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Theory of bosons in two-leg ladders with large magnetic fields
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We calculate the ground state of a Bose gas trapped on a two-leg ladder where Raman-induced hopping mimics
the effect of a large magnetic field. In the mean-field limit, where there are large numbers of particles per site, this
maps onto a uniformly frustrated two-leg ladder classical spin model. The net particle current always vanishes
in the ground state, but generically there is a finite “chiral current,” corresponding to equal and opposite flow on
the two legs. We vary the strength of the hopping across the rungs of the ladder and the interaction between the
bosons. We find the following three phases. (1) A “saturated chiral current phase” (SCCP), where the density is
uniform and the chiral current is simply related to the strength of the magnetic field. In this state the only broken
symmetry is the U(1) condensate phase. (2) A “biased ladder phase” (BLP), where the density is higher on one
leg than the other. The fluid velocity is higher on the lower density leg, so the net current is zero. In addition to
the U(1) condensate phase, this has a broken Z2 reflection symmetry. (3) A “modulated density phase” (MDP),
where the atomic density is modulated along the ladder. In addition to the U(1) condensate phase, this has a
second broken U(1) symmetry corresponding to translations of the density wave. We further study the fluctuations
of the condensate in the BLP, finding a roton-maxon-like excitation spectrum. Decreasing the hopping along the
rungs softens the spectrum. As the energy of the “roton” reaches to zero, the BLP becomes unstable. We describe
the experimental signatures of these phases, including the response to changing the frequency of the Raman
transition.
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I. INTRODUCTION

The study of condensed bosons under rotation is an im-
portant and rich problem: rotation probes superfluidity [1] just
like magnetic fields probe superconductivity [2]. Such systems
can be mapped onto a frustrated XY spin model [3], and
for large frustration and sufficiently large on-site interactions
one finds the bosonic versions of the fractional quantum Hall
effect [4–7]. In the weakly interacting limit there is a rich
variety of vortex phases [8]. Here we study a Bose gas trapped
on a two-leg ladder where Raman-induced hopping mimics
the effect of a large magnetic field.

The bosonic two-leg ladder is appealing, as it is the simplest
model for studying the response of bosons to a magnetic
field. Thus the experimental observations are particularly easy
to interpret. Further, the ladder geometry is straightforward
to model, admitting approaches ranging from the density
matrix renormalization group [9] through bosonization [10].
In the strongly interacting limit, there is an interesting
interplay between Mott physics and the single-particle band
structure [11–16]. Here we use a mean-field analysis, which is
appropriate for describing experiments on arrays of weakly
coupled ladders when the number of particles per site
is large.

Experimentalists in Munich have recently engineered this
model [17]. Their technique builds upon work performed at
NIST, where Raman lasers created artificial magnetic fields
in the absence of a lattice [18]. Bloch’s group generalized
this idea and produced a staggered magnetic flux on an
optical lattice [19]. Later, both the Munich and MIT groups
extended this to uniform fields [20,21]. Other approaches to
producing artificial gauge fields are reviewed by Dalibard
et al. [22].

In this work, we use a variational approach to analytically
calculate the ground state of a bosonic ladder with an analog
of a magnetic field. We vary the strength of the hopping
across the rungs of the ladder and vary the interaction between
the bosons. We find the following three phases shown in
Fig. 1.

(1) A “saturated chiral current phase” (SCCP), where the
density is uniform and opposite currents flow on each leg.
The magnitude of the chiral current is set by the strength of
the magnetic field and is independent of the interactions or the
interleg hopping strength. In this regime the only spontaneous
broken symmetry is the U(1) condensate phase.

(2) A “biased ladder phase” (BLP), where the density is
higher on one leg than the other. The fluid velocity is higher
on the lower density leg, so the net current is zero. In addition
to the U(1) condensate phase, this has a spontaneous broken
Z2 reflection symmetry.

(3) A “modulated density phase” (MDP), where the atomic
density is modulated along the ladder. In addition to the U(1)
condensate phase, this has a second spontaneous broken U(1)
symmetry corresponding to translations of the density wave.

We further study the fluctuations of the condensate in
the BLP, finding a roton-maxon-like excitation spectrum.
Decreasing the hopping along the rungs softens the spectrum.
As the energy of the “roton” reaches to zero, the BLP becomes
unstable. We describe the experimental signatures of these
phases, including the response to changing the frequency of
the Raman transition.

The SCCP and the MDP were first introduced by Orignac
and Giamarchi [23], and the experimentalists interpreted their
results in terms of these phases [17]. The BLP has not
previously been discussed, but as we explain, the experimental
data shows hints of it.
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FIG. 1. (Color online) Phase diagram of a two-leg bosonic ladder
as a function of the tunneling strength K between the legs and
interaction strength gn̄ for a fixed flux per plaquette φ = π/2. These
energies are measured in terms of the strength of tunneling along the
legs, J . There are three phases: the “saturated chiral current phase”
(SSCP), the “biased ladder phase” (BLP), and the “modulated density
phase” (MDP). The transition at the solid line is first order, and the
transition at the dashed line is second order. The color represents the
magnitude of the chiral current described by Eq. (12). Darker colors
correspond to larger currents. The current is constant in the SSCP but
varies in the BLP and the MDP.

II. MODEL

We consider the Hamiltonian of an interacting Bose gas
trapped on a two-leg ladder in a uniform magnetic field,

H0 = −J
∑

�

(a†
�+1a� + b

†
�+1b� + H.c.)

−K
∑

�

(a†
�b�e

i�φ + H.c.), (1)

H1 = g

2

∑
�

(a†
�a

†
�a�a� + b

†
�b

†
�b�b�), (2)

where � corresponds to the positions along the ladder and the
bosonic operator a� (b�) annihilates a boson on site � of the
left (right) leg. The tunneling strength along the legs is J ,
the tunneling strength across the rungs is K , and the magnetic
flux per unit cell is φ. The model was proposed by Atala et al.
to describe their experiment on trapped Rubidium atoms [17].
The intraleg hopping J is set by the intensity of the lasers
which create their lattice potential. The interleg hopping K

is set by the intensity of a second set of lasers which drive a
Raman transition that allows hopping between the legs. The
interaction strength g is controlled by modifying the transverse
confinement [24]. In the experiment, there is only a weak trap
in the z direction, and g is very small [17]. One could also use
a Feshbach resonance to tune g [25].

The single-body Hamiltonian H0 is characterized by a 2 by
2 matrix in the momentum space,

H0 =
∑

k

c†kH(k)ck, (3)

H(k) = −2J cosk cos
φ

2
+ 2J sink sin

φ

2
σz − Kσx, (4)

where c†k = (a†
k,b

†
k), with ak = 1√

L

∑
� e−i(k+ φ

2 )�a� and bk =
1√
L

∑
� e−i(k− φ

2 )�b�; σx and σz are the Pauli matrices; and L is
the length of the ladder. Note k, φ, and L are dimensionless.
This Hamiltonian is readily diagonalized by(

ak

bk

)
=

(
cos θk

2 −sin θk

2

sin θk

2 cos θk

2

)(
αk

βk

)
, (5)

with tanθk = −K/J

2sink sin φ

2

, yielding H0 = ∑
k[E+(k)α†

kαk +
E−(k)β†

kβk], where the two bands are described by

E±(k) = −2J cosk cos φ

2 ±
√

4J 2sin2k sin2 φ

2 + K2. For K �
2J tanφ

2 sinφ

2 , the lower band E−(k) has a single minimum at
k = 0. For K < 2J tanφ

2 sinφ

2 , it has two minima at k = ±k0,
where ∂E−

∂k

∣∣
k=±k0

= 0. We consider the N -body variational
wave function

|Gk0〉 = 1√
N !

(cosγβ
†
k0

+ sinγβ
†
−k0

)N |vac〉, (6)

where |vac〉 is the vacuum state and 0 < γ < π/2 for k0 > 0
and γ = 0 for k0 = 0. In the absence of interactions, this
is the ground state for any choice of γ . Even infinitesimal
interactions, however, can split this degeneracy.

III. CURRENT AND DENSITY

In this section we explore the properties of Eq. (6). In
particular we calculate densities and currents, which are
experimental observables [17].

To satisfy the continuity equation, we define the net current
and the chiral current,

Jn ≡ 〈Gk0 |
∑

k

c†k
∂H(k)

∂k
ck|Gk0〉/N

= cos2γ
(
J a

k0
+ J b

k0

) + sin2γ
(
J a

−k0
+ J b

−k0

)
, (7)

Jc ≡ 〈Gk0 |
∑

k

c†kσz

∂H(k)

∂k
ck|Gk0〉/N

= cos2γ
(
J a

k0
− J b

k0

) + sin2γ
(
J a

−k0
− J b

−k0

)
, (8)

where the currents on each leg are

J a
k0

= 2J sin

(
k0 + φ

2

)
sin2 θk0

2
, (9)

J b
k0

= 2J sin

(
k0 − φ

2

)
cos2 θk0

2
. (10)

Using the equation ∂E−(k)
∂k

∣∣
k=±k0

= 0 and the relation sin2 θk0
2 =

cos2 θ−k0
2 , one can read off J a

k0
= J a

−k0
= −J b

k0
= −J b

−k0
. This
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implies the net current always vanishes at equilibrium and the
chiral current is independent of γ :

Jn = 0, (11)

Jc = 4J sin

(
k0 + φ

2

)
sin2 θk0

2
. (12)

We also define the local density on each leg,

na(�) ≡ 〈Gk0 |a†
�a�|Gk0〉 = n̄a + δna

�, (13)

nb(�) ≡ 〈Gk0 |b†�b�|Gk0〉 = n̄b + δnb
�, (14)

where the average density on each is n̄a/n̄ = cos2γ sin2 θk0
2 +

sin2γ cos2 θk0
2 and n̄b/n̄ = cos2γ cos2 θk0

2 + sin2γ sin2 θk0
2 ,

where n̄ = N/L is the average density. The density
modulations are the same on each leg: δna

�/n̄a = δnb
�/n̄b =

1
2 sin2γ sinθk0 cos2k0�. Note the modulation is largest at
γ = π/4 and vanishes at γ = 0.

IV. PHASE DIAGRAM

We now consider the interaction term H1. Treating Eq. (6)
variationally and allowing k0 to be a free parameter, we study
the energy

E(γ,k) ≡ 〈Gk|H0 + H1|Gk〉/N = E−(k) + Eint(k), (15)

where

Eint(k) = gn̄

2

[(
3

4
sin2θk − 1

2

)
sin22γ − 1

2
sin2θk + 1

]
.

(16)

This ansatz describes the three phases in Fig. 1. We minimize
E(γ,k) with respect to γ and k. The only γ dependence is in
Eq. (16). For 3

4 sin2θk − 1
2 � 0, the energy minimum is at γ =

0. For 3
4 sin2θk − 1

2 < 0, the energy minimum is at γ = π/4.
As can be inferred from the expressions following Eq. (5),
sin2θk = K2

K2+4J 2sin2k sin2φ/2 .
For γ = 0, the density is uniform along the ladder, and the

chiral current is given by Eq. (12), with ∂E(γ=0,k)
∂k

∣∣
k=±k0

= 0.
When k0 = 0, the density of the each leg is equal, with
na = nb = n0/2, and the chiral current is saturated, with
Jc = 2J sinφ

2 . We call this phase the saturated chiral current
phase (SCCP), as shown in Fig. 2. In the SCCP, the only
broken symmetry is the U(1) condensate phase. For k0 > 0,
the density is higher on one leg than the other, which breaks the
Z2 reflection symmetry. We call this phase the biased ladder
phase (BLP). The transition between the BLP and the SCCP is
second order, and as illustrated in Fig. 2(a), the chiral current
is continuous across the transition. Note the BLP has a twofold
degeneracy since the choice of the leg with a higher (lower)
density is arbitrary. In our ansatz, this twofold degeneracy is
associated with symmetry k0 → −k0.

For γ = π/4, the density is modulated along the ladder,
which supplements the broken U(1) condensate phase, with a
second broken U(1) symmetry: the energy is unchanged if one
adds an arbitrary phase to β

†
k0

or β
†
−k0

in Eq. (6). This second
U(1) phase is related to translations of the density modulation.
We call this regime the modulated density phase (MDP). The
transition between the MDP and the former two phases is first
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FIG. 2. Chiral current and atomic density. (a) Chiral current as
a function of tunneling strength K/J . The current is discontinuous
at the boundary between the MDP and the BLP, indicating a first-
order transition, whereas the current is continuous across the BLP to
SCCP boundary. The slope is discontinuous indicating a second-order
transition. (b) Atomic density as a function of lattice site �. In the
MDP, the density of each leg is equal but modulated along the ladder.
In the BLP, the density is higher on one leg than the other. In the
SCCP, the density of each leg is equal and uniform. For these plots the
interaction strength is gn̄/J = 0.2 and the magnetic flux is φ = π/2.

order, as γ changes discontinuously. Furthermore, we see the
chiral current has a discontinuous jump between the MDP and
the BLP in Fig. 2(a). The size of the current jump is determined
by the interaction strength g and disappears when g is zero.

Note that, for γ = π/4, Eq. (6) is a special case of a
more generic ansatz |Tk0〉 = 1√

N!
(
∑

n cnβ
†
nk0

)N |vac〉, where∑
n |cn|2 = 1 [26]. Although we do not plot the results, we

have studied this more general ansatz. We find very few
changes: the boundary between the phases is only shifted to a
slightly larger tunneling strength K/J . The symmetry of each
phase is unchanged. The shift vanishes as g → 0.

V. STABILITY AND ROTON

We now study the stability of Eq. (6) when γ = 0. We find
the excitation spectrum of the BLP has a maxon-roton-like
structure.

To calculate the excitation spectrum, we truncate the
Hamiltonian to the lowest band,

H =
∑

k

E−(k)β†
kβk + 1

2L

∑
kpq

�kpqβ
†
k+qβ

†
p−qβpβk, (17)
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where

�kpq = g

(
sin

θk+q

2
sin

θp−q

2
sin

θp

2
sin

θk

2

+ cos
θk+q

2
cos

θp−q

2
cos

θp

2
cos

θk

2

)
. (18)

The ansatz in Eq. (6) with γ = 0 is equivalent to setting βk =√
Nδkk0 . We add fluctuations, writing βk = √

Nδkk0 + (1 −
δkk0 )χk−k0 . To quadratic order in the operators χk ,

H̄ /N = E(γ = 0,k0) +
∑
k>0

ζ (−k)

+
∑
k>0

(χ †
k ,χ−k)

(
ζ (k) η(k)
η(k) ζ (−k)

)(
χk

χ
†
−k

)
, (19)

where

ζ (k) = E−(k + k0) + 2gn̄

(
sin2 θk0

2
sin2 θk0+k

2

+ cos2 θk0

2
cos2 θk0+k

2

)
− μ, (20)

η(k) = gn̄

(
sin2 θk0

2
sin

θk0+k

2
sin

θk0−k

2

+ cos2 θk0

2
cos

θk0+k

2
cos

θk0−k

2

)
, (21)

where we have subtracted the chemical potential μ =
E−(k0) + gn̄(sin4 θk0

2 + cos4 θk0
2 ) and defined H̄ = H − μN .

We perform the Bogoliubov transformations χk = uρ−k − vρ
†
k

and χ
†
−k = −vρ−k + uρ

†
k , where ρk is the bosonic quasiparticle

and u2 − v2 = 1. The Hamiltonian is then diagonalized as

H̄ /N =
∑
k>0

εkρ
†
kρk + ε−kρ

†
−kρ−k + const., (22)

where the Bogoliubov excitation spectrum is

εk =
√

(ζ (k) + ζ (−k))2

4
− η2(k) + ζ (−k) − ζ (k)

2
. (23)

In the BLP, this spectrum has a maxon-roton-like structure,
as shown in Fig. 3. Decreasing the tunneling strength K/J

softens the spectrum. As the energy of the roton reaches to zero,
the BLP becomes unstable. This corresponds to a spinodal,
and the first-order transition between the BLP and the MDP
generically preempts it.

VI. EXPERIMENTAL SIGNATURES

In this section we describe experimental signatures of these
phases. A local density measurement can distinguish the three
phases, as can a measure of local currents. Some of the phases
can be distinguished via time-of-flight measurements. Finally,
we argue that a susceptibility measurement can readily identify
the BLP.

While local density and current measurements can be
difficult, the experimentalists in Ref. [17] have devised an
ingenious surrogate. They isolate each leg of their ladder and
further break each leg into a set of dimers. By looking at the
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FIG. 3. Bogoliubov excitation spectrum εk/J for gn̄/J = 0.2.
The maxon-roton-like structure develops as one decreases the
tunneling strength K/J . When the energy of the “roton” hits zero, the
BLP is unstable. This corresponds to a spinodal, and the first-order
thermodynamic BLP-MDP phase transition generically preempts it.

time evolution of this ensemble of isolated dimers, they extract
averages of various local correlation functions. In particular
they find that the chiral current saturates for K/J >

√
2. Given

their weak interactions, this is consistent with the SCCP in
Fig. 1. They also find signatures of spatial inhomogeneities
along each leg for K/J < 1 (see Fig. 4(b) of Ref. [17]). This
is consistent with a transition to the MDP. For 1 < K/J <

√
2,

they appear to have a state which is translationally invariant
along the ladder and has a nonsaturated chiral current. This is
consistent with the BLP. The experimentalists interpreted their
data in terms of the SCCP and MDP, which they referred to as
the “Meisner phase” and “vortex phase”. They were unaware
of the possibility of the BLP, as it has not been previously
discussed. The experimentalists make a plot of Jc vs K/J ,
similar to Fig. 2(a). While the phase transitions should all be
visible in this graph, the discontinuity between the BLP and
the MDP vanishes as the interaction parameter g → 0.

Another direct probe of these states is the left-right
asymmetry δ = na − nb. In the BLP, δ �= 0. Unfortunately,
the experiment is performed on an array of ladders, and one
would expect each ladder to randomly have δ > 0 or δ < 0.
The ensemble average will be zero in all phases. To avoid this
issue, we propose a susceptibility measurement. We envision
detuning the Raman lasers from resonance, which adds to
Eq. (1) the term H� = ∑

� �(a†
�a� − b

†
�b�). Such a term can

also be engineered by adjusting the geometry of their lattice
beams. In the BLP, any bias �, no matter how small, will yield
a finite left-right asymmetry. In the MDP or the SCCP, the
asymmetry will instead be linear in �.

Figure 4 shows the averaged density asymmetry 〈(na −
nb)/n̄〉 as a function of the detuning �/J over 30 sites
along one ladder. The discontinuity seen for the BLP can be
interpreted as a divergent susceptibility. In an experiment one
would likely see hysteresis in the chiral current for the BLP.
By contrast the MDP has a finite susceptibility.

Finally we consider time-of-flight expansion. In principle
one can use this technique to directly measure the momenta
of all the particles. In the SCCP, the atoms on the left legs
all have the momentum k0 = φ/2 along the ladder, and the
atoms on the right legs all have the momentum −k0. In the
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FIG. 4. Averaged density asymmetry 〈(na − nb)/n̄〉 as a function
of the detuning �/J . The density is calculated by averaging over 30
sites along the ladder, where we set gn̄/J = 0.2, and K/J = 0.2 for
the MDP and K/J = 1.1 for the BLP.

BLP the characteristic momentum is reduced to k0 < φ/2,
but there is still only one momentum peak for each leg. In the
MDP the distribution is bimodal: on each leg there are two
different momenta.

To fully interpret time-of-flight images from arrays of
ladders, one must take into account interladder coherences.
Thus we consider a more general two-dimensional model with

H0 = −J
∑
�j

(
a

(j )†
�+1a

(j )
� + b

(j )†
�+1b

(j )
� + H.c.

)

−K
∑
�j

(
a

(j )†
� b

(j )
� ei(�+j )φ + H.c.

)

−�
∑
�j

(
e−iλa

(j+1)†
� b

(j )
� ei(�+j+1)φ + H.c.

)
, (24)

where the superscript labels the ladder and the tunnel-
ing strength between adjacent ladders is �. The phase
factors ei(�+j )φ and ei(�+j+1)φ are related to the experi-
mental geometry of the Raman beams, and e−iλ involves
details of the excited state in the Raman transition. Di-
agonalizing this Hamiltonian in momentum space, one
finds the lower energy band E−(kx,ky) = −2J cosky cos φ

2 −√
4J 2 sin2ky sin2 φ

2 + K2 + �2 + 2K� cos(kx+λ − φ), where
ky is the canonical momentum in the y direction (along the
leg of the ladder) and kx is the canonical momentum in the
x direction (perpendicular to the leg of the ladder). Time-
of-flight measures the real momentum p, where a p = ak−q

and b p = bk+q , with q = φ

2 (x̂ + ŷ). For completely decoupled
ladders, � = 0, the energy is independent of kx . For any
finite coupling, � > 0, the energy minimum is given by
kx = φ − λ. We then see that the atoms on the left legs
have px = kx − φ

2 = φ

2 − λ and the atoms on the right legs
have px = kx + φ

2 = 3
2φ − λ. Thus atoms from the two legs

become spatially separated during time of flight. This spatial
structure is seen in Ref. [17].

VII. CONCLUSIONS

We have studied the ground state of a bosonic two-leg ladder
in a magnetic field. We found three phases, corresponding to
different types of broken symmetries. We further studied the
fluctuation of the condensate and found a roton-maxon-like
excitation spectrum. Finally, we described the experimental
evidence of these phases and proposed a susceptibility mea-
surement to further characterize them.
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