewheel and its imple-
mentation with a translating potential barrier with oscillating strength.
Panels show snapshots of our simulation with wave packets (starting
on left and right of the barrier) with positive (upper) and negative
(lower) incident momenta p0 = �k0. In each cycle, the barrier starts
from zero amplitude at the origin and translates a span d to the
right and resets (the distance d is imperceptible on the scale of these
snapshots). Approximate snapshot times are shown and parameters
and units used are defined after Eqs. (3) and (4).

η-wheel chain, one paddle each, entering sequentially). The
Gaussian barrier is used in most of our simulations since it
models a typical laser profile, but in some specific cases we
will find it useful to also use a rectangular barrier to help with
our analysis.

Our results are dimensionless, set by choice of energy
(ε), length (l), and time (τ ). For comparison with physical
parameters, we choose the transverse harmonic trap frequency
of the waveguide ωr to define our units ε = �ωr , l = √

�/mωr ,
and τ = ω−1

r , with m being the mass of individual atoms.
The transverse frequency is convenient as a parameter that
does not change during the evolution, and also this choice
of units yields a form of the Schrödinger equation that
is equivalent to setting � = m = 1. The same numerical
values of the units are assumed for our classical simulations
as well, for consistent comparison. Unless otherwise men-
tioned, in most of our simulations we use barrier parameters
U0 = 0.5,v = 1.5,σ = 5,ωosc = 0.2, which set the reset span
to be d = η × 47.1. Our main considerations in picking
them was to yield realistic experimental parameters that we
discuss later, and to prominently display the features of
interest.

III. CURRENT AND PARTICLE TRANSPORT

Primary dynamical information about a paddlewheel pump
can be surmised from the current it generates. In Fig. 2(a), we
plot Js(k0) as a function of the incident momentum, as well as
the integrated fermionic current JF (kF ) as a function of the
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FIG. 2. (Color online) (a) Single-mode current versus incident
momentum (k0) and multimode (fermionic) current versus Fermi
momentum (kF ) for a paddlewheel pump. Wave-packet widths b =
400,600,1000 yield the same plot. The prominent dip is washed out
in the fermion average. Inset: On plotting the current versus incident
energy, the oscillations display the periodicity ω = 0.2 of the barrier
resetting. (b) For comparison the current is plotted for exactly the
same parameters for a snowplow (barrier translating without resetting
or oscillation). (c) Plot of net particle transport δP for paddlewheel
and snowplow.

Fermi momentum (f (k0) = [1 − �(kF )]�(−kF ), assuming
complete degeneracy). We use initial Thomas-Fermi envelopes

ρ0(x) = |ψ(x,t = 0−)|2 = [b2 − (x − xm)2], (4)

with packet radius b � |x − xm|, since small interactions can
broaden degenerate bosonic clouds into Thomas-Fermi profile
without impacting the linearity of the dynamics [30]. However,
the precise shape is unimportant as long as the packets are
much wider than the barriers and allows interaction over
several cycles: The plot in Fig. 2(a) overlays simulations
with three different widths of the incident packets (b =
400,600,1000), and the current profiles are indistinguishable,
implying equivalence to using plane waves. Therefore, in
all our other simulations, we only use b = 600. In the
quantum simulation, the wave packets are propagated by
the Schrödinger equation using a split-step operator method
[38]. This assumes that interactions among atoms are made
sufficiently small by using dilute gas and by such means as
Feshbach resonance [39] to be able to neglect nonlinear effects.

Current is generated due to (i) redistribution of momenta
and/or (ii) net particle transport gauged by

δP =
∫ ∞

0
dk|ψ(k)|2 −

∫ 0

−∞
dk|ψ(k)|2. (5)

Comparison of the current profile of the paddlewheel with
Fig. 2(b) for a “snowplow” pump [8,40], a barrier translating
uniformly without oscillating or resetting, highlights the
skewness of the paddlewheel current towards lower incident
momenta. Momentum redistribution occurs for both: For
the snowplow, Galilean transformation shows that incident
momenta ±|k0| lead to four scattering peaks at ±|k0| and
∓|k0| + 2v. However, plots of the net particle transport in
Fig. 2(c) show that δP = 0 for a snowplow but not for
the paddlewheel particularly at low incident momenta. The
implication is that the paddlewheel pump can be used to
selectively pump energy with or without net particle transport.
We found that this is true even when when the oscillation of
the barrier is turned off, ωosc = 0, indicating that the particle
transport arises from multiple interactions with the barrier due
to it resetting; this is more prone to occur at lower incident
momenta k0, due to longer dwell time in the region of the
potential.

The single-mode current profile in Fig. 2(a) displays
oscillations, caused by the barrier resetting, since we find
them to persist even with barrier oscillations turned off.
Moreover, when the current is plotted (inset) as a function
of the incident energy k2

0/2, the oscillations have the same
periodicity ωtrans = 0.2 as for the barrier reset.

But, the most prominent feature of Fig. 2(a) is the signif-
icant dip in the single-mode current that occurs at incident
momentum of k0 = 0.75 as marked in the figure. It occurs
precisely where the current profile would have had its global
peak following its pattern of oscillations. It is highly relevant
that all these features are conspicuously washed out in the
multimode current. This indicates underlying physics that
cannot be accessed in multimode electronic quantum pumps,
and will show the advantage of wave packets in providing
physical explanations.

IV. QUANTUM DISTRIBUTION

The scattered wave packets in momentum space give the
momentum distribution and hence the spectrum. Contributions
due to +|k0| and −|k0| incident momenta can be distinguished,
as shown for a single-mode paddlewheel pump in Fig. 3(a),
exposing the differential scattering that leads to unidirectional
net flow. The spectrum displays the intertwined effects of
the different motions of the potential—translation, oscillation,
and resetting. The distribution is clustered about the scattered
momenta due to translation, ±|k0| and −|k0| + 2v, that would
occur for a snowplow pump as follows from a Galilean
transformation [8]; a possible fourth cluster at |k0| + 2v is
absent since there is negligible reflection of particles incident
with negative momenta for the values of the parameters used.
The oscillations (ωosc) create subclusters (5 are seen clearly
about −|k0| + 2v = 2.25), and finally the resetting (ωtran)
creates fine combing within each such subcluster.

The scattering energy spectrum in Fig. 3(a) (inset) seems
to partially violate Floquet’s theorem of uniform spacing of
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FIG. 3. (Color online) (a) Quantum momentum distribution [41]
for a paddlewheel with ωtran = ωosc/6 shows differential scattering
for ±|k0|. Inset: Partial energy spectrum. The fine combing due to
resetting has uniform spacing of ωtran, but the five clusters due to
oscillation are not equally spaced by ωosc, but are instead centered
about En,n = 0, ± 1,2,3 (shown) as predicted by Eq. (6). (b) The
clusters (and the combing) broaden as reset frequency is increased to
ωtran = ωosc/3 and (c) merge when the frequencies are equal ωtran =
ωosc and all the peaks become equally spaced.

sidebands about the incident energy E0 = k2
0/2. While the

fine-combing, due to the resetting, is indeed uniformly spaced
by ωtran, the subclusters, due to the oscillation, are not equally
spaced by ωosc. We found that the correct way to understand
the subclusters is to consider them in a frame translating
with the barrier, where the incident particles will have energy
Ē0 = (k0 − v)2/2. The subclusters have the expected uniform
Floquet spacing of ωosc about this energy value. Therefore, in
the rest frame, the sidebands due to the oscillation occur at

kn = v ± sgn(k0 − v)
√

(k0 − v)2 + 2nωosc, (6)

causing nonuniform spacing of En = k2
n/2 due to the cross

term. The ± are for transmission/reflection. As indicated
in Fig. 3(a) (inset), the values of En computed for n = 0,

±1,0,2,3 exactly match the observed locations of the side-
bands.

As the reset period is increased to ωtran = ωosc/3 [Fig. 3(b)],
the fine-combing peaks spread out and the clusters due to the
oscillation ωosc broaden, so when ωtran = ωosc [Fig. 3(c)], all
the peaks become uniformly spaced, and the effects of oscil-
lation and resetting in the spectrum become indistinguishable.
This last case coincides with most of our simulations since we
use η = 1.

We now seek the cause of the sharp dip [Fig. 2(a)] in
Js by plotting the scattered momentum distribution in its
neighborhood in Fig. 4 (distributions due to left and right inci-
dence are plotted above and below axes to easily differentiate
them). We see something surprising: The distribution Fig. 4(b)
corresponding to the bottom of the dip |k0| = 0.75 agrees with
our discussion above. However, for the distribution in Fig. 4(a)
for |k0| = 0.65, just below where the dip occurs, for both
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clarity, scattered distribution due to incidence from left (right) with
+|k0| (−|k0|) is shown above (below) axis. Note the presence in (a)
and absence in (b) of the reflection peaks at ∓|k0| due to incident
±|k0|.

±|k0| incident momenta, we see additional prominent peaks
indicating reflection at the same magnitude as the incident
momenta (∓|k0| for ±|k0|). We found this to be true for lower
values, |k0| < 0.65, as well, but missing for momenta above
that at the dip. This is puzzling because the primary reflection
peaks should be only at ∓|k0| + 2v. Is this a purely quantum
effect, or does it have classical roots? We examine that in the
next section.

V. SEMICLASSICAL AND CLASSICAL DISTRIBUTION

We simulate the same scenario classically with ensembles
of particles with initial position and spatial distribution
matching the quantum wave packet, and having constant initial
momentum k0 (the momentum spread of the spatially broad
quantum packets used here is very small and has negligible
effects). In order to unambiguously identify the scattered
peaks, we use only one incident packet (refer to Fig. 1) for
each momentum—the packet approaching the barrier (starting
on the left of it for +|k0| and starting on the right for −|k0|). The
receding wave packets have far less interaction with the barrier
in any case. We do the same for the corresponding quantum
simulations in Figs. 5, 6, and 7, for consistent comparison.
For the classical propagation, we compute the trajectories by
numerically integrating the classical equations of motion:

dx

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂x
,

dS̃

dt
= −x

dp

dt
− H ; (7)

H is the Hamiltonian and S̃(p,t) is the momentum-space
equivalent of the classical action. The semiclassical wave
function at a time t can then be constructed:

ψSC(p,t) = ∑
j ρ0

(
x

j

0

)|∂p/∂x0|−
1
2

x
j

0

ei[S̃j (p,t)/�−μj π/2], (8)

where μj is the Maslov index [42,43]. Since the potential is
periodic, the final momentum p is a periodic function of the
initial position, with each p having contributions from multiple
initial positions x0(p,t), as evident in Fig. 5(a), where a
horizonal slice corresponding to a given momentum intersects
the curve at multiple points. It is clear from the figure that
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FIG. 5. (Color online) Classical simulation [41] of the paddle-
wheel: Final momentum p versus (a) initial position x0 and (b) final
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k0 = 0.65. (c) Scattered momenta distributions with classical and
semiclassical above axis and quantum below axis. (d) Using narrower
(but taller) barrier makes the peak at −k0 essentially disappear.

even within each period there are multiple branches arising
from particles incident on the barrier at different segments of
a cycle that still lead to the same final momentum. Therefore,
the sum in Eq. (8) is over both (i) intracycle branches within
a cycle and (ii) intercycle repetition due to the periodicity. In
that equation for the semiclassical wave function, the initial
density determines ρ0, the local slope in Fig. 5(a) of p versus
x0 determines the Jacobian |∂p/∂x0|, and Fig. 5(b) of p versus
final position x fixes the Maslov index as follows: Setting
μj = 1 at the first momentum branch, at each turning point
where dp/dx = 0, it is incremented by +1 or −1 for clockwise
or counterclockwise turns, respectively.

The semiclassical momentum distribution is given by
|ψSC(p,t)|2, which includes interference among the different
classical trajectories. If the terms in Eq. (8) are absolute-
squared before summing, the phase information is lost and we
obtain the classical distribution. Both are compared with the
quantum distribution in Fig. 5(c). The semiclassical picture
is useful to relate the classical with the quantum features.
As defined, the semiclassical distribution is confined to the
classically allowed regime, where it displays periodic peaks
that coincide in position with the Floquet peaks. The peak
heights are not in general agreement, since features such
as quantum tunneling are not included in our semiclassical
picture. Notably, the Maslov index affects peak heights but
not their location; we demonstrate that by approximating it

by using the (x0,p) chart in Fig. 5(c), but then we use the
(x,p) chart for Fig. 5(d) to get better agreement with quantum
peak heights. In both cases, there are some quantum peaks
beyond the classically allowed momenta which cannot be
captured by our semiclassical function since in those regimes
its amplitude is identically zero. Additional features [43] need
to be added to the semiclassical picture to incrementally
describe those, which is not essential for the purpose of this
paper. The primary conclusion here is that Fig. 5(c) clearly
indicates that the anomalous reflection by a paddlewheel at −k0

due to particles incident with momenta k0 occurs classically
too, with a well-defined semiclassical peak exactly where we
see the quantum peak. Furthermore, we can also conclude
that this is an effect of the finite width of the barrier, since
making the barrier narrower and proportionately taller makes
the anomalous peaks disappear as we see in Fig. 5(d).

VI. COUNTERINTUITIVE SCATTERING

Having established that the anomalous reflection peaks have
classical roots, we examine the time evolution of the classical
ensemble, using snapshots of the scattering such as shown in
Fig. 6. We found that the anomalous peaks appear even with
no oscillation; hence we simplify the scenario, by turning it
off by setting ωosc = 0 in Eq. (3), and also φ = 0, to keep
the barrier at a constant height as it translates and resets. In
this case, the dynamics is particularly transparent when the
barrier is rectangular as shown in Fig. 6(a); specifically we see
discrete strips of particles being reflected. These particles were
elevated by the barrier as it resets, gaining potential energy that
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FIG. 6. (Color online) Snapshots [41] of a classical stream of
particles incident from left at k0 = 0.55 on a modified paddlewheel
that resets but does not oscillate, ωosc = 0 (and also φ = 0 to have a
nonvanishing barrier): (a) rectangular barrier and (b) Gaussian barrier.
Both show the classical origins of the anomalous peak at −k0 in
Fig. 4(a). The parameters shown are common to both figures; for the
rectangular barrier the width is 2σ = 10.
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transforms back to kinetic energy as they roll off the barrier.
The resulting momenta as they roll off are given by

k = v + sgn(k0 − v)
√

(k0 − v)2 + 2nU0, (9)

where n is the number of times a particle interacts with the
barrier, each time gaining energy equivalent to its strength
U0. Notably, when 0 < k0 < v, the particles roll off the
trailing edge of the barrier and get a kick in the negative
direction so that the final momentum is reduced k < k0.
So counterintuitively, the momentum decreases although the
barrier adds energy, and with multiple interactions, momentum
can be reversed. Remarkably, the semiclassical picture shows
that once negative momenta are significantly populated, inter-
ference among classical trajectories create a peak at −k0 where
we find the anomalous Floquet peak in the quantum scattering
distribution. Similar arguments apply when ωosc �= 0, k0 < 0,
and with Gaussian paddlewheels seen in Fig. 6(b), where the
main difference is that the scattering pattern is continuous
instead of being in discrete strips.

This also explains why the anomalous peak disappears
at higher incident momenta: If k0 is sufficiently high there
are not enough interactions for the momenta to change sign,
and such a peak does not emerge; thus our anomalous peaks
disappear above k0 � 0.70, causing the dip in Fig. 2. It is also
clear that a finite width of the barrier is essential; otherwise
the potential energy gain by the “elevator” effect would not
impact a significant number of particles when the barrier
resets.

The paddlewheel pump also demonstrates another distinct
and different anomalous scattering phenomena that is illus-
trated in Fig. 7: Particles are incident on the barrier from
the right with negative incident momentum −|k0|, and in
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FIG. 7. (Color online) (a) Counterintuitive scattering: The scat-
tered momentum distribution for particles incident on a paddlewheel
from the right at k0 = −0.65, with classical and semiclassical shown
above axis and quantum below. Although the maximum potential
is less than the relative incident energy, 2U0 < (k0 + v)2/2, there is
almost total reflection. (b)–(d) Snapshots of classical scattering show
that a Sisyphus effect, due to multiple interactions with the barrier,
causes the reflection [41].

panel (a) we see that there is almost total reflection in both
classical and quantum scenarios. This is remarkable because
the incident kinetic energy of the particles significantly
exceeds the maximum height of the paddlewheel barrier,
|k0 + v|2/2 > 2U0, for the parameters used. So classically
there should be complete transmission, and even quantum
mechanically transmission should be almost complete, yet we
see quite the opposite. Unlike the previously described effect
that was due to resetting, here both oscillation and resetting
play a role. This effect can also be understood using classical
physics: The particles loose kinetic energy as they climb up
the barrier, and because the barrier resets discontinuously, they
may not get a chance to gain it back by rolling down the other
side. A repetition of this, due to multiple interactions with
the barrier, then leads to a Sisyphus effect, where the particles
climb the barrier repeatedly, without ever rolling down the
other side. This is shown for a couple of cycles in the snapshots
in Figs. 7(b)–7(d), captured in a frame moving with the velocity
(v) of the paddlewheel. This eventually can lead to complete
reversal of momentum in the rest frame causing total reflection,
even when the incident kinetic energy significantly exceeds the
potential barrier.

VII. CONCLUSIONS AND OUTLOOK

Our study of the paddlewheel has demonstrated that single-
mode scattering studies can reveal features that are suppressed
in typical multimode fermionic studies of quantum pumps. The
wave-packet approach used here has the distinct advantage
of treating classical, semiclassical, and quantum dynamics
equivalently, thus allowing for direct comparison. That has
been crucial in our ability to unambiguously identify our
anomalous scattering effects as being essentially classical.
That, for example, distinguishes it from nonclassical counter-
stirring effects produced by a pistonlike motion of a barrier in
a closed ring, dubbed quantum stirring [33]. In this context, it
is also important to note there is nothing unusual in itself about
net current flow in opposition to the motion of the barrier as can
be seen from Fig. 2(b) for a snowplow pump; it simply depends
on whether reflection or transmission dominates [8]. What is
unusual about the paddlewheel pump is not the direction of the
net current, but the appearance of prominent scattering peaks
at anomalous momenta that can sometimes be the complete
opposite of what one expects from a simpler idealized analysis,
such as assuming delta-function barriers as often done in
theoretical studies of quantum pumps.

The paddlewheel quantum pump as described here can be
directly implemented with available technology in ultracold
atoms. In fact, we showed a few years ago [29] that mesocopic
quantum pumps can be emulated with fermionic cold atoms
in narrow waveguides connecting two reservoirs. Recently,
using a somewhat different approach, mesoscopic conduction
was indeed demonstrated experimentally [44] with ultracold
fermionc atoms. It would be actually simpler to use wave
packets of BEC instead as assumed here, since there would
be no need for reservoirs at the end of the channels as when
one literally mimics mesoscopic transport. There has already
been progress in implementing the wave-packet approach
in experiments on scattering by time-varying potentials, as
described in a recent paper [43] some of us were involved
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in. That paper focused on an oscillating barrier, but the
same setup can be used to create a paddlewheel pump, by
introducing periodic translation of the barrier. While a variety
of cold atoms can be used, we assume the same atom species
39K atoms in the |F = 1,mF = +1〉 state being used in
these experiments. Assuming the transverse harmonic trap
frequency of the waveguide to be ωr = 2π × 600 Hz, our
units acquire values of ε = �ωr = 29 nK, l = √

�/mωr =
0.65 μm, and τ = ω−1

r = 0.26 ms. So our chosen physical
parameters become barrier width σ = 10l = 6.5 μm, barrier
amplitude U0 = 1ε = 29 nK, oscillation frequency ωosc =
0.2ωr = 2π × 120 Hz, and velocity v = 1.5l/τ = 3.8 mm/s.
These parameters are accessible in experiments (compare with
Table I in Ref. [43]). The quantum regime can be explored
with wave packets of BEC with interactions suppressed by
Feshbach resonances, available for most species for which
BEC has been created, including 39K [39]. The classical regime
can use nondegenerate wave packets.

Considering the dearth of experiments on quantum pumps,
implementing a paddlewheel pump with cold atoms will
provide a setup for studying many properties of quantum
pumps that have only been studied theoretically so far. The
anomalous scattering effects described here demonstrate that a

paddlewheel pump can motivate the general study of scattering
of BEC’s by time-varying potentials, something that has not
been explored yet. The paddlewheel pump can find use in
coherent atomtronics [30,45] transport, and concrete data
gained from experiments can provide insights useful for
implementing electronic quantum pumps. The rich scattering
dynamics reveals intriguing interplay between quantum and
classical physics and as such there is much potential for
using this to probe the quantum versus classical paradigms.
Variations of the paddlewheel pump can lead to interesting
physics beyond what is described here, including using a well
instead of a barrier which can lead to long-term trapping of
particles and yield chaotic trajectories; exploring the effects
of nonlinearity possible with BECs; optimization of selective
transport of particles or energy; and application to spin
pumping.
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