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Fragmentation of spin-orbit-coupled spinor Bose-Einstein condensates
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The fragmentation of spin-orbit-coupled spin-1 Bose gas with a weak interaction in external harmonic
trap is explored by both exact diagonalization and mean-field theory. This fragmentation tendency, which
originates from the total angular momentum conservation, is affected obviously by the spin-orbit-coupling
strength and the spin-dependent interaction. Strong spin-orbit interaction raises the inverse participation ratio,
which describes the number of significantly occupied single-particle states. As the spin-dependent interaction
changes from antiferromagnetic to ferromagnetic, the peak values in the inverse participation ratio become lower.
Without the confinement of the appointed total angular momentum, the condensate chooses a zero or finite
total angular momentum ground state, which is determined by both the interaction and the spin-orbit-coupling

strength.
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I. INTRODUCTION

Since the experimental realization of the artificial external
Abelian or non-Abelian gauge potentials coupled to neutral
cold atoms, the spin-orbit-coupling phenomena have attracted
extensive explorations [1-12], such as the studies on topics
of spin Hall effects [13], Majorana fermions [14-16], etc. In
the presence of the magnetic field, the quantum Hall phases
which occur in the vicinity of the degeneracy point were also
studied [17]. Due to the presence of the spin-orbit-coupling
mechanism, the energy spectrum changes dramatically. The
single-particle energy minimum has finite momentum and
the ground states are circularly degenerate, in which case
the ground state of the condensate favors mainly “stripe” or
“plane wave” phase [18-20]. As pointed out in Refs. [21-23],
the two states locating at two opposite ends of the degenerate
circle are free of exchange interactions, and the fragmented and
coherent condensates in terms of this two states can be defined
accordingly [21]; the ground state involved a fragmented
condensate with respect to the two states in finite systems. With
the interplay of the spin-orbit coupling and harmonic traps, the
energy spectrum is very similar to the well-known Landau
levels [24]. Half-vortex state or skyrmion lattice patterns
emerge in the case of weakly interacting bosons.

To explore the formation and properties of vortices in an
atomic boson system, the nonvanishing angular momentum
states of weakly interacting Bose gase in harmonic trap have
attracted considerable attention [25-29]. In Ref [29], Liu et al.
studied the ground state for a weakly interacting, harmonically
trapped N-boson system and found that the ground state
is generally a fragmented condensate because of the orbital
angular momentum conservation. For the scalar Bose gas,
fragmented states have been explored in Refs. [26,30-34].
Fragmented condensate also exists in a spin-1 Bose gas in
uniform magnetic fields, which would be turned into a single
condensate by magnetic field gradients [35].

As the spin-orbit-coupling mechanism modifies the energy
spectrum significantly (as shown in Fig. 1), what is the
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nonvanishing angular momentum state structure of the spin-
orbit-coupled spinor Bose gas in harmonic traps with a
weak interaction? How does the variation of the spin-orbit-
coupling strength affect the quantum state structure? And what
are the roles of the spin-dependent interaction parameters?
As far as we know, these issues have not been addressed
elsewhere.

In the present work, we explore the spin-orbit-coupled
spin-1 Bose gas with a weak interaction in the presence of the
external harmonic trap. The fragmented condensate also arises
at certain total angular momentums. As the spin-orbit-coupling
strength increases, this fragmentation tendency becomes more
obvious. The spin-dependent interaction plays important roles
in the particle distribution among the single-particle states
with respect to the total angular momentum. When the
interaction varies from antiferromagnetic to ferromagnetic,
the fragmentation increasingly is suppressed. Thus the frag-
mentation is more favorable in antiferromagnetic Bose gas
than in ferromagnetic one. In addition, the ground state of
the Bose gas is found to be with zero or finite total angular
momentum.

The rest of the paper is organized as follows. In Sec. II, the
theoretical model is given, including the single-particle states
and the second quantization form of the total Hamiltonian.
Section III is composed of the numerical results, including the
roles of the spin-orbit-coupling strength and spin-dependent
interactions. Section IV focuses on the ground state of
the condensate without the restriction of appointed angu-
lar momentum. Finally, the conclusions are summarized in
Sec. V.

II. ENERGY SPECTRUM

In general, the constituent atoms in ultracold atomic gas
have internal degrees of freedom originating from the spin.
For atoms confined in an isotropic disk harmonic trap, the
wave function for the z direction is frozen into the ground state
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FIG. 1. (Color online) The single-particle energy spectrum with
total angular momentum quantum number m > 0 for spin-orbit-
coupled spin-1 bosons (the radial quantum numbers are n = 0 for
blue levels (bottom curve) and n = 1 for red levels [upper curve]).
As the spin-orbit-coupling strength « increases, the levels decrease
to resemble the well-known Landau level spectrum structure.

fx) = exp(—zz/zaf)/rr'/“azl/2 (a; = ~/A/M 0., M, and w,
are the atom mass and the confinement frequency in z direction,
respectively) if the interaction energy is sufficiently small
compared to the energy spacing in the z direction, i.e., hw,.
Thus, it is reasonable to consider the two-dimensional (2D)
isotropic harmonic trap. We consider a three-component Bose
gas trapped in the 2D harmonic trap V = M,w*(x* + y*)/2 in
the presence of the Rashba spin-orbit-coupling effect: Vgp =
v (PxSx + PySy), where w is the confinement frequency in
the xy plane, y represents the strength of the spin-orbit
coupling, and py ,, Sy, are the momentum operator and
the spin-1 representation of Pauli matrices, respectively. The
model Hamiltonian in the second quantization form is given
by A = Hy + Hiy [36,37], where

A2
Ay = /dr\w [;’_M + ¥ (PuSe + PySy) + V} v, (1)

~ (&) 1 (&%)
A= [ dr[Sululvava + SulvlSn - Savinn].

2

W = (Y, 0,%_1)T (the superscript T stands for the trans-
pose) denotes collectively the spinor Bose field operators,
and S = (S,,5,,5,). In I:Iim, the Einstein summation con-
vention is used (a,a’ = 1,0,—1). The spin-independent and
spin-dependent interactions are denoted as ¢y = 4w h*(ag +
2a,)/3M, and ¢, = 4w h*(ay — ap)/3M,, where ay and a»
are the s-wave scattering lengths corresponding to the total
spin of the two colliding bosons 0 and 2, respectively. The
spin-orbit-coupling parameter y is experimentally related to
the wavelength of the laser beams and exact experimental
setups. As proposed in Ref. [8], y = 2w hsin(0/2)/x, where
6 and A are the angle between two Raman beams and the
wavelength of the laser, respectively. In Ref. [38], the tetrapod
setup used to generate the Rashba spin-orbit-coupled BEC

requires y = V2 h/A

A. Single-particle energy spectrum

In the single-particle Hamiltonian, the spin-orbit-coupling
term reshapes the energy spectrum of the 2D harmonic oscilla-
tor, and levels that are similar to the well-known Landau levels
appear for sufficiently large spin-orbit-coupling strength [24].
For the 2D harmonic oscillator Hamiltonian Hyam = ( ﬁ)zc +
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ﬁi)/ZMa + M,w*(x* + y?), the circular operators dg o can be
introduced to manipulate the eigenstates and eigenvalues more
conveniently. These circular operators are dg = (4, — idy)
and a, = (4, +1ia,), where 4, = (Mywx +ipy)/~/2M,hew
and a, = (M,wy +ip,)/+/2M,hw are destruction operators
in the Ox and Oy directions, respectively. Thus, the 2D
harmonic oscillator Hamiltonian can be written as Hyam =
(&;&d + &Z,&g + 1)iw. The corresponding eigenstates are [39]

L aa
= ——— @)@}y lgoo), 3)
Vnalng!
where |@gg) is the ground state of the two-dimensional har-
monic oscillator. In the polar coordinates (p,¢), the eigenstates
are

|Xl’ld,ng>

an(,O JP) = an(P)eimw, (4)
an(p) =
(=" /ﬂm”—jm)!e‘pz/anm(,oz)pm (L™ is the associated

Laguerre polynomials).
The general wave function can be expanded in terms of the
eigenfunctions: | x, i)

) =D Cugny 1 Xngn,)- )

ng,ng

where n =ng, m=ng —ng, and

where C, g is the coefficients of the expansion. For a state
with certain angular momentum (quantum number m), it is
only necessary to restrict the summation over ny and n, with
ng —ng =m.

Because of the 2D isotropic harmonic potential, the single-
particle wave function corresponding to the single-particle
Hamiltonian Hy may have a well-defined azimuthal angular
momentum. In fact, the Hamiltonian has rotational symmetries
along the z axial direction and the total angular momentum
J.,=L,+ S, (L, and S, are the orbital and spin angular
momentum, respectively) corresponds to a good quantum
number. In polar coordinates (p,¢), the eigenfunctions of the
single-particle Hamiltonian Hj can be written in the following
form:

Vs ¢+(/0)ei("n_])¢
=1V |=| ¢olp)e™ | (6)
(/= ¢7(p)ei(m+l)¢

In the energy-spectrum-seeking process, we restrict our-
selves to m > 0 because the eigenstates with m < 0 can be
obtained by using the time reversal symmetry. For particles
with spin, the time reversal operator is

® = ne "MK, (7)

where 1 and §y are an arbitrary phase factor (can be
conveniently chosen to be 1) and the y component of the
spin operator, respectively. Here, K stands for the complex
conjugate operator. In the base kets composed of the S,
eigenkets, the time reversal matrix reads

0 0 1
oe=|o -1 olk. (8)
1 0 0

063613-2



FRAGMENTATION OF SPIN-ORBIT-COUPLED SPINOR ...

By using the expansion in Eq. (5), we obtain

W) =Y A [Xngmy)s (a—ng=m—1), (9

na,ng

Vo) = D B Xnm)> (na—ng=m),  (10)

Na,ng

W)=Y CunXngmy)s (g —ng=m+1), (11)

na.ng

where A, .., By, and Cy,,, are the corresponding coeffi-
cients of the expansions.

In terms of the circular operators dg ., the single-particle
Hamiltonian I:IO reads

K

Ay = (a)aq + ala, + 1)1 + ﬁ/\/l, (12)
where [ is the identity matrix and
0 iah — ag) 0
M= | —i@, —a) 0 @ —an| a3
0 —i(a, —a)) 0

The units of the time, length, and energy are 1/w, a; =
Vh/M,w, and ho, respectively. The dimensionless spin-orbit-
coupling strength x« = y/+/hw/M,. In the wave-function
basis expanded by |xy,.x, ), the single-particle Hamiltonian in
Eq. (12) is diagonalized to find out the energy spectrum. The
single-particle spectrum is shown in Fig. 1. It is shown that
the spacing between energy levels with the same quantum
number n gets smaller as the spin-orbit-coupling strength
increases and the levels decrease to resemble the well-known
Landau levels spectrum structure.

B. Weakly interacting bosons

For a weakly interacting N-boson system, only the lowest
Landau levels are occupied as long as coN < hw. Thus, the
field operator can be expanded as ¥ = ) W,,a,,, where W,,
is the single-particle states with » = 0, and &,, is the corre-
sponding annihilation operator. The many-body Hamiltonian
can be rewritten in the second quantization form as

A =" €udlan+ Y Wi + Vipaldlaa, — (14)
m ijk,l

where

1 YIS,
o = 300 Y [ ar(w}) () () y). 19
p-q

1 i\ k i\ k
Vo = 30 32 [ dr(v})" (5)'Syr S (0) (). 16

p.q.r.s

and ¢, is the single-particle energy corresponding to W,,,.

In Ujji; and Vi, the summation subscript parameters have
values p,q,r,s = +,0,— and dp, = co,z/m%aihw. The
many-body Hamiltonian can be solved numerically by using
exact diagonalization in the Fock space. The numerical results
from the exact diagonalization are also confirmed within the
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mean-field frame. In the mean-field frame, the operators a,, are
replaced by complex numbers, and the mean-field energy is
minimized under constrains of total particle number N and/or
total angular momentum J, [14].

III. FRAGMENTED STATE

A. Fragmented condensates preserved by total angular
momentum conservation

In the following, we consider implicitly the Fock space
spanned by states |ng,np, ...,n;) with total particle number
N = Z];:o n; and total angular momentum J, = Zl;:() jn;
unless specified otherwise. Here, n; denotes the occupation
of the single-particle state W,,. In the calculation process, the
convergence of the numerical results is required to ensure the
numerical accuracy.

As explained in Ref. [29], the one-body density matrix can
be written as

i = (W s.lala; |y 1), (17)

where [Wy ;) is the ground state of N-boson system with total
angular momentum J,. Because of the conservation of the total
angular momentum, the one-body density matrix is diagonal,
i.e., n;; = n;8;;, indicating the eigenvalues are the occupation
numbers of the single-particle states. The corresponding
fluctuation of the occupation numberis An; = (n?) — (nj)2.
In Fig. 2, we plot the particle number distribution among the
single-particle states and the fluctuations of the occupation
numbers with respect to the total angular momentum J,. As the
total angular momentum increases, the particles choose single-
particle states with higher characteristic angular momentum.
The particle number distribution n; with respect to the total
angular momentum J, is generally characterized by two peaks.
Take ng, for example: The second peak locates at J,/N = 1.6,
indicating simultaneous particle occupations among single-
particle states with j =0, j = 1, and j = 2.

The number of significantly occupied single-particle states
can be described qualitatively by the inverse participation ratio
1/1c, where Ic = Zj (n_,/N)z. To show that the existence of
the fragmented condensation does not depend on the particle
number, we plot the inverse participation ratio with respect to
the total particle number N. As shown in Fig. 3, the overall
profiles of the inverse participation ratio resemble each other,

40 y 60 80 100 20 40 7 60 80

FIG. 2. (Color online) Particle number distribution among the
single-particle states denoted by j with respect to the total angular
momentum J, (a), and the corresponding particle number fluctuations
Anj (b). The spin-orbit-coupling strength and the total particle
number are k = 4 and N = 30, respectively.
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FIG. 3. (Color online) The inverse participation ratio for a system
of N =10 (a), N = 20 (b), and N = 30 (c), showing the fragmenta-
tion of the N-boson system is an universal characteristic regardless
of the particle number. The spin-orbit coupling strength is x = 6.

exhibiting roughly periodical profiles. The peak value of the
inverse participation ratio increases as the particle number gets
larger. The global minima (~1) appears at J,/N = 0,1,2,3,
a signature of a single condensate. All the peak values are
larger than 2, indicating the fragmented characteristic of the
corresponding ground state.

As found in scalar Bose gas [29,35], the fragmented ground
state can be transformed into a single condensate in response
to an arbitrarily weak asymmetric perturbation. For the scalar
Bose gas, the fragmented state has the same energy as that
of the single condensate state in the limit of of N — oo.
In the spin-orbit-coupled Bose gas, similar phenomenon is
observed. The interaction energy for boson systems with
N = 10,20,30,40 are plotted in Fig. 4. As the total particle
number N increases, the interaction energy becomes closer
to the mean-field interaction energy [40], indicating that the
fragmented state inclines to break into a single condensate
state.
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FIG. 4. (Color online) The interaction energy with respect to
the total angular momentum for Bose gas with N = 20,40,60,
respectively. For comparison, the interaction energy predicted by
the mean-field theory is given (black solid line). As the total particle
number N increases, the interaction energy becomes closer to the
mean-field interaction energy.
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FIG. 5. (Color online) The inverse participation ratio, which in-
dicates qualitatively the number of significantly occupied single-
particle states with spin-orbit-coupling strength x =2 and « =4,
respectively. For stronger spin-orbit coupling, the value of the inverse
participation ratio and its oscillation is larger.

B. Effects of the spin-orbit coupling strength and
spin-dependent interactions

As shown in Sec. 11, the increase of the spin-orbit-coupling
strength changes the energy spectrum evidently. In this
section, the effect of the spin-orbit-coupling strength on the
particle number distribution and the inverse participation
ratio is analyzed. The variation of the spin-orbit-coupling
strength influences the particle distribution. Figure 5 shows
the approximately periodical inverse participation ratio for
k = 2 and « = 4. For spin-orbit-coupling strength x = 2, the
value of 1/Ic is generally smaller than that when « = 4.
The oscillation amplitude becomes relatively larger when the
spin-orbit-coupling strength is stronger. It can be interpreted
that fragmented ground condensates are more favorable for
higher angular momentums with strong spin-orbit coupling.
This should be explained by resorting to the single-particle
energy spectrum. As the spin-orbit-coupling strength gets
stronger, the energy levels tend to resemble the well-known
Landau levels, and the spacing between energy levels with
the same quantum number n gets smaller. Thus for the
same interaction strength, it is easier for particles to populate
into higher m single-particle states, resulting in the higher
fragmentation of the bosons.

The spin-dependent interaction determines the ground-
state phase of the Bose gas. For 8’Rb Bose gas, the spin-
dependent interaction term is negative; thus the ground state
is ferromagnetic. For 2>Na Bose gas, however, the ground
state is antiferromagnetic. The variation of the spin-dependent
interaction affects the particle number distribution and further
the inverse participation ratio, changing the fragmentation
characteristic of the Bose gas.

In Fig. 6(a), the second peak value of ny becomes lower
as the spin-dependent interaction decreases. At the same time,
the slope of the ny with respect to the total angular momentum
J, gets larger in the range of J,/N < 1. This means that the
particle redistributes toward the center value of the angular
momentum J, from both ends. As d,/dy reaches 0.6 the
second peak in ng nearly disappears. This particle number
distribution can also reflected by the inverse participation ratio.
As shown in Fig. 6(b), all the three peak values decrease as
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FIG. 6. (Color online) The particle number of the single-particle
state with j = 0 and the inverse participation ratio. The total particle
number is N = 30. As the Bose gas renders from antiferromagnetic
to ferromagnetic, the inverse participation ratio inclines to be
suppressed.

the spin-dependent interaction changes in the process from
antiferromagnetic to ferromagnetic. Thus, we conclude that
the fragmented state is more evident in antiferromagnetic Bose
gas than that in ferromagnetic one.

IV. GROUND STATE WITH ZERO OR FRACTIONAL
TOTAL ANGULAR MOMENTUM

Similar to the results in Ref. [29], the fragmented state
and its corresponding single condensate state have the same
energies in the limit of N — oo as shown in Fig. 4. Thus,
even a perturbation of order O(1/N) can be strong enough
to take the fragmented state into a single condensate state.
Consequently, it is reasonable to expect a single condensate
ground state. To find the single condensate ground state of
the Hamiltonian H = ﬁo + I-AIim without the confinement of
specified angular momentum, the single-particle states with
both m > 0 and m < 0 have to be considered simultaneously.
As found in Ref. [24], the ground state chooses a spontaneous
total angular momentum with J, = +1/2 or J, = 0, which is
determined by the interaction parameter. For the spin-orbit-
coupled spin-1 Bose gas, the ground state is found with zero
total angular momentum J, when the spin-orbit coupling is
weak with an interaction range from Nd, = 0-0.6 (the spin-
dependent interaction is specified as a hundredth of the spin-
independent interaction, which is consistent with experimental
parameters). In the strong spin-orbit-coupling limit, however,
either zero or finite total angular momentum ground state is
found, which is determined by the interaction strength.

In Fig. 7, the ground-state density distributions with x = 4,
Ndy = 0.15 are given [41]. It is numerically found that this
ground-state configuration is not sensitive to the relatively
weak interaction. The density profiles are nearly the same
for the case of Ndy = 0.3, and both of them carry a zero
total angular momentum J,/N = 0. In fact, the single-particle
state with j = 0 is mainly occupied due to considerable
energy spacings between levels with j = 0,£1,... within
the interaction range Ndy = 0-0.6 and the probability distri-
bution among single-particle states is symmetric. For strong
spin-orbit coupling, there is only the single-particle state
with j = 0 occupied when the interaction is absent. As the
interaction comes into presence and gets stronger, however, the
probability distribution among single-particle states becomes
asymmetric and the ground state carries J,/N = 1/3 angular

=1 0 1 0 174 0 1
FIG. 7. (Color online) The density profile of components with
magnetic quantum number mp =1 (a), mp =0 (b), and mp =
—1 (c). The interaction parameter is dy = 0.005. The total particle
number and the spin-orbit-coupling strength are N = 30 and k = 4,
respectively. The total angular momentum is J,/N = 0.

momentum. The density profile of the ground state with
Ndy = 0.15 is shown in Figs. 8(a)-8(c), which carries a
finite angular momentum. As the interaction strength increase
further, hexagonal lattice ground state carrying zero angular
momentum is observed as shown in Figs. 8(d)-8(f).

In this paragraph, we present the experimental relevance,
taking 8’Rb and 2*Na for example. The two dimensionality
of the present system can be routinely realized by imposing
a strong harmonic confinement with @, > w. The interaction
parameters can be generally tuned by varying the atom species,
trapping frequencies. Referring to that in Refs. [36,42],
the spin-independent and spin-dependent parameters read
dy = 0.0647, d, = —0.0006 for ®’Rb gas and dy = 0.0155,
d, = 0.0006 for 2*Na gas if 0, = 600 x 27 and @ = 20 x 27
are set experimentally. Considering the experimental setups
in Refs. [1,8], the dimensionless spin-orbit-coupling strength
parameter k = y/ho/M, = %sin(@/Z)/./hw/Ma. To

obtain dimensionless spin-orbit-coupling strength values

—_
(=1
—
'
—_

-1 0 1 0 1k 0 1

FIG. 8. (Color online) The density profile of components with
magnetic quantum number m = 1 for panels (a) and (d), m = 0 for
panels (b) and (e), and m = —1 for panels (c) and (f). The interaction
parameter is do = 0.005 for panels (a)-(c) and dy = 0.01 for
panels (d)—(f). The total particle number and the spin-orbit-coupling
strength are N = 30 and k = 12, respectively. For panels (a)—(c), the
total angular momentumis J,/N = 1/3 anditis J,/N = O for panels

(d)-(D).
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k = 2,4,12 for Raman beams with wavelength A = 800 nm,
the angle 6 between two Raman beams should be chosen as
0 = 6.23°,12.47°,38.03° for 2Na gas. Because the atomic
mass is different for 3’Rb, the corresponding angle @ is chosen
as 0 = 9.32°,18.71°,58.37°.

V. CONCLUSIONS

We mainly explore spin-orbit-coupled spin-1 Bose gas
with a weak interaction in external harmonic trap by the
exact diagonalization and mean-field theory. The inverse
participation ratio shows the appearance of the fragmented
condensate state. The particle number distribution among
the single-particle states is affected evidently by the spin-
orbit-coupling strength and the spin-dependent interaction.
Large spin-orbit-coupling strength raises the peaks of the

PHYSICAL REVIEW A 89, 063613 (2014)

inverse participation ratio line, manifesting the fragmented
condensate signature. Similar to the scalar Bose gas, the
interaction energy of the fragmented state approaches to the
mean-field interaction energy of the single condensate state as
the total particle number N — oco. Without the confinement
of the specified angular momentum, the ground state favors
a zero (J;/N =0) or finite (J,/N = £1/3) total angular
momentum, which is determined by both the interaction and
the spin-orbit-coupling strength.
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