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Measurement of gravitation-induced quantum interference for neutrons in a spin-echo spectrometer
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With a neutron spin-echo reflectometer (OffSpec at ISIS, UK) it is possible to measure the gravitation-induced
quantum phase difference between the two spin states of the neutron wave function in a magnetic field. In the
small-angle approximation, this phase depends linearly on the inclination angle of the neutron beam with respect
to the horizontal. This also holds for the Bonse-Hart interferometer used in the Colella-Overhauser-Werner
experiments and should be taken into account. Neglecting this term could yield deviations up to 1% per degree
inclination angle. The gravitation-induced quantum phase as measured with OffSpec with an accuracy of 0.1%
agrees with the theoretically expected results.
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I. INTRODUCTION

Gravity is one of the most profound physical forces we
encounter in daily life. Although we can measure gravity in
classical mechanics with high precision, we do not know the
exact origin of this force. To come to a deeper understanding,
we need to understand the way gravity acts on a quantum
system. One of the quantum systems on which gravity acts is
the free neutron.

A neutron can be viewed classically as a particle with
mass or quantum mechanically as a wave, as envisaged
by De Broglie. Similar to all matter waves, neutrons are
endowed with a magnetic moment that allows for Larmor
precession in a magnetic field. An advantage of neutrons is that
they are charge and electric-dipole-moment free, hence free
from strong electronic interactions. The quantum-mechanical
equivalent description is by means of two coupled wave
functions (spin-up and spin-down eigenfunctions) that can be
distinguished in a magnetic field.

Classically, the neutron will just fall as a particle with mass
in a gravitational field like any other particle. This has been
experimentally detected in 1965 by Dabbs [1] and repeated
with increased accuracy by Koester [2] and Schiedmayer [3].
The results show a correspondence up to a measurement
accuracy of 0.02%.

In the wave picture, one can split the wave function into
wave packets and let them travel through different potentials
(heights) in this gravitational field. Already in 1975 Colella
et al. [4] showed, using a Bonse-Hart interferometer for
neutrons, that a quantum-mechanical phase of the neutron
is induced by the average height difference of these wave
functions (COW experiments). Later these COW experiments
were repeated with greater precision, including all possible
corrections, and an approximate –1% (+/− 0.1%) discrepancy

was found with theory. All COW experiments reported a
phase shift that was too small with respect to the expected
gravitational effect [5]. Littrell discusses the influence of
dynamical refraction in the interferometer [6]. Although the
influences are of similar order as the observed differences, he
was not able to fully explain the experimental results. Further
efforts are underway to repeat the COW experiment with an
adapted interferometer, greatly reducing the influence of these
systematic effects [7]. It is very difficult, however, to avoid
distortions (and the resulting phase shift) of an interferometer
made of a perfect silicon crystal.

Recently, gravity measurements with neutrons and atoms
aroused new interest on account of the gravitational redshift,
Compton frequency, time dilation, etc. (see Ref. [8] and
references therein).

In view of the above, an experiment on the influence of
gravity on the quantum-mechanical phase of the neutron wave
has been devised, built, and executed. Precise measurement
of this kind enables a measurement of the Lorentz invariance
violation induced by the gravitational forces [9] in the future.

II. METHOD

The spin-echo mode of the polarized-neutron spectrometer
OffSpec [10,11] is, in fact, a quantum-interferometer-based
technique [12]. Initially the polarization of the neutron beam
is parallel to the magnetic field. Spin-up and spin-down
eigenstates are created by means of a step in a magnetic field.
The field directions before and after the step are perpendicular.
Before the step the polarization vector is parallel to the
magnetic field, and after the step is it perpendicular to the
polarization vector. In this way the amplitudes of the two
spin-eigenstates directly after the step are the same, although
their initial phase differs by π/2 radians. After that, in the first
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FIG. 1. (Color online) Scheme of the polarized neutron interfer-
ometer OffSpec. In the first half of the instrument one separates the
spin-up and spin-down eigenstates in space by a magnetic field, just
to bring them back together in the second half of the instrument by
a mirrored field configuration. After that, the spin states interfere
constructively (when in phase) or deconstructively (when out of
phase). If the splitting is in the horizontal plane, the spin states will
acquire the same phases and the spin-up and spin-down eigenstates
remain in phase. If the splitting is in the vertical plane, the spin states
will acquire different phases due to the differences in gravitational
potential in one arm with respect to the other arm and the interference
changes accordingly.

half of the instrument one separates the spin-up and spin-down
eigenstates in space by a magnetic field just to bring them back
together in the second half of the instrument by a mirrored
field configuration (see Fig. 1). After the neutrons leave the
second magnetic-field region there is again a magnetic-field
step. When the phase difference between the eigenstates is
again π/2 radians, the spin eigenstates interfere constructively
and the polarization is again parallel to the magnetic field or
when out of phase, the spin eigenstates interfere destructively,
reducing the polarization. The intensity due the polarization
component parallel to the magnetic field is detected after
another polarizer.

When a sample is present between the two magnetic fields
and scattering occurs, the eigenstates travel a different path
through the second half of the instrument, resulting in a phase
difference and therefore a change in interference pattern. In
the case of the absence of a sample, one will retrieve the
original interference (i.e., the spin-echo signal as a function of
wavelength).

If the splitting is in the horizontal plane, the spin states
will acquire the same phases and the spin-up and spin-down
eigenstates remain in phase. If the splitting is in the vertical
plane, the spin states will acquire different phases due to the
differences in gravitational potential in one arm with respect
to the other arm and the interference changes accordingly. The
up-down eigenstate interference is measured by the detector
behind the analyzer (not shown), where the intensity recorded
is

I± = Is

1 ± P cos �φ

2
, (1)

where Is equals the so-called shim intensity, P is the
polarization of the beam, �φ is the phase difference of the
two spin states as acquired on their different paths through the
instrument, and ± denotes the detection of the spin-up (+) or
spin-down (−) eigenstate.

Solving the Schrödinger equation for a quantization axis
parallel to the magnetic induction yields plane waves with a
wave vector given by k± = n±k0. k0 = 2π/λ is the wave vector

of the neutron in vacuum, where λ equals the wavelength of
the neutron. The refractive index n± for each spin state can be
calculated according to

n± =
√

n2
0 ∓ εz , (2)

where εz = 2mμnB/(�2k2
0) is the ratio between the Zeeman

energy and the kinetic energy of the neutron, where m is
the neutron mass, � Planck’s constant divided by 2π , μn the
neutron magnetic moment, and B the magnetic flux density.
n0 =

√
1 − 2mV/(�2k2

0) equals the refractive index when the
magnetic field is absent, where V is the optical potential [13].
The optical potential is determined by a term due to the material
the neutrons are traveling through and a term due to gravity,

V = 2π�
2

m
〈Nb〉 + Vg,

where 〈Nb〉 is the average scattering-length density of the
material and Vg is the gravitational potential of the neutron.
Here, the neutron travels through air and the average scattering-
length density is taken 0. If a neutron beam crosses a boundary
of a magnetic flux density region and the border is not
perpendicular to the propagation direction, so-called beam
splitting occurs due to birefringence, as shown in Fig. 1. At
the boundary the parallel component of the wave vector is
continuous, which gives Snell’s law,

k cos θ = k± cos(θ − γ ±),

where k is the wave vector in zero magnetic field and k± the
wave vector of the spin-up (+) or spin-down (−) wave func-
tion, and θ is the angle between the wave vector and the front
face of the magnetic-field region. Note that k is the value of the
wave vector for the optical potential at the location where re-
fraction occurs. Under the condition that εz � 1, the refraction
angle is

γ ± = ± εz

2n2
0

cot θ. (3)

For a magnetic flux density of 1/3 T, θ = 45o, and for
a neutron wavelength λ of 0.2 nm, γ = |γ ±| ≈ 0.5 μrad.
The spin-down wave is refracted at the boundary with an
angle exactly opposite to the one of the spin-up wave. This
directly explains the beam splitting, and the splitting distance
or spin-echo length is

δ = 2Lγ = 2mμnBL cot θ

�2k2
0n

2
0

= ηλ2. (4)

Note that this spin-echo length is proportional to the square
of the wavelength, where the proportionality constant η is the
spin-echo-length constant determined by neutron properties
and instrument settings only. As pointed out above, not only
can a sample change the phases, but so can a difference in
gravitational potential. If the splitting of the eigenstates is in
the horizontal plane, they will travel through the same potential
and no gravitation-induced phase difference occurs. If the
splitting is in the vertical plane, a gravitation-induced phase
does occur and the interference pattern changes. In Appendix A
the phase difference is derived assuming that the curvature of
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the trajectories can be neglected. The result is

�φg = Am2g

�2k0
(1 − α tan θ ),

where A = Lsplitδ is the area between the path of the two spin
states and α is the inclination angle between the wave vector
of the neutron entering the interferometer and the horizontal.
For α = 0 this corresponds to the phase difference obtained
in literature for the COW experiments [4,14]. In literature it
is assumed that the incident beam is exactly in the horizontal
plane and the interferometer rotates around this beam. It is
assumed that if the beam has a small inclination angle with
the horizontal, then the phase difference is changed only by
second order in the inclination angle. The argument used is that
the projection of the gravitation on the vertical is proportional
to the cosine of this inclination angle. In Appendix A we show
that this is not correct for the current experiment and that the
correction term is linear in the inclination angle. Interestingly,
the same holds for the COW experiment itself when in the
above formula θ is replaced by the Bragg angle θB , as derived
in Appendix A.

III. CALIBRATION

To obtain accurate results for the gravitation-induced phase
difference, several instrumental parameters need to be cali-
brated. The instrument parameters influencing the results are
the measurement of the neutron wavelength λ, the inclination
angle with the horizontal α, the distance between the magnetic-
field regions Lsplit, and the spin-echo-length constant η.

The neutron wavelength is measured by the time-of-flight
method, where the flight time of the neutron over a known
distance is determined. From this flight time and distance
the velocity of the neutron can be calculated and hence
its wavelength. For OffSpec the wavelength scale has been
checked with transmission measurements of aluminum. The
transmission was fitted using the method described in [15].
The relevant lattice parameter of the aluminum sample was
calibrated against a NIST Si reference powder SRM640c
at the High Resolution Powder Diffractometer at ISIS [16],
resulting in 0.404 919(1) nm. The resulting accuracy of the
instrumental wavelength is 5 × 10−4 nm, which is 0.05% at
1-nm wavelength.

The inclination angle of the instrument is fully automated
and was checked by comparing the reflection angle on a liquid
surface with the one set according to the instrument. The
accuracy is 0.1 mrad. The distance Lsplit between the magnetic-
field regions was measured with calibrated measuring rods up
to 0.1 mm accuracy and was 3850.0 mm.

The spin-echo-length constant was calibrated by measuring
the small-angle structure factor of a calibration sample. The
measured polarization [Eq. (5)] depends both on the phase
difference and the polarization of the beam. The polarization
of the beam is reduced when a sample with a structure on the
same length scale as the spin-echo length is inserted. This is
the basis of the Spin-Echo Small Angle Neutron Scattering
technique [17]. The polarization change can be accurately
calculated using the phase-object approximation [18]. The
calibration sample was a silicon grating with a period of
6.000 μm. It was constructed by means of interferometric

FIG. 2. Ratio of beam polarization with grating in the beam
to empty beam polarization as a function of wavelength for the
instrument setting α = −1o. The line is a fit using the phase-object
approximation.

lithography with visible light with a relative accuracy of a
fraction of a wavelength over a distance of a at least 1 cm, and
hence with an estimated accuracy of 0.01%.

When the period of the grating is equal to the spin-echo
length, a maximum in the interference occurs. Hence, by
measuring the beam polarization change due to the grating,
the spin-echo-length constant can be determined in situ under
exactly the same instrumental conditions as for the gravita-
tional phase difference measurements. This has been done
for all the instrumental settings used in the experiment. An
example is shown in Fig. 2 for a measurement with α = −1o

and θ = 50o. The data points, including error bars, represent
the ratio between the beam polarization, including the sample,
and the empty beam polarization. The line represents this
ratio calculated for a trapezium-shaped grating profile with
a repetition period of 6.000 μm, a top width of 1709 μm,
and a base width of 3791 μm. The height of the trapezium
was 8.931 μm. For these settings the fitted spin-echo-length
constant η = 7.002(18) μm/nm2. As the grating was the
same for all measurements, the height, top width, and base
width of the grating were fitted to all measurements together.
Furthermore, the measurements showed no influence of the
inclination angle of the instrument with the horizontal, α on
the spin-echo-length constant. This is to be expected because
the complete setup (including magnets and beam diaphragms)
was rotated around one point to change the inclination angle.
The effective angle θ for the instrumental settings used can
be calculated according to Eq. (4), yielding 55.30(7)o.

IV. MEASUREMENTS AND RESULTS

The measurements consist of determining the polarization
of the beam by measuring the spin-up and spin-down eigenstate
intensity at the detector [19] as a function of the spin-echo
phase difference according to Eq. (1):

Pm = I+ − I−

I+ + I− = P cos(�φa + �φg + �φs), (5)

where �φg is the gravitation-induced phase shift, �φa is
a phase difference introduced by an additional magnetic
field, and �φs is a correction term due to the Sagnac effect
introduced by the rotation of the Earth. The phase shift between
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FIG. 3. (Color online) Measured polarization as a function of wavelength and scan-coil current for −0.5o inclination angle. For the
bottom-left graph the beam was split in the horizontal direction, and for the bottom-right graph the beam was split in the vertical direction. The
upper graphs show cuts along the black and red lines for wavelengths of 0.4 and 0.8 nm. The lines in the upper graphs are fits to the data points
according to Eq. (7).

two neutron wave functions traversing different paths through
an interferometer due to the Sagnac effect has been estimated
as [4,20]

�φs = 2mA�

�
{sin θL sin h + cos θL cos h cos Az}, (6)

where A = δLsplit equals the area between the two trajectories,
� = 72.92 μrad/s equals the rotation frequency of the Earth,
h the elevation of the normal to that area, and Az the azimuth of
that normal. For OffSpec θL = 51.57o, Az ≈ 6o (within ±5o).
h is 0o for the measurements in the vertical plane and 90o for
the measurements in the horizontal plane. Hence the Sagnac
effect introduces an additional spin-echo phase shift of C2λ

2,
where C2 = mηLsplit�(cos θL sin h + sin θL cos h cos Az)/�,
yielding −0.0386 rad/nm2 for the vertical case and
0.0489 rad/nm2 for the horizontal one. It is a function of
wavelength as the spin-echo length is a function of wavelength.
The sign of the Sagnac phase shift with respect to the
gravitational phase shift depends on the angle θ and the
direction of the normal of area A with respect to the rotation
direction of the Earth.

�φa is used to increase the sensitivity by adding a phase
difference introduced by means of an additional magnetic
field Ba , created by a current Ia through a scan coil of
effective length La . This scan coil was positioned in between
the magnetic-field regions. The boundaries of this additional
magnetic field were perpendicular to the beam direction so
that no additional splitting is introduced. The additional phase
difference due to this field is �φa = BaLaλmμ/(2π�

2).

The measured spin-echo phase difference as a function of
wavelength is

�φa + �φg + �φs = (C0Ia + C1)λ + C2λ
2 + C3λ

3, (7)

where C0 = �φa/(λIa) = (Ba/Ia)Lamgμ/(2π�
2), C1 repre-

sents the initial out-of-echo condition, and C3 = �φg/λ
3 is

determined by the gravitational phase shift only. Note that
C3 = (1 − α tan θ )(ηLSplitm

2g)/(2π�
2) is a constant indepen-

dent of neutron wavelength or scan-coil current. C2 is due to
the Sagnac effect introduced by the rotation of the Earth.

Measurements were performed for a series of scan-coil
currents and several values of α. As an example, two series are
shown in Fig. 3. The bottom-left graph shows the polarization
as a function of wavelength and scan-coil current in case the
beam was split in the horizontal direction; the bottom-right
graph shows the same results with the same instrumental
settings in case the beam was split in the vertical direction.
The upper graphs show cuts along the black and red lines for
wavelengths of 0.4 and 0.8 nm.

These results were fitted to Eq. (7) to obtain values for P ,
C0, C1, and C3. Examples of such fits are shown in the top
graphs of Fig. 3; they correspond with the cuts along the black
and red lines for wavelengths of 0.4 and 0.8 nm in the bottom
graphs.

For each instrument setting the measurement series was
done with and without the grating in the beam. The initial out-
of-echo condition C1 only slightly changes between measure-
ments. The differences occurring between the fit results with
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FIG. 4. (Color online) Fit results of C3 (data points and error
bars) as a function of inclination angle between the wave vector of
the incident beam and the horizontal. The black full lines correspond
to the theoretical values obtained with the calibrated value of the
spin-echo-length constant and the local gravity constant. The red
dashed lines are best fits.

and without grating in the beam are all within the experimental
statistical deviations. The fitted P values with and without
grating in the beam were used for the calibration of the
spin-echo-length constant, as discussed in the previous section.
C0 was determined by separately fitting the data for each
measurement series. The average result for the vertical splitting
is 10.561(15) rad/(A nm), where the number between brackets
is the standard deviation corresponding to 0.14%. As expected,
C0 did not depend on the inclination angle, so that for the fit
of C1 and C3, C0 was fixed for all vertical measurements to
10.561 rad/(A nm) to reduce statistical variation. The average
result for the horizontal splitting is 11.612(33) rad/(A nm).
Again, C0 did not depend on the inclination angle, so that
for the fit C0 was fixed for all horizontal measurements to
11.612 rad/(A nm). The difference in C0 between the vertical
and horizontal series is due to the use of a (slightly) different
scan-coil geometry.

The fit results for C3 are shown in Fig. 4. The dots
and error bars represent the fitted values and the black full
lines represent the theoretical calculations using the calibrated
spin-echo-length constants and the local gravity constant. The
local gravity constant was determined by means of the Gravity
Formula of 1980 [21], resulting in g = 9.811 9 m/s2 with an
accuracy of about 0.002%. The inclination angle was measured
with an accuracy of 0.1 mrad and the divergences of the neutron
beam were limited to 2.8 mrad in the splitting direction and
0.8 mrad perpendicular to the splitting direction by means of
two diaphragms of 5 × 12 mm2 placed 6.39 m apart.

The dependence on the inclination angle is given by the
slope of the lines. The slopes should be the same, as the
coefficient of α does not depend on whether the splitting is
in horizontal or vertical direction. This can be understood
by taking into consideration that the effect occurs due to the
increased velocity of the neutrons when they are falling down,
resulting in a faster passage and hence a smaller number
of precessions in the second magnetic-field region. If the
dependence of the gravity phase shift on the inclination angle

α as derived in the Appendix is not taken into account, the
deviation with the measured value of C3 reaches a maximum
of –0.25 rad/nm3 for an inclination angle of –1o. This
corresponds to a deviation of 2.5% in the total effect.

V. DISCUSSION AND CONCLUSIONS

The red dashed lines in Fig. 4 are best fits. The slopes
are taken equal and are 89% of the theoretical value. The
calibration procedure is used to determine the spin-echo length
that is needed to calculate the area A between the upper and
lower trajectories of the neutron wave. This calibration is done
to circumvent the fact that Eq. (4) is just approximately valid
due to the way the instrument is actually constructed [22].
Because of the calibration, this equation is not needed to
determine the spin-echo length. For the correction factor,
however, the angle θ is needed, as the slope of the theoretical
line is proportional to the tangent of that angle. Hence, this
Eq. (4) is used to determine the effective angle θ for the
correction. Hence, when the actual angle θ is a little less
than the effective angle (52.2o instead of 55.3o), this has an
effect on the slope but not on the intercept of the theoretical
line. The value for 0 inclination angle for the vertical mea-
surements is 10.619(9) rad/nm3, which is in accordance with
the theoretically expected one of 10.618(24) rad/nm3. The
uncertainty is mainly due to the uncertainty in the calibrated
spin-echo length. Furthermore, the value for 0 inclination
angle for the horizontal measurements is –0.037(15) rad/nm3,
while theoretically it should be 0 if the correction for the
Sagnac effect is correct. If the correction of the Sagnac
effect is omitted, the fitted value is –0.003 rad/nm3, and
when the correction is reversed it becomes +0.032 rad/nm3.
If the correction for the Sagnac effect is omitted in the results
for the vertical splitting, the value of C3 reduces to 10.592(9)
rad/nm3, also within range of the theoretically expected value.
The difference between the theory and the intercept for the
horizontal measurements is 2 standard deviations. Although
the difference is small, it is remarkable that without the Sagnac
corrections the theoretical values match measurements a little
better. This could be due to several causes: the derivation of the
Sagnac effect might be wrong (but the authors could not find
an error in the derivation); or it is a statistical effect (this is a
rather small but possible chance, about 5% due to the 2 standard
deviation difference); or maybe the refraction of the neutron
wave function at the magnetic-field boundary is influenced
by the rotation of the Earth compensating the Sagnac effect,
which is in contrast to the COW experiments where the Sagnac
effect is due to refraction and reflection at nuclear potential
steps.

Regardless of this uncertainty, the result for the gravitation-
induced phase shift agrees within approximately 0.1% with the
theoretically expected result, while the overall measurement
accuracy is 0.25%. The fact that the statistical variation in C3

is less than that for the calibration of the spin-echo length
using a grating shows that this method can also be used
to calibrate the spin-echo length with an accuracy of 0.1%.
With the novel spin-echo neutron spectrometer OffSpec, it is
possible to measure the gravitation-induced phase shift up to
an accuracy of 0.1%. This accuracy is achieved by exploiting
the high stability of the spin-echo spectrometer, in addition
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to the use of the whole spectrum (roughly 0.2–1.0 nm) of the
beam, not being limited to a monochromatic beam, as in a
perfect-crystal interferometer experiment.

It was found that there is a significant dependence on
the inclination angle with respect to the horizontal. For the
experiment considered here, the deviation increases to a
maximum of 2.5%. It has been shown in Appendix A that this
effect also occurs for the COW experiment and should be taken
into account for the data treatment of these measurements.
A possible deviation could easily mount up to 0.5%, as
the inclination angle for these measurements was not more
accurately determined than 0.5o and the Bragg angle was
about 30o [4]. This gives a possible explanation why COW
experiments measure a too-small gravitation-induced phase
shift.

This effect is not limited to neutron interferometry measure-
ments but is valid for all interference experiments involving
matter waves. To elucidate the effect for other particle
interferometry experiments, the gravitational phase shift by
inserting Eq. (4) can be expressed as

�φg = 2LsplitLB cot θ

�

μn

v3
g(1 − α tan θ ),

where v equals the velocity of the neutron. For constant
instrument parameters, the phase shift scales with velocity
to the third power, yielding larger phase shifts for slower
particles. For instance, a cesium atom has approximately 133
times more mass than a neutron, reducing its velocity by more
than a factor of 11.5 for the same kinetic energy, so that the
expected phase shift for room-temperature cesium atoms is a
factor of 1500 larger than for neutrons. Although the spin-echo
method and beam splitting has been realized also for atom
beams [23,24], the reported experiments were not designed to
measure the gravitational phase shift. However, these kinds of
experiments can be adapted to measure the effect.

ACKNOWLEDGMENTS

This research project has been supported by the European
Commission under the 7th Framework Program through the
Research Infrastructures action of the Capacities Program
(Contract No. CP-CSA_INFRA-2008-1.1.1, No. 226507-
NMI3). The authors would like to thank the United Kingdom
Science and Technology Facilities Council (STFC) for the
award of beam time, Dr. K. S. Knight for calibrating the alu-
minum sample on HRPD, and Prof. Dr. W. M. Snow, Indiana
University, for bringing the possibility of this experiment to
our attention.

APPENDIX: INFLUENCE OF BEAM INCLINATION ON
GRAVITATION-INDUCED PHASE DIFFERENCE.

1. Optical phase acquired by a neutron following a path
through a gravitation potential

In the semiclassical approximation, a neutron can be
considered locally as a plane wave with a wave vector in the
direction of propagation. The direction of the wave vector is the
slope of the trajectory of the neutron. The length of the wave
vector is determined by the local refractive index according
to Eq. (2). Assume the trajectory is located in the (x,y) plane

where the gravitation potential is given by Vg = mgy, with m

the mass of the neutron and g the gravitation constant. The
starting point of the trajectory is at (x1,y1) and the end point
at (x2,y2). The optical phase acquired by a neutron following
this trajectory is

φ =
∫ (x2,y2)

(x1,y1)

�k · d�r,

where �r describes the trajectory. As d�r//�k, dr =
√

dx2 + dy2,
and k = kx

√
1 + (dy/dx)2, this can be rewritten as

φ = kx

∫ x2

x1

{
1 +

(
dy

dx

)2}
dx.

If the trajectory is described by a straight line with slope tan ζ ,
this can be further reduced to

φ = kx

x2 − x1

cos2 ζ
= k(x1)

x2 − x1

cos ζ
. (A1)

Note that kx is constant for the complete trajectory, as the
gravitation acceleration acts only in the y direction.

2. Current experiment

To calculate the effect of beam inclination α with respect
to the horizontal, it is assumed that the curvature of the path
due to gravity can be neglected.

Performing the derivation presented here, taking into
account the parabolic trajectories of the neutrons due to gravity
instead of straight trajectories and the different kinetic and
potential energies at the points of refraction to the magnetic-
field boundaries is tedious but straightforward and results in
exactly identical expressions up to first order in α and εz.

The path for each spin state is split into three regions
represented below by suffix 1, 2, and 3, respectively.

The first region is the first magnetic-field region, where the
path is inclined with respect to the horizontal with an angle
α + γ ±

1 (see also Fig. 1), where the refraction angle is given
by Eq. (3)

γ ±
1 = ±εz cot θ/2,

where n0 was taken to be 1 and all terms of second or higher
order in εz were neglected. The local refractive index at the
splitting point (x1,y1) is determined by the height of the beam
according to Eq. (2),

n±(x1,y1) = 1 ∓ εz/2 − Qgy1(1 ± εz/2),

where Qg = m2g/(�2k2
0) and all terms of second or higher

order in εz and Qgy1 were neglected. The wave vector just
before splitting has been used as k0. The phase acquired in this
region, according to Eq. (A1), is (also using α � 1)

φ±
1 = k0L[1 ∓ εz/2 − Qgy1(1 ± εz/2)],

where all second-order terms in εz, Qgy1, and α were
neglected.

The second region is in between the magnetic-field regions,
where the path is almost parallel to the beam before splitting—
almost, as the refraction angle at this point is

γ ±
2 = ∓ εz

2n2
2

cot θ,

063611-6



MEASUREMENT OF GRAVITATION-INDUCED QUANTUM . . . PHYSICAL REVIEW A 89, 063611 (2014)

where the difference is due to n2
2 = 1 − 2Qgy(x1 + L). Note

that γ ±
2 has a reversed sign compared to γ ±

1 due to the fact
that the neutrons are leaving the magnetic field. The path in
region 2 can be described by y(x) = y1 + (α + γ ±

1 )(x − x1) +
γ ±

2 (x − x1 − L). According to Eq. (2),

n±(x1 + L) = 1 − Qgy(x1 + L).

The phase acquired in this region, according to Eq. (A1), is

φ±
2 = k0(Lsplit − L)[1 − (α + γ ±

1 )QgL − Qgy1].

The third region is in the second magnetic-field region,
where the refraction angle is

γ ±
3 = ∓ εz

2n2
3

cot θ,

where n2
3 = 1 − 2Qgy(x1 + Lsplit). Note that γ ±

3 has the
reversed sign compared to γ ±

1 because the magnetic field is
reversed with respect to the first region. The path in region 3
can be described by y(x) = y1 + (α + γ ±

1 )(x − x1) + γ ±
2 (x −

x1 − L) + γ ±
3 (x − x1 − Lsplit). According to Eq. (2),

n±(x1 + Lsplit) = 1 ± εz/2 − Qgy(x1 + Lsplit)(1 ∓ εz/2),

also with the reversed sign for εz due to the reversed magnetic
field. The phase acquired in this region is

φ±
3 = k0L{1 ± εz/2 − Qg[y1 + (α + γ ±

1 )Lsplit

+ γ ±
2 (Lsplit − L)](1 ∓ εz/2)}.

The sum over all three regions is

φ± = k0{(L + Lsplit)(1 − Qgy1) − Qg[(2Lsplit − L)α

±Lsplitεz(cot θ − α)]/2},
so that the difference between spin-up and spin-down
phases is

�φ = φ+ − φ− = −QgLsplitεz(cot θ − α)

= Am2g

�2k0
(1 − α tan θ ),

where A = Lsplitδ equals the area between the path of the two
spin states.

3. COW experiment

At a lattice with spacing d, first-order Bragg reflection can
occur (see Fig. 5) if and only if

k d sin θB = π.

FIG. 5. (Color online) Bragg reflection at a lattice with spacing d .

FIG. 6. (Color online) Trajectories of spin-wave components in
the COW interferometer.

The wave vector of the transmitted beam is unaltered with
respect to the incident beam. The angle between the wave
vector of the reflected and transmitted beam is 2θB . The
incident wave vector can be described by means of the slope,
tan ζ , of the trajectory at the location of the intersection with
the Bragg plane,

�ki = k(cos ζ �ex + sin ζ �ey),

and hence the wave vector of the reflected beam is

�kd = k cos(2θB + ζ )�ex + k sin(2θB + ζ )�ey,

so that the slope after Bragg reflection becomes

tan ζ ′ = tan(2θB + ζ ). (A2)

The path of the neutron components through the COW
interferometer is shown in Fig. 6. The neutron beam is split up
at the first Bragg reflection, is reflected at the second Bragg
reflection, and merges again at the third Bragg reflection.
To calculate the phase difference between the two paths,
it is assumed that the curvature of the trajectories can be
neglected and that gravity does not influence the effective
Bragg angle. The Bragg angle depends on the wave vector
and hence on the local refractive index given by Eq. (2),
and hence on the gravitation potential according to θB(y) =
θB(y1) + Qg(y − y1) tan θB(y1) up to first order in Qg , where
Qg is defined in the previous section. However, for constructive
interference behind the interferometer, it is required that both
beams emerge parallel to each other and hence the effective
Bragg angle at all positions should be the same (obtainable
by the spread in direction of the Bragg planes) [25]. First, the
optical phase of the upper or blue path is calculated, then that
of the lower or red path, and finally the difference is taken to
find the optical phase difference between the two paths.

a. Upper or blue path

The incident angle on the Bragg planes is determined by
the slope tan α of the trajectory at x = x1. To determine the
starting slope of the first upper or blue trajectory, the reflected
angle can be calculated by Eq. (A2). The equation of the first
upper or blue trajectory is

y = y1 + (x − x1) tan(2θB + α).
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The location of the next boundary is given by

y = y1 + (x1 − x) tan(θ − α) + M

cos(θ − α)
.

Note that for Bragg reflection to occur, θ = π/2 − θB . The
trajectory of the neutron intersects this boundary at (x2,y2),
for which the following holds:

x2 = x1 + M
cos(2θB + α)

cos θB

, y2 = y1 + M
sin(2θB + α)

cos θB

.

The phase acquired on this trajectory, according to
Eq. (A1), is

φ12 = k0M
1 − Qgy1

cos θB

.

After this, the neutron is Bragg reflected into the second upper
or blue trajectory starting at x = x2. The slope of this trajectory
can be calculated using Eq. (A2), replacing θB by −θB , as the
normal to the Bragg planes is now in the opposite direction.
The equation is

y = y2 + (x − x2) tan α.

The location for the next boundary for the intersection at
(x4,y4) is given by

y = y1 + (x1 − x) tan(θ − α) + L

cos(θ − α)
,

so that

x4 = x2 + (L − M)
cos α

cos θB

, y4 = y2 + (L − M)
sin α

cos θB

.

The phase acquired on this trajectory is

�24 = k0(L − M)
1 − Qgy2

cos θB

.

b. Lower or red path

The equation of the first lower or red trajectory is

y = y1 + (x − x1) tan α.

The location for the next boundary for the intersection at
(x3,y3) is given by

y = y1 + (x1 − x) tan(θ − α) + L − M

cos(θ − α)
,

so that

x3 = x1 + (L − M)
cos α

cos θB

, y3 = y1 + (L − M)
sin α

cos θB

.

The phase acquired on this trajectory is

�13 = k0(L − M)
1 − Qgy1

cos θB

.

After this, the neutron is Bragg reflected into the second upper
or red trajectory starting at (x3,y3). The slope of this trajectory
can be calculated by using Eq. (A2). This equation is

y = y3 + (x − x3) tan(2θB + α). (A3)

The location for the next boundary for the intersection at
(x4,y4) has been given before, and this intersection occurs
at exactly the same location as of the other beam so
that interference is obtained. The phase acquired on this
trajectory is

�34 = k0M
1 − Qgy3

cos θB

,

so that the phase difference between the two trajectories is

�� = �13 + �34 − �12 − �24

= Am2g

�2k0
cos α(1 − tan θB tan α),

where A = 2M(L − M) tan θB equals the area between the
two trajectories.
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