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Escape dynamics of a Bose-Hubbard dimer out of a trap
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We consider a potential scattering of a Bose-Hubbard dimer in a one-dimensional optical lattice. A numerical
approach based on an effective non-Hermitian Hamiltonian has been developed for solving the scattering problem.
It allows us to compute the tunneling and dissociation probabilities for an arbitrary shape of the potential barrier
and an arbitrary kinetic energy of the dimer. The developed approach has been used to address the problem of
two-particle decay out of a trap. In particular, it is shown that the presence of dissociation channels significantly
decreases the nonescape probability due to single-particle escape to those channels.
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I. INTRODUCTION

In the recent decades we have seen tremendous progress
in experimental techniques for handling ultracold atoms and
molecules in optical lattices [1,2]. Optical lattices provide
experimental setups which allow us to confine nanoscale
objects in one or two dimensions, leading to revival of interest
in low-dimensional quantum mechanics [3,4]. Alongside, one
of the most remarkable achievements of the recent years
is an unprecedented opportunity to manipulate just a few
quantum objects [5–7], which creates a playground for few-
body quantum theories. Among the many interesting few-body
phenomena that could be observed in optical lattices, we
mention fractional Bloch oscillations [8,9], interband Klein
tunneling [10], confinement-induced resonances in quasi-one-
dimensional scattering [11], bound states in continuum [12],
etc.

In this work we consider the tunneling of interacting
Bose atoms out of a specially engineered trap [13–26]. If
the interaction is weak, the mean-field approach remains
a major theoretical tool to address decay and tunneling
phenomena [13–17]. Fewer attempts, however, were made
to go beyond the mean-field approximation utilizing Bose-
Fermi duality [18–20], the master equation approach [21],
the multiconfiguration time-dependant Hartree method [22],
or the time-evolving block decimation numerical technique
[23]. A recent experiment [7] demonstrated an encouraging
opportunity to observe tunneling behavior in a system of just a
few atoms. In particular, it was reported that the tunneling rates
deviate from predictions of the uncorrelated single-particle
approximation, indicating the presence of pair correlations
in the system. That observation was qualitatively explained in
Ref. [25] through a quasiparticle wave-function approach. The
limiting case of only two particles was considered in Ref. [24],
where the authors analyzed two-particle decay with Coulomb
interactions, and in Ref. [26], where the authors introduced
a spectral approach to tunneling decay of two interacting
bosons in a lattice. The key idea of the latter paper was the
exact diagonalization of a two-particle Hamiltonian with an
asymmetric double-well potential, with the larger well playing
the role of a quasicontinuum.

In the present work we develop the above idea further by
considering the true continuum (i.e., the size of the second
well is assumed to be infinite). We formulate the problem in

terms of an effective non-Hermitian Hamiltonian. The idea of
effective non-Hermitian Hamiltonians [27,28] is mathemat-
ically equivalent to imposing open boundary conditions far
from the scattering center. The formalism of the effective
non-Hermitian Hamiltonian has proved useful to describe
scattering and tunneling phenomena in various branches
of physics, including quantum billiards [29], tight-binding
chains [30], potential scattering [31], the Bose-Hubbard model
[32,33], and photonic crystals [34]. Quite recently the method
was generalized for time-periodic potentials [35]. We adopt
the method of the effective non-Hermitian Hamiltonian to the
problem of two-particle escape and show that it evaluates the
decay law to a high accuracy.

Our model system consists of two interacting bosons in
a lattice which are initially captured between an infinitely
high wall and a potential barrier. It is known [36–38] that
two bosonic particles in a lattice can form a bound pair
(dimer) that was observed in the fundamental experiment
by Winkler et al. [39] in 2006. The dimer can freely move
across the lattice with a well-defined group velocity. If the
dimer hits a potential barrier or a well it can be reflected,
tunnel through the barrier as the whole, or dissociate into two
independent bosons [40]. In the latter case, to satisfy energy
conservation, one of the bosons stays in the potential well
(the case of attractively interacting bosons) or at the potential
barrier (repulsive interactions). In the above-cited paper [40],
the tunneling and dissociation probabilities were found by
simulating wave-packet dynamics of the dimer (see also
Ref. [41] for analogous work on fermionic systems). These
numerical simulations become more and more time consuming
when the dimer kinetic energy approaches the bottom or top of
the energy band, due to decrease of the group velocity. For this
reason the analysis of Ref. [40] was restricted to the middle of
the energy band. In Sec. II of the present work we formulate
the problem of dimer tunneling as a stationary scattering
problem. This allows us to find the tunneling and dissociation
probabilities for arbitrary quasimomentum of the incoming
dimer and, importantly, with essentially less numerical effort
than for the wave-packet simulations. These results provide the
basis for studying the more complicated problem of tunneling
out of a trap (Sec. III). We show that the two-particle decay is
generally nonexponential and strongly dependent on details of
the initial state of the dimer, which one might naively consider
as unimportant.
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II. S-MATRIX THEORY

To be specific, we consider a system of two attractively
interacting bosons which are loaded into a one-dimensional
(1D) lattice containing a potential well. The dynamics is
controlled by the Bose-Hubbard Hamiltonian

Ĥ = −J

2

∞∑
m=−∞

(̂b†m+1b̂m + b̂
†
m−1b̂m)

+
∞∑

m=−∞
vmn̂m + U

2

∞∑
m=−∞

n̂m (̂nm − 1), (1)

where b̂
†
m and b̂m are standard bosonic creation and annihilation

operators, n̂m = b̂
†
mb̂m is the number operator, J is the hopping

matrix element, U is the interaction constant (U < 0), and the
on-site potential vm describes a localized well.

A. Scattering channels

We start by rewriting the eigenvalue problem for the two-
particle Bose-Hubbard Hamiltonian (1) in the form of a two-
dimensional (2D) Schödinger equation,

− J

2
(�m+1,n + �m−1,n + �m,n+1 + �m,n−1)

+ (vm + vn)�n,m + Uδm
n �n,m = E�n,m, (2)

where m,n are the coordinates of the particles. The wave
function �n,m ≡ �(n,m) is symmetric with respect to per-
mutation of the particle coordinates, i.e., �(n,m) = �(m,n).
To formulate the scattering problem we need to know the
asymptotic solutions of the Schödinger equation (2). For
vanishing scattering potential, the energy spectrum of the
bound pair is given by the following equation [36–38]:

E = −2J cos(K/2)

√
1 +

(
U

2J cos(K/2)

)2

. (3)

It corresponds to the traveling wave solution of Eq. (2),

�(±)(m,n) =
√

sinh(λ)

J sin(K/2)
e±iK(m+n−N)/2−λ|m−n|, (4)

where λ is defined through

2J sinh (λ) cos (K/2) = −U,

and K is the quasimomentum in the center-of-mass reference
frame. Notice that the solution (4) is normalized to a unit-
probability current. In what follows we set U = −2 and J = 1
to ensure that the dimer propagation band does not overlap with
the scattering continuum of unbound two-particle solutions.
The dispersion law (3) is shown in Fig. 1 along with the shaded
area of the scattering continuum.

Next we introduce dissociation channels. Let us assume that
the potential vm ≡ v(m) supports a number of localized single-
particle states with the energies Eb below the single-particle
propagation band, Eb < −J . We require that all bound states
be localized within the domain [−N,N ]. Obviously, one can
always choose N large enough to fulfill the above requirement.
Denoting the localized states by ψb, the wave function of the
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K

E

FIG. 1. (Color online) Dispersion of the bound pair (red line) and
scattering continuum (blue-shaded area). Parameters are J = 1 and
U = −2. Through the paper we use dimensionless quantities where
the energy and the parameters of the Bose-Hubbard Hamiltonian
are measured in units of the hopping energy (thus J = 1) and the
quasimomentum in units of the inverse lattice period.

dissociation channel with one of the particles far away from
the scatterer can be written as

�
(b)
L,R(m,n) = e±ikbN

√
2J | sin(kb)| [ψb(n)e∓ikbm�(∓m − N )

+ψb(m)e∓ikbn�(∓n − N )], (5)

where the indices L (R) denote the waves traveling to the
left (right) from the scattering region, �(n) is the Heaviside
function

�(n) =
{

0 if n � 0
1 if n > 0,

(6)

and the wave number kb is found from the dispersion relation

E = Eb − J cos(kb), (7)

where E is the dimer energy (3). Notice that kb found from
Eq. (7) is not always real. If kb is not real, Eq. (5) should be
interpreted as an evanescent wave which decays exponentially
away from the scattering center. Thus, the number of the
dissociation channels, which we label by the index b, varies
with the energy E of the scattered dimer.

B. Matching asymptotic solutions

In the presence of the scattering potential, the dimer
reflection and transmission channels are obviously given by
Eq. (4) multiplied by the Heaviside function:

�L,R = �(∓)(m,n)[1 − �(N ± n)�(N ± m)]. (8)

Now let us assume that the incident wave is superposition of
incoming two-particle states:

�in = aL�∗
L + aR�∗

R +
Nb∑
b=1

a
(b)
L

(
�

(b)
L

)∗ +
Nb∑
b=1

a
(b)
R

(
�

(b)
R

)∗
.

(9)

Notice that the above equation contains waves incident through
dissociation channels. It could be physically interpreted as a
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collision between a single boson with another boson already
captured in the scattering center. The solution of the scattering
problem can be presented in the following form

� = �in + cL�L + cR�R +
Nb∑
b=1

c
(b)
L �

(b)
L

+
Nb∑
b=1

c
(b)
R �

(b)
R +

N∑
p,q=−N

χp,qφp,q, (10)

where φp,q = φp,q(n,m) is a complete set of basis functions
in the box −N � n, m � N . In this work we shall use the
number states as the basis, i.e.,

φp,q(n,m) = δp
mδq

n . (11)

Notice that within the box −N � n, m � N , Eq. (10) includes
all possible degrees of freedom whose contributions come with
yet-unknown coefficients χp,q . Outside the box the solution is
expanded over all possible scattering channels. The key idea
of our approach is to use the exact representation of the Bose-
Hubbard Hamiltonian within the box, where the scattering
occurs, while outside the box the solution is projected onto the
channel functions (5), (8), and (9).

Let us use the symbol φj for the j th function from
a set (φp,q,�L,R,�

(b)
L,R). To be more specific, in this set

we have (2N + 1)2 functions φp,q accounting for dynamics
within the scattering region, two-dimer channel functions, and
2Nb functions for the dissociation channels. Since the wave
function � satisfies the stationary Schrödinger equation

(Ĥ − E)� = 0, (12)

the evaluation of the scalar products 〈φj |(Ĥ − E)|�〉 = 0
yields a set of (2N + 1)2 + 2(Nb + 1) linear equations for
the variables χp,q, cL, cR, c

(b)
L , c

(b)
R . Assuming for a moment

that the well supports only one single-particle bound state,
after some elementary but tedious algebra one finds a matrix
equation of the following form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ĥ0 − E WL WR VL VR

W
†
L P 0 0 0

W
†
R 0 P 0 0

V
†
L 0 0 Q1 0

V
†
R 0 0 0 Q1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|χ〉
cL

cR

c
(1)
L

c
(1)
R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−�

−GaL

−GaR

−Q1a
(1)
L

−Q1a
(1)
R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (13)

Here, Ĥ0 is the sub-block describing the couplings among the
interior degrees of freedom and |χ〉 is a vector of coefficients
χp,q . It is easily seen that Ĥ0 is nothing but the Bose-Hubbard
Hamiltonian (1) in the matrix form (2). The source term � is
given by

� =
∑

C=L,R

W ∗
CaC +

∑
C=L,R

V ∗
1,Ca

(1)
C . (14)

The coupling between the interior degrees of freedom and
the dimer reflection (transmission) channel is accounted for
by (2N + 1)2 × 1 matrices WL and WR . The only nonzero
elements of WL and WR are given by

(WL,R)m,n = −eiK/2

2

√
J sinh(λ)

sin(K/2)

(
δ∓N
m eiKn/2−λ|∓n−(N+1)|

+ δ∓N
n eiKm/2−λ|∓m−(N+1)|). (15)

The scalars P and G are found as

P = e−iK/2

2 sin(K/2)
, G = sinh(λ)e−iK/2

sin(K/2)

e−iKN

eλ − eiK−λ
. (16)

Coupling to the left (right) dissociation channel is described
by the (2N + 1)2 × 1 matrix VL (VR). The nonzero elements
of VL and VR are

(VL,R)m,n = −1

2

√
J

2 sin(kb)
eik

[
ψb(n)δm

∓N + ψb(m)δn
∓N

]
,

(17)

while Qb is given by

Qb = e−ikb

2 sin(kb)
. (18)

In case the system allows many dissociation channels, Eq. (13)
should be complemented with additional rows and columns
whose elements are evaluated according to Eqs. (17) and (18)
for each localized single-particle bound state available for
occupation. Thus, in general, c

(1)
L and c

(1)
R should be replaced

with Nb × 1 matrices composed of reflection amplitudes c
(b)
L

and c
(b)
R , while each Q1 is replaced with an Nb × Nb diagonal

matrix with Qb on the main diagonal. The source term � then
reads

� =
∑

C=L,R

W ∗
CaC +

Nb∑
b=1

∑
C=L,R

V ∗
b,Ca

(b)
C . (19)

C. Effective non-Hermitian Hamiltonian

In principle, Eq. (13) is already sufficient to find the
tunneling and dissociation probabilities. Nevertheless, it is
useful to formalize the problem further, which leads to the
notion of the effective non-Hermitian Hamiltonian. In the next
step we eliminate variables cL, cR, c

(b)
L , c

(b)
R from Eq. (13)

which could easily done thanks to the variables P and Qb being
scalar quantities. First, Eq. (13) is solved for cL, cR, c

(b)
L , c

(b)
R ,

and then the resulting expressions are substituted into the first
row of Eq. (13) to yield an algebraic equation for the interior
wave function |χ〉 as

(Ĥeff − E)|χ〉 =
∑

C=L,R

[f (K)WC − W ∗
C]aC

− i

Nb∑
b=1

√
2 sin kb

∑
C=L,R

Ṽb,Ca
(b)
C , (20)

where

(ṼL,R)m,n = −
√

J

2

[
ψb(n)δm

∓N + ψb(m)δn
∓N

]
, (21)
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and

f (K) = G

P
= 2 sinh(λ)e−iKN

eλ − eiK−λ
, (22)

while operator Ĥeff has the following form:

Ĥeff = Ĥ0 − sinh (λ)
∑

C=L,R

W̃CW̃
†
CeiK/2

−
Nb∑
b=1

∑
C=L,R

Ṽb,CṼ
†
b,Ceikb , (23)

with (W̃L,R)m,n given by

(W̃L,R)m,n = −
√

J

2

(
δ∓N
m eiKn/2−λ|∓n−(N+1)|

+ δ∓N
n eiKm/2−λ|∓m−(N+1)|). (24)

The operator (23) could be easily recognized as the effective
non-Hermitian Hamiltonian [30]. It has the structure typical for
equations describing the systems with an open boundary such
as the coupled-mode-theory equations [42], although written
in the coordinate rather then in the energy representation. One
of the most important features is the emergence of factors
eiK/2 and eikb accounting for the band structure of the continua,
which is again consistent with the single-particle tight-binding
theory [30].

It is instructive to rewrite the effective non-Hermitian
Hamiltonian in terms of creation and annihilation operators.
We have

Ĥeff = Ĥ0 −
∑
±

[ N∑
m′=−N

(
eiK/2ζκ (m′,m)̂b†m′ b̂m

+ J

2

Nb∑
b=1

eikbψb(m′)ψb(m)̂b†m′ b̂m

)]
n̂±N, (25)

where

ζ∓N (m′,m) = J
(
2 − δm

m′
)

2
sinh(λ)

× eiK(m−m′)/2−λ|∓m−(N+1)|−λ|∓m′−(N+1)|. (26)

We would like to point out that unlike in the previous studies
[32,33], where the effective non-Hermitian Hamiltonian was
introduced phenomenologically by including the decay term
in̂±N , here we obtain it from the first principles. One can
see that in the full-fledged formulation the anti-Hermitian
term is nonlocal albeit in the case of the dimer scattering
channel it decays exponentially away from the truncation site
N . Furthermore, the non-Hermitian Hamiltonian is proved
to be dependent on the spectral parameters of the scattering
channels. We would like to stress that the resulting expression
for the effective non-Hermitian Hamiltonian is exact. Formally
it corresponds to reflectionless boundary conditions. This
allows to avoid spurious reflection which are typical for
complex absorbing potentials, that is known to distort the
decay dynamics [43]. One the other hand, the fact that the
exact reflection-less potential could be both energy-dependent
and nonlocal is in compliance with findings on atom detection
by fluorescence [44].

D. S matrix

By using the solution of Eq. (20) for the interior wave
function, we can find an explicit expression for the scattering
matrix. TheS matrix is defined through an equation connecting
the vectors of incoming AT = (aL,aR,a

(b)
L ,a

(b)
R ) and outgoing

amplitudes BT = (cL,cR,c
(b)
L ,c

(b)
R ),

B = SA. (27)

Let us denote by |χτ 〉 the interior solution produced via
population of a single incoming channel τ . Then, for the
reflection into dimer channels (i.e., τ ′ = 1,2), Eq. (13) yields

Sτ ′,τ = 
τ ′,τ −
√

2 sinh(λ) sin(K/2)W̃ †
τ ′ |χτ 〉, (28)

while for reflection into dissociation channels (τ ′ > 2)

Sτ ′,τ = 
τ ′,τ − √
2 sin kbτ ′ Ṽ

†
τ ′ |χτ 〉, (29)

where 
τ ′,τ is a diagonal matrix


τ ′,τ = diag[−f (K), − f (K), − 1, − 1, . . . , − 1, − 1].

(30)

E. Numerical example

To test our method we solved the scattering problem with
potential v(m) given by

v(m) = V e−m2/2σ 2
, (31)

with σ = 0.65. We found that, for good accuracy, it is sufficient
to set N = 10. The plot of scattering probabilities vs barrier
height V is shown in Fig. 2 for K = π/2. The depicted
tunneling and dissociation probabilities fairly reproduce those
obtained in Ref. [40] by using the wave-packet simulation,
while the computational time decreases by two orders of mag-
nitudes. This allows us to scan over both the quasimomentum
K and the height V of the potential barrier. The transmission
Pt and dissociation Pd probabilities as functions of K and V

are presented in Fig. 3 as a color map. These numerical results
indicate that, in the presence of open dissociation channels

−3 −2 −1 0 1
0

0.2

0.4

0.6

0.8

1

V

P t, P
d

FIG. 2. (Color online) Cotunneling Pt (red solid line) and disso-
ciation Pd (blue dashed line) probabilities for the bound pair as the
functions of the parameter V in Eq. (31). The quasimomentum of the
incident pair K = π/2. Circles and stars show results of Ref. [40].
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FIG. 3. (Color online) (left panel) Cotunneling Pt and (right panel) dissociation Pd probabilities as the function of barrier height V and the
dimer quasimomentum K .

−3 < V < −1, the bound pair tends to split with one of
the particles being captured in the well rather than reflect or
transmit as whole.

To conclude this section we would like to make some
remarks on the accuracy of the method. It is necessary in our
approach that the propagation band of the dimer lies below
the scattering continuum; see Fig. 1. Otherwise, one would
have a continuum of scattering channels and consequently
formula (13) would be an integral rather than an algebraic
equation. In our case two-particle scattering states do not
propagate at energies below −2J . That means the contribution
of the scattering continuum to the solution of Eq. (2) comes
in form of evanescent waves that decay exponentially away
from the scattering domain. Thus, one can conclude that as
the truncation radius N is increased the error would drop
exponentially. To prove this we solved Eq. (20) for various
values of truncation radius N and evaluated corresponding
reflection coefficients R(N ). Using N0 = 25 as the reference
point we found the error as |R(N ) − R(N0)|. The results are
plotted in Fig. 4 for three different values of barrier height V .

5 10 15 20
−25

−20

−15

−10

−5

0

Box size,N

E
rr

or
, l

og
10

(R
(N

)−
R

(N
0))

 

 

V=0
V=−1
V=−2

FIG. 4. (Color online) Logarithmic plot of the absolute error
|R(N ) − R(N0)| as function of truncation radius N for various values
of barrier height V . One can see that the error drops exponentially.

III. DECAY RATES

In this section we address the particle decay out of a trap.
The trap is introduced as a length of 1D lattice confined
between an infinitely high wall and a potential barrier (well)
of height (depth) V , see Fig. 5. In what follows we assume
that the initial state of a dimer in the trap is given in the form
of a Gaussian wave packet,

�0 = cos[K(m + n)/2 − M]e−(m+n)/2−M]2/2−λ|m−n|, (32)

where the parameter M fixes the initial position of the dimer.
The state (32) is well suited for the wave-packet simulations
discussed later on in Sec. III C.

A. Gamov’s states

The standard procedure to find the decay of a given initial
states consist of two steps. First, one finds eigenstates �l

and eigenvalues zl of the effective non-Hermitian Hamiltonian
(23),

Ĥeff�l = zl�l. (33)

−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

1.5

2

2.5

3

lattice site index, n

B
ar

ri
er

 h
ei

gh
t

barrier

infinitely high wall

FIG. 5. (Color online) Configuration of a trap comprised of an
infinitely high wall and a potential barrier of height V .
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Once the eigenstates and eigenvalues are found the initial
condition (32) is expanded over Gamov’s states �l ,

�0 =
∑

l

Bl�l. (34)

Then the imaginary part of the eigenvalue,

zl = El − i
γl

2
, (35)

would give the lifetime of the corresponding Gamov state and
the nonescape probability ρ(t) would be simply given as

ρ(t) =
∑

l

|Bl|2e−γl t . (36)

Unfortunately, realization of this standard procedure en-
counters two difficulties. The first difficulty comes from the
fact that, as it was shown in Ref. [31], not all eigenvalues found
from Eq. (33) correspond to the true poles of the S matrix.
This could be understood as a consequence of the freedom
in choosing the truncation radius N . Varying N one changes
the number of eigenvalues zl . Nevertheless, the S matrix at
large N is asymptotically stable. This means that some of
the eigenvalues zl do not correspond to the true resonances.
Such emergence of spurious eigenvalues, in fact, was found
to be typical for eigenvalue problems with open boundary
conditions [45].

The second difficulty arises from the algebraic structure of
Ĥeff . As was pointed out in the previous section, Ĥeff itself
depends on zl . Hence Eq. (33) could not be viewed as a
standard eigenvalue problem and, in search of eigenvalues
of Ĥeff , one has to scan over the complex energy plane to
minimize the norm of Ĥeff(z) − zI where I is the identity
matrix.

B. Harmonic inversion method

To overcome the above difficulties we will apply the
harmonic inversion method which is an efficient tool for
extracting resonance positions and lifetimes from the spectral
data [46]. The method is nicely outlined in Ref. [47]. The
central idea is that the response g(E) of open system to an
external driving is presented as the sum

g (E) =
∑
l=1

Al

E − z̃l

, (37)

where z̃l are the complex energies corresponding to the true
resonances in the system (complex poles of the scattering
matrix). In this work we choose g(E) = �̃N0,N0 , where �̃m,n

is the solution of

(Ĥeff − E)�̃m,n = δn
N0

δm
N0

. (38)

Notice that “the external driving force” δn
N0

δm
N0

preserves the
bosonic symmetry of the problem. In our computations we took
N0 = 10. A typical dependance of the response function g(E)
is plotted in Fig. 6. Using Eq. (37) we extract the resonance
energies zl . Finally, when the true resonances are found, we
obtain the wave functions of the Gamov states by solving the
homogenous equation (33).
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FIG. 6. (Color online) Logarithmic plot of the response function
G(E) at V = −2. One can see well-pronounced resonant features.

C. Nonescape probability

In this section we compare the result (36), which involves
the notion of effective non-Hermitian Hamiltonian Ĥeff , with
direct numerical simulations of the escape processes, which are
done by using the original Bose-Hubbard Hamilton (1) with the
barrier (31). The corresponding time-dependent Schrödinger
equation was solved with Crank-Nicolson method. The com-
putational domain was truncated with the use of adiabatic
absorbers [48]. The results are plotted in Fig. 7 by symbols,
where the asterisks and open circles refers to V = −2 and
V = 0.8, respectively. One can see that Eq. (36) reproduces
the results of the direct simulations to a good accuracy. One
can also see that the presence of a dissociation channel at
V = −2, when the dimer propagation band fully overlaps with
the propagation band of the channel, drastically decreases the
nonescape probability. This is consistent with the findings of
the Sec. II where it was observed that the dimer tends to
split whenever a dissociation channel is accessible. In fact, the
simulations show that approximately 80% of the decay rate
is due to the dissociation channel. In contrast, at V = 0.8 the
dimer decays much slower in spite of the fact the confinement
potential is weaker. We do not present results for V = 2
because at this value of barrier height the escape probability is
vanishing (<10−5 at t = 1000T ).

The two panels in Fig. 7 aim to illustrate the sensitivity of
the result to seemingly unimportant parameters such as, for
example, the parameter M which controls the initial position
of the wave packet according to Eq. (32). The observed,
surprisingly high sensitivity to initial conditions poses the
question about typical initial state or ensemble averaging. In
fact, the laboratory setup for measuring nonescape probability
could be as follows: Using three mutually perpendicular
standing laser waves of different intensities one creates an
ensemble of 1D lattices. Next, adding two sheet-like beams
one creates a trap and then empties all lattice sites outside the
trap by using, for example, the electron-beam technique [5].
If the density of dimers is low enough one can also satisfy
the condition that every 1D trap contains no more than one
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FIG. 7. (Color online) Nonescape probability vs time for the trap shown in Fig. 5. The hight (depth) of the potential barrier (well) are
V = −2 (open circles) and V = 0.8 (asterisks). The initial state of the dimer is chosen in the form (32) with M = 5 (left panel) and M = 6
(right panel). Solid red lines show estimations based on Eq. (36). The time is measured in units of T = 2π/|E|, where E = −0.30.

dimer. However, the initial states of these dimers are unknown
and may vary from one to another 1D lattice. Thus, only
the averaged decay rate can be measured in the laboratory
experiment. We reserve the problem of the relevant ensemble
of initial conditions and averaged decay dynamics for future
studies.

IV. SUMMARY AND CONCLUSION

We considered the tunneling of a Bose-Hubbard pair of two
interacting bosons through a potential barrier—the problem
addressed earlier in Ref. [40]. The results of the paper are
threefold.

First, we reformulated the problem as a stationary scat-
tering problem for the Bose-Hubbard dimer. We developed a
method which could be applied for an arbitrary asymptotically
vanishing scattering potential at any value of the dimer
quasimomentum. This, in particular, allows us to find the
conditions under which the dimer transmits, reflects, or
dissociates in the process of collision with potential barrier.
It was found that the presence of dissociation channels leads
to a high probability of the dimer being split with one particle
captured in the scattering center while the other is typically
reflected.

Second, we derived the non-Hermitian Hamiltonian, which
governs the system dynamics, with the only limiting assump-
tion being that the dimer propagation band does not overlap
with the scattering continuum. Unlike in the previous studies
[32,33], where the effective non-Hermitian Hamiltonian was
introduced phenomenologically by including the decay term

ib̂
†
N b̂N , here we obtain it from first principles. One can see

that in the full-fledged formulation the anti-Hermitian term is
nonlocal (albeit in the case of the dimer scattering channel
it decays exponentially away from the truncation site N ).
Moreover, the full-fledged formulation comes at the price
of the non-Hermitian Hamiltonian dependent on the spectral
parameters of the scattering channels.

Finally, we used the developed formalism to address the
problem of two-particle decay out of a trap. We proposed a
recipe for finding two-particle Gamov states which give us a
key to evaluating the nonescape probability. It was shown that
the presence of dissociation channels substantially increases
the decay rates favoring dissociation scenario, where one par-
ticle is captured in a single-particle bound state while the other
leaks to the continuum. This complex tunneling process gen-
erally leads to nonexponential decay of survival probability.

Concluding, we believe that our results are relevant due to
the recent progress in physics that allows creating experimental
setups where both potential profile [49–51] and interaction
strength [52,53] could be varied at will, and, thus, could
open new opportunities for engineering quantum systems with
desired tunneling escape properties.
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[5] P. Würtz, T. Langen, T. Gericke, A. Koglbauer, and H. Ott, Phys.
Rev. Lett. 103, 080404 (2009).

063612-7

http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1126/science.1177838
http://dx.doi.org/10.1126/science.1177838
http://dx.doi.org/10.1126/science.1177838
http://dx.doi.org/10.1126/science.1177838
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1103/PhysRevLett.103.080404
http://dx.doi.org/10.1103/PhysRevLett.103.080404
http://dx.doi.org/10.1103/PhysRevLett.103.080404
http://dx.doi.org/10.1103/PhysRevLett.103.080404


DMITRII N. MAKSIMOV AND ANDREY R. KOLOVSKY PHYSICAL REVIEW A 89, 063612 (2014)
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