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Half-integer Mott-insulator phases in the imbalanced honeycomb lattice
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Using mean-field theory, we investigate the ground-state properties of ultracold bosons loaded in a honeycomb
lattice with on-site repulsive interactions and imbalanced nearest-neighbor hopping amplitudes. Taking into
account correlations between strongly coupled neighboring sites through an improved Gutzwiller ansatz, we
predict the existence of half-integer Mott-insulator phases, i.e., states with half-integer filling and vanishing
compressibility. These insulating phases result from the interplay between quantum correlations and the topology
of the honeycomb lattice, and could be easily addressed experimentally because they have clear signatures in
momentum space.

DOI: 10.1103/PhysRevA.89.063615 PACS number(s): 67.85.Bc, 03.75.−b, 05.30.Rt, 67.85.Hj

I. INTRODUCTION

Because of its remarkable low-energy electronic excita-
tions, graphene has been the source of many key discoveries
[1,2] which have sparked a vivid research flow now reaching
new territories, as exemplified by ultracold atoms loaded
in optical lattices [3–10]. In this paper, we address the
bosonic Mott-insulator to superfluid (MI-SF) transition taking
place in the honeycomb lattice [11,12] and show that the
phase diagram is richer than for the square lattice [13–18].
Indeed, being genuinely bipartite, the honeycomb lattice has
a two-site (labeled A and B) unit Bravais cell which can
accommodate symmetric and antisymmetric states. This has
dramatic consequences for the ground state of the interacting
system, in either the Mott or superfluid phase. Strikingly, half-
integer Mott lobes develop when nearest-neighbor hopping
amplitudes are imbalanced. This situation is similar to the
Kagome lattice [19–21], or more generally to any lattice for
which the unit cell comprises more than one site, a situation
which is unavoidable in the presence of an external magnetic
field.

The paper is organized as follows. In Sec. II, we introduce
the model and the extended Gutzwiller method [22–24] needed
to correctly capture the intersite correlations responsible for
these new half-integer Mott lobes. In Sec. III, we discuss the
uncoupled dimer solutions, i.e., the properties of the Mott
phases, at integer and half-integer fillings. In Sec. IV, we
present our numerical results for the coupled dimers, in partic-
ular the transition from the Mott phase to the superfluid phase.
In Sec. V, we discuss in more details the boundary of the half-
filling Mott lobe properties, which can be obtained analytically
emphasizing the transition from a quasi-one-dimensional (1D)
situation to a two-dimensional (2D) square lattice phase dia-
gram. The experimental signatures in momentum space, i.e., in
the velocity distribution, of the different phases are discussed
in Sec. VI. A summary of results and conclusions are given in
Sec. VII.

II. MODEL AND METHODS

Let us consider interacting bosons loaded on the hon-
eycomb lattice with nearest-neighbor tunneling and further
assume that one hopping parameter J ′ is different from the
two other (identical) ones J , see Fig. 1.

The limit J ′ � J corresponds to weakly coupled 1D
chains, whereas the limit J ′ � J corresponds to weakly
coupled dimers. It is worth noticing that hopping imbalance in
the graphene lattice has already been achieved experimentally
[6–10]. In the following we single out neighboring A and B
sites coupled by J ′, denote by d the vector joining them, and
label by � the J ′ links they form. Note that J ′ links form
a rhombic lattice with coordination number z = 4. With this
notation, the tight-binding Bose-Hubbard Hamiltonian [25]
with on-site repulsive interactions reads

H = −J ′ ∑
�

[a†
�b� + b

†
�a�] − J

∑
〈�,�′〉

[a†
�b�′ + b

†
�′a�]

+ U

2

∑
�

[
n̂�

a

(
n̂�

a − 1
) + n̂�

b

(
n̂�

b − 1
)] − μ

∑
�

[
n̂�

a + n̂�
b

]
.

(1)

Here a
†
� (a�) and b

†
� (b�) represent the creation (annihilation)

operators associated with the endpoint sites A and B of the
J ′ link �. The corresponding number operators are n̂�

a = a
†
�a�

and n̂�
b = b

†
�b�. The (positive) interaction strength is U and μ

is the chemical potential. The summations run over all J ′ links
� and, in the kinetic term, over their four nearest-neighbor J ′
links �′ such that the A site on � and the B site on �′ are nearest
neighbors.

In the following, we investigate the zero-temperature phase
diagram of Eq. (1) within a mean-field approach [22,23,26].
We mainly restrict our analysis to the dimer regime J ′ > J .
As long as J ′ < 2J , the band structure of the noninteracting
case (U = 0) depicts the celebrated conical intersections at the
Dirac points around E = 0 and the system is a semimetal. At
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FIG. 1. (Color online) Honeycomb lattice geometry with imbal-
ance hopping amplitudes J ′ and J . When J ′ � J , the system can
be described by weakly coupled A-B dimers living on the horizontal
links denoted by �.

J ′ = 2J , the two Dirac points merge and the band structure
undergoes a topological metal-insulator transition [3,4,27].
When J ′ > 2J , the band structure consists of two bands
separated by 2(J ′ − 2J ). When J ′ � J , this is simply the
energy separation between the symmetric and antisymmetric
dimer states |�±〉 = (|A〉� ± |B〉�)/

√
2 (energy ∓J ′) built on

each J ′ link �. These dimer states give rise to the two preceding
bands, each with a width 4J independent of J ′. In this weak
interlink coupling regime (or strong dimer regime), we expect
the physics to be driven by the lower band and the MI-SF
phase transition to be controlled by the ratio J/U . The Mott
ground state is then well approximated by

∏
� |n,�+〉, |n,�+〉

being the Fock state with n bosons in the symmetric state
of link �. This state is beyond the reach of the standard
Gutzwiller’s ansatz which relies on a product of on-site states.
This salient feature directly arises from the two-point topology
of the graphene lattice and cannot happen with the square
lattice where a strong imbalance of one hopping parameter
leads to weakly coupled 1D chains. We improve Gutzwiller’s
ansatz by incorporating the correlations between J ′ link sites
and write the ground state as a product of on link states
|g.s.〉 = ∏

� |�〉:
|�〉 =

∑
n,m

f (�)
n,m|n,A; m,B〉� with

∑
n,m

∣∣f (�)
n,m

∣∣2 = 1, (2)

=
∑
p,q

g(�)
p,q |p,+; q,−〉� with

∑
p,q

∣∣g(�)
p,q

∣∣2 = 1, (3)

where |n,A; m,B〉� is the Fock state on J ′ link � with n atoms
on site A and m atoms on site B while |p,+; q,−〉� is the Fock
state on the same J ′ link � with p atoms in the symmetric state
|�+〉 and q atoms in the antisymmetric state |�−〉. Relating the
f (�)

n,m and the g(�)
p,q is easy since the annihilation and creation

operators for the |�±〉 states are d
(†)
�,± = (a(†)

� ± b
(†)
� )/

√
2. If

both Eqs. (2) and (3) represent the most general dimer state and
fully describe the system on each J ′ link, Eq. (3) proves more
useful in the limit J ′ � J . The ground state of Eq. (1) has been
obtained by imaginary-time evolution of an initial state with
random values of amplitudes and periodic boundary conditions
[13,28]. As the structure of the corresponding nonlinear time-

dependent equations is rather involved, a 4th-order Runge-
Kutta method was necessary.

III. UNCOUPLED DIMERS

We first look for the ground state of the on-link dimer
situation. It corresponds to the Mott states of Eq. (1). Figure 2
shows the on-site (left) and symmetric (right) average occu-
pation numbers and their variances as functions of μ and J ′
in units of U . When J ′/U is small, the on-site density depicts
the usual Mott plateaus at integer fillings. But when J ′/U

increases, one clearly observes the appearance of new plateaus
at half-integer fillings. At the same time, plateaus at odd integer
values 2p + 1 start to appear in the symmetric state density. For
larger J ′/U values, each of these plateaus splits into two new
ones with 2p + 1 and 2p + 2 fillings. Correspondingly (not
shown here), the |�−〉-state occupation number decreases from
the same value 2p + 1, at J ′ = 0, to an almost vanishing value.
The plot of the on-site and symmetric variances emphasizes
that the ground state of the system evolves from an on-site
Fock state to an (almost) on-link Fock state when J ′/U

increases. Indeed, when J ′ ≈ 0, the on-site variance is almost
zero while the |�+〉-state variance is the largest. Increasing
J ′/U , the on-site variance gets larger while the symmetric
one almost vanishes. More precisely, the ground state is
well approximated by Fock states |n,A; n,B〉� for J ′ ≈ 0,
whereas it is well approximated by Fock states |p,+; 0,−〉� for
larger J ′.

Note that for J ′/U = 0.6, the symmetric variance, albeit
extremely small, is not strictly zero and even increases with
μ. The ground state is thus slightly contaminated by the |�−〉
states at finite J ′ due to the interacting part of the Hamiltonian
(1). Indeed only the latter is not diagonal in the |�±〉 basis
and couples states |p,+; q,−〉� with the same total number of
atoms p + q, p and q increments being by steps of 2. The
actual ground state thus reads

|g.s.〉l = α|p,+; 0,−〉� +
∑

q�p/2

αq|p−2q,+; 2q,−〉�. (4)

In the large J ′/U limit, α is of the order of unity, whereas the
other (small) coefficients are becoming smaller with increasing
q or J ′/U . Except for p = 0 and p = 1, n�

+ is always a bit less
than an integer and the symmetric variance is never strictly
zero, even if discrepancies go to 0 when increasing J ′/U .
This is clearly seen in Fig. 2(f) at J ′/U = 0.6 (dot-dashed
line) where the variance deviates from zero only for plateaus
with symmetric filling p � 2 (solid line). For small J ′/U

values, the ground state simply becomes |n,A; n,B〉�, such
that the coefficients αq are now given by (−1)q/(n − q)!q!
(up to a normalization factor). They reach a maximum for
q = n/2, leading to the same number of bosons in the |�±〉
states. This corresponds to an even-integer symmetric filling
p = 2n in Eq. (4). For odd filling p = 2n + 1, Eq. (4) is
not the ground state of the system when J ′ = 0. However,
increasing J ′ lowers the energy of the |�+〉 state, which
compensates for the additional energy cost for this extra
boson. State Eq. (4) with 2n + 1 bosons then becomes more
favorable in a given range of μ/U . The actual scenario is of
course less simple since at intermediate values of J ′/U , the
ground state does not correspond to a pure Fock state in any
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FIG. 2. (Color online) Phase diagram of Hubbard Hamiltonian (1) for J = 0. Left: on-site density n (a) and variance δn (c) as a function
of J ′/U and μ/U with their color codes. Plot (e) is a cut of (a) and (c) for J ′/U = 0.6. Right: same as left but for the symmetric density n+
and variance δn+. For large J ′/U , the on-site density depicts plateaus at half-integer fillings, corresponding to integer occupation numbers of
the symmetric states |�+〉. The bottom plots emphasize that the first plateau corresponds to the Fock state |1,+; 0,−〉�.

of the two bases. For instance, the Mott state at unit filling
reads

|M1〉 = c|2,+; 0,−〉 − s|0,+; 2−〉
= c − s

2
(|2,A; 0,B〉 + |0,A; 2,B〉)

+ c + s√
2

|1,A; 1,B〉,

with c2 = 1

2

[
1 + 4J ′√

(4J ′)2 + U 2

]
,

s2 = 1

2

[
1 − 4J ′√

(4J ′)2 + U 2

]
. (5)

In the limit J ′ � U , one recovers the usual Mott state
|1,A; 1,B〉, whereas in the limit J ′ � U , as explained above,
the Mott state is simply the symmetric state |2,+; 0,−〉.
Whereas the onsite density is independent of J ′/U , the
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difference between the symmetric and antisymmetric occu-
pation numbers is 2(c2 − s2) = 8J ′/

√
(4J ′)2 + U 2, ranging

from 0 for J ′ � U to 2 for J ′ � U . As explained in Sec.VI,
this feature can be inferred from the velocity distribution of
the atoms.

IV. COUPLED DIMERS

We now consider the (J ′/U,μ/U ) phase diagram obtained
in the |�+〉 states when J is nonzero. As seen in Figs. 3(a)
and 3(b), the situation is very much similar to the usual
MI-SF transition. One finds regions with constant symmet-
ric occupation numbers n+ and almost vanishing variance,
corresponding to a Mott state with vanishing compressibility
χ = ∂n/∂μ. These Mott lobes are surrounded by a superfluid
sea where χ is finite. For small J/U , the lower Mott plateaus
are still well visible, whereas the higher plateaus are almost
all smoothed out; see Fig. 3(c) where the variance of the
first two Mott phases is still small. Between the plateaus,
the variance has maxima revealing the superfluid phases. For
μ � U , n+ varies smoothly and the system is superfluid.
For larger values of J/U , the half-integer Mott lobes almost
entirely disappear except at very low values of J ′/U , see
Fig. 3(b). This is further exemplified by Fig. 3(d) where
both n+ and δn+ vary smoothly as μ is increased. The
evolution of the g(�)

p,q amplitudes when J increases at fixed
J ′ is similar to the MI-SF scenario in the usual Gutzwiller’s

ansatz. When J ′/U is large, g(�)
p,q = δpp0δq0 and the Mott

state is approximated by the Fock state |p0,+; 0,−〉�. At
the transition, the distribution g(�)

p,q starts broadening, but
only in the symmetric direction q = 0 and the physics takes
place entirely in the symmetric subspace. For instance, when
J ′ � J � U , the superfluid phase at density ρ is described
by the coherent state |√ρ〉+ ⊗ |0〉− with no bosons in the
antisymmetric subspace. For intermediate J ′/U , the Mott state
is slightly contaminated by antisymmetric contributions. The
MI-SF transition scenario remains, however, the same: the g(�)

p,q

still spread along the symmetric direction and keep a structure
similar to Eq. (4).

The phase diagrams in the (J/U,μ/U ) plane are shown in
Figs. 4–6 for three different values of J ′, namely, J ′/U = 0.1,
J ′/U = 0.5, and J ′/U = 1. As expected, the size of the
half-integer Mott plateau increases with increasing J ′, whereas
the size of the integer ones is decreasing. More precisely,
in the large J ′/U limit, the different Mott states are simply
|p,+; 0−〉, with a free energy given by E+

p = Up(p − 1)/4 −
(J ′ + μ)p. Therefore, along the J = 0 axis, the transition
between the p and p + 1 Mott phases occurs for μ = −J ′ +
pU/2, such that all Mott states have the same width U/2.
For an arbitrary value of J ′, the transition, along the J = 0
axis, between the different Mott phases is more complicated
to determine due to the nontrivial structure of the Mott states,
see Eq. (4). Nevertheless, in the case of the half-integer
Mott phase, one can simply obtain the J = 0 boundary:
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FIG. 3. (Color online) Phase diagram of Hubbard Hamiltonian (1). Left column: J/U = 0.015. Right column: J/U = 0.04. (a), (b):
occupation number n+ as a function of J ′/U and μ/U with the color code. (c), (d): n+ and δn+ as a function of μ/U for J ′/U = 0.6. For
J/U = 0.015, the first three Mott plateaus are clearly visible, whereas they are smoothed out for J/U = 0.04.
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FIG. 4. (Color online) Phase diagram in the (J/U,μ/U ) plane
for a fixed value of J ′/U = 0.1. For this small value of J ′, the
dominant Mott phases correspond to integer fillings, whereas the half-
integer Mott phase depicts a much smaller extension. For instance, the
n = 0.5 Mott lobe corresponds to −J ′ < μ < J ′, for J = 0, whereas
the tip of the lobe corresponds to J ≈ J ′/4.

−J ′ < μ < J ′ + U/2 −
√

U 2 + (4J ′)2/2. In particular, in the
limit J ′ � U , one obtains −J ′ < μ < J ′, in agreement with
Fig. 4. In addition, one can see that the half-integer Mott lobe
always corresponds to J values much lower than J ′, i.e., the
situation of weakly coupled dimers.

The preceding analysis shows that the half-integer Mott
lobes are observed in the regime J � J ′ � U and that for a
fixed value of J ′, the Mott-superfluid transition occurs for
values of the parameter J/U ≈ 10−2, similar to the usual
Mott-superfluid transition. In addition, deep inside the Mott
phase, the gap is expected to be of the order of J ′ or larger.
Therefore, for temperatures such that kBT � J , its impact
on the system properties is expected to be comparable to
the standard situation, and thus the half-integer Mott lobes
are within experimental reach. A full description of these
finite temperature effects can be obtained from the mean-field
excitations spectrum, i.e., the Bogoliubov modes, but this is
beyond the scope of the paper.

FIG. 5. (Color online) Phase diagram in the (J/U,μ/U ) plane
for a fixed value of J ′/U = 0.5. The half-integer Mott phases have a
larger extension, but still smaller than the integer ones.

FIG. 6. (Color online) Phase diagram in the (J/U,μ/U ) plane
for a fixed value of J ′/U = 1. As explained in the text, the situation
corresponds to weakly coupled dimers, such that the phase diagram
resembles the one of the square lattice: all Mott lobes have the same
width U (for J = 0), the transition from the Mott phase with p bosons
in the symmetric state, corresponding to a lattice filling p/2, to the
Mott phases with p + 1 bosons occurs for μ = −J ′ + pU/2. The tip
of the Mott lobe with p bosons in the symmetric state is given by
U/J

(p)
c4 = 4[2p + 1 + 2

√
p(p + 1)].

V. CRITICAL HOPPING AMPLITUDE

We obtain the MI-SF critical hopping rate Jc by monitoring
the tip of the two first Mott lobes, see Fig. 7. For integer filling,
the usual Bose-Hubbard model predicts U/J

(ρ)
cz = z[2ρ + 1 +

2
√

ρ(ρ + 1)], where the average density ρ is here an integer
and z is the lattice coordination number [22,23]. For small
J ′/U , we have z = 2 (almost independent 1D chains) and
the physics is driven by on-site Fock states, the main Mott
lobe being at ρ = n = 1. For imbalanced hopping parameters,
one gets (2J + J ′) = U/5.8 and thus Jc = J

(1)
c2 − J ′/2. This

prediction correctly reproduces our numerical results at small
J ′/U . In the large J ′/J limit, however, the physics takes place
in the symmetric subspace and z = 4 (dimer lattice). It is easy
to see from Eq. (1) that the effective hopping parameter in
the dimer lattice is J/2 giving rise to a noninteracting band
with finite width 4J independent of J ′, such that in the large
J ′/U limit, Jc for the Mott lobe at ρ = n+ = 1 (equivalently
n = 0.5) reaches the value J

(1)
c4 . In addition, for large J ′/U ,

Jc for the Mott lobe at n = 1 (n+ = 2) saturates, as it should,
at J

(2)
c4 (z = 4, ρ = n+ = 2).

As explained above, the half-integer Mott state is simply
|1,+; 0−〉, such that the boundary between the Mott and the
superfluid phase can be obtained analytically. More precisely,
close to the boundary, a first-order perturbation theory leads
to the following expression for the ground state (on a given
link �):

|ψ〉 = |1,+; 0−〉 +
∑

k

|k〉 〈k|V |1,+; 0−〉
E10 − Ek

, (6)

where |k〉 are the different states coupled to |1,+; 0−〉 by the
mean-field kinetic energy term

V = −2J (〈d+〉d†
+ + 〈d†

+〉d+ − 〈d−〉d†
− − 〈d†

−〉d−). (7)

The states coupled by V are therefore |1,+; 1−〉, |2,+; 0−〉
and |0,+; 0−〉, but the states |k〉 in Eq. (6) must be eigenstates

063615-5
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of the on-link Hamiltonian, such that the relevant states are

|0,+; 0−〉, |1,+; 1−〉,
|+〉 = c|2,+; 0−〉 − s|0,+; 2−〉, (8)

|−〉 = s|2,+; 0−〉 + c|0,+; 2−〉,
where c and s are defined in Eq. (5). |+〉 is nothing but the
n = 1 Mott state, an eigenstate of the on-link Hamiltonian. The
notation 〈d±〉 corresponds to the ground-state average value
λ± = 〈ψ |d±|ψ〉, which must be self-consistently obtained
using the ground-state expression given by Eq. (6) [14,23]. λ±
are precisely the mean-field order parameters, with vanishing
values in the Mott state, and nonzero values in the superfluid
phase. From the first-order perturbation expression (6), one
obtains that the boundary between the two phases is given by
the following equation:

1

4J
= 1

2

1

J ′ + μ
+ c2

J ′ − μ + E−
+ s2

J ′ − μ + E+
, (9)

where E± are the energies of the states |±〉, namely, E± =
U
2 ± 1

2

√
U 2 + (4J ′)2. For J → 0, the boundary corresponds

to either μ = −J ′ or μ = J ′ + E−, which are exactly the two
values given in the preceding section (since E+ > E−, the
boundary is given by the E− term). The critical value of Jc, i.e.,
the tip of the Mott lobe, is the largest J value on the boundary
and is thus given by the minimum value of the right-hand side
of Eq. (9), for −J ′ < μ < J ′ + E−. In the small J ′/U limit,
the critical value Jc for the half-integer Mott phase scales like
J ′/4, a value within experimental reach, see Ref. [10] where
J ′/J = 10 has been achieved. In the large J ′/U limit, one
obtains that Jc = J

(1)
c4 (1 − 1

8
U
J ′ ), in good agreement with our

numerical data for ρ = n+ = 1 (equivalently n = 0.5), see the
blue dashed line in Fig. 7. In principle, the boundary between
the superfluid and the Mott phase for higher fillings could
be obtained in a similar way, the final expressions are quite
involved, and therefore not put in this paper.

Jc4
1

U

Jc3
1

U

Jc2
1

U

Jc4
2

U

n 0.5,n 1

n 1,n 2

0.0 0.5 1.0 1.5 2.0
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0.04

0.06

0.08

0.10

J′ U

J c
U

FIG. 7. (Color online) Critical hopping Jc for the MI-SF transi-
tion as a function of J ′ (in units of U ). Red (blue) dots are numerical
data obtained with the extended Gutzwiller’s ansatz for the n = 1
(n = 0.5) Mott lobe. Continuous and long-dashed lines are analytical
predictions. The horizontal black dashed lines correspond to the
critical values J (1)

cz (z = 1,2,3). See text for details.

Finally, even though the present ansatz favors J ′ links over
J links, it is quite remarkable that our numerical results for
the Mott lobe at ρ = n = 1 cross the critical value J

(1)
c3 of the

balanced honeycomb lattice roughly when Jc = J ′. From that
point of view, the system undergoes a crossover from a quasi-
1D situation with two neighbors (weakly coupled chains) to
a 2D situation with four neighbors, the balanced honeycomb
lattice with three neighbors being the intermediate situation.

VI. EXPERIMENTAL SIGNATURES

The momentum distribution of the atoms, measured after
the optical lattice is rapidly switched off, is known to exhibit
a clear signature of the MI-SF transition [15,29]. One can
show that

nk ∝
∑
i,j

〈g.s.|c†i cj |g.s.〉 exp [ik · (Rj − Ri)], (10)

where Ri is the position of site i. Since the usual Gutzwiller’s
ansatz discards intersite correlations, only terms like 〈c†i ci〉
or 〈c†i 〉〈cj 〉 exp[ik · (Rj − Ri)] contribute to nk. Our extended
ansatz includes the additional terms 〈a†

�b�〉 exp(ik · d) which
give rise to a periodic modulation of the velocity distribution,
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FIG. 8. (Color online) Momentum distribution nk for J/U =
0.015, J ′/U = 0.6. (a) SF phase (μ/U = −0.14). (b) MI phase
(μ/U = −0.5). The hexagon is the first Brillouin zone with its
reciprocal lattice vectors (red dark arrows). The J ′ link d vector is
chosen along Ox. The periodic stripes (with period 2π/d shown by
the white arrow) are a signature of the quantum correlations between
the A and B sites along J ′ links. See text for details.
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a smoking-gun of a Mott phase built on a symmetric state. For
a pure Fock state |p,+; 0,−〉, nMI(k) = p[1 + cos (k · d)] and
the modulation contrast is C = 1. With the actual ground state
of Eq. (4), C � 1. In general, measuring the contrast C for
Mott states with n � 1 would reveal that they are not simple
Fock states with fixed on-site density but have an underlying
structure. For instance, C = J ′/

√
J ′2 + (U/4)2 for the Mott

state n = 1. For the superfluid state, a product of on-site co-
herent states, one finds nSF(k) = ρ0

∑
ij eik·(Rj −Ri ) (assuming

a uniform density ρ0), which depicts peaks at the reciprocal
lattice vectors modulated by the square of the structure factor
of the lattice. The additional on-link correlations thus show up
as an additional modulation on top of this ideal distribution. All
these properties are confirmed by our numerical calculations,
see Fig. 8, where both the superfluid [Fig. 8(a)] and the
Mott [Fig. 8(b)] phases display a periodic modulation along d
with period 2π/d (d = |d|). Note that besides the preceding
modulation, the effect of the structure factor in the superfluid
phase is clearly visible in the different peak heights.

VII. CONCLUSION

In conclusion, using an extended Gutzwiller’s ansatz, we
have described the properties of the MI-SF transition of
ultracold bosons in a honeycomb lattice. We have found
Mott phases at half-integer fillings, arising directly from the
interplay between quantum correlations and the topology of
the honeycomb lattice. Future work will address the excitations
of the system [30] as they can lead to additional experimental
signatures. Finally, it would be interesting to study the impact
of an external (non-Abelian) gauge field on the properties of
the ground state [31–33].
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[27] G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig,
Phys. Rev. B 80, 153412 (2009).

[28] M. Lewenstein et al., Adv. Phys. 56, 243 (2007).
[29] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
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