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In this work, we study the BCS-BEC crossover and quantum phase transition in a Fermi gas under Rashba spin-
orbit coupling close to a Feshbach resonance. By adopting a two-channel model, we take into account the closed-
channel molecules, and show that combined with spin-orbit coupling, a finite background scattering in the open
channel can lead to two branches of solution for both the two-body and the many-body ground states. The
branching of the two-body bound-state solution originates from the avoided crossing between bound states in the
open and the closed channels, respectively. For the many-body states, we identify a quantum phase transition in
the upper branch regardless of the sign of the background scattering length, which is in clear contrast to the case
without spin-orbit coupling. For systems with negative background scattering length in particular, we show that
the bound state in the open channel, and hence the quantum phase transition in the upper branch, are induced by
spin-orbit coupling. We then characterize the critical detuning of the quantum phase transition for both positive
and negative background scattering lengths, and demonstrate the optimal parameters for the critical point to be
probed experimentally.
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I. INTRODUCTION

Synthetic spin-orbit coupling (SOC), a recent addition to
the toolbox available for quantum simulation in ultracold
atomic gases, can give rise to interesting two-body and many-
body properties by modifying the single-particle dispersion
spectrum of the underlying system [1–5]. In ultracold Fermi
gases, it has been shown that the implementation of synthetic
SOC can lead to an unconventional superfluid with nontrivial
topological features, or a superfluid with nonzero center-of-
mass (c.m.) momentum, or a combination of both, depending
on the spatial dimensions of the gas and on the form of
synthetic SOC implemented [6–43]. Most of these studies
have assumed the system to be close to a Feshbach resonance,
so that the interaction is tunable via an external magnetic
field. However, to characterize the Feshbach resonance, most
of the previous studies on spin-orbit-coupled Fermi systems
have adopted a single-channel model [6–11,13–39], while
on a phenomenological level, a two-channel model is more
appropriate, where the Feshbach resonance is described as
a multichannel resonant scattering process when the bound
state in a closed channel is tuned close to the continuum
threshold of an open channel [44]. The two-channel model
reduces to a single-channel model only when the population
of the closed-channel molecule becomes negligible, which is
not always the case, particularly under SOC [40,41].

Recently, there have been several studies using two-channel
models for the characterization of spin-orbit-coupled Fermi
gases near a Feshbach resonance [40–43]. A particularly
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interesting finding is that the SOC can induce an additional
branch of the two-body bound state. While it has been reported
before that in the absence of SOC, two branches of the bound
state can be found near a Feshbach resonance for a Fermi gas
with positive background scattering length, the extra bound
state under negative background scattering length is purely
induced by SOC. The existence of this additional two-body
bound state should leave signatures on the many-body level.
Indeed, for a Fermi gas without SOC, a quantum phase
transition exists for a positive background scattering length,
which is intimately connected with the corresponding two-
body bound state [45]. We expect that similar phase transitions
may appear in a spin-orbit-coupled Fermi gas when the proper
two-channel resonant scattering process is considered.

In this work, we study an ultracold Fermi gas under
Rashba SOC close to a Feshbach resonance using a two-
channel model. We first confirm the two-body calculations in
Refs. [42,43], and study the branching of the two-body bound
state in the presence of a finite background scattering length.
For a positive background scattering length, the open channel
supports a bound state even in the absence of SOC, and the
two branches of the two-body bound state originate from the
avoided level crossing between the bound states in the open and
closed channels. For a negative background scattering length,
an SOC-induced bound state emerges in the open channel for
any finite SOC. The SOC-induced bound state then couples
with the bound state in the closed channel, also leading to two
branches of bound state.

With these understandings, we characterize many-body
properties of the system using a Bardeen-Cooper-Schrieffer
(BCS) mean-field approach. As expected, we find two
branches of many-body solutions, i.e., the upper and the lower
branch, for any finite background scattering length. With a
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positive background scattering length, we find that the lower
branch is always bosonic with negative chemical potential,
i.e., essentially a condensate of tightly bound molecules.
A quantum phase transition exists in the upper branch,
across which the ground state of the Fermi gas changes
from a superfluid state to a normal state. The position of
the phase transition can be controlled by tuning the SOC
strength. We also notice that by tuning the interaction or the
SOC strength, a Bardeen-Cooper-Schrieffer to Bose-Einstein
condensate (BCS-BEC) crossover occurs in the upper branch.
With a negative background scattering length, the upper branch
emerges from the scattering threshold on the low-field side of
the Feshbach resonance via a quantum phase transition for any
finite SOC.

We discuss in detail the many-body properties of different
branches under various parameters and characterize the critical
detuning for the onset of the quantum phase transition. We
show that the results in this work, the quantum phase transi-
tions in particular, should best be observed in narrow Feshbach
resonances under appropriate SOC. While, experimentally,
only an equal mixture of Rashba and Dresselhaus SOC has
been realized in cold atomic gases [1–3], there have been
various proposals for realizing the Rashba-type SOC [39,46–
48]. With the recent experimental implementation of Feshbach
resonance in spin-orbit-coupled degenerate Fermi gases [4,5],
we expect that the SOC-induced quantum phase transition
reported here can be experimentally probed in the future.

The paper is organized as follows: in Sec. II, we introduce
the two-channel model for a Fermi gas under Rashba SOC
and close to a Feshbach resonance. In Sec. III, we study
the two-body bound-state solutions under a finite background
scattering length. In Sec. IV, we discuss in detail the many-
body ground state of the two-channel model using the standard
BCS mean-field theory. For a finite background scattering
length and a finite SOC, there are typically two branches of
the ground state, where a quantum phase transition can be
identified in the upper branch. We then characterize the critical
point of the quantum phase transition in Sec. V, and finally
summarize in Sec. VI.

II. TWO-CHANNEL MODEL

We consider a three-dimensional two-component Fermi gas
close to a Feshbach resonance under Rashba SOC. This system
can be described by a two-channel model,

H = H0 + HSOC + Hbf + Hint, (1)

where the terms take the following forms:

H0 =
∑

k,σ=↑,↓
εka

†
kσ akσ +

∑
q

(
γ + εq

2

)
b†qbq,

HSOC =
∑

k

α[(kx − iky)a†
k,↑ak,↓ + H.c.],

Hbf = g√
V

∑
k,q

(a†
k+q↑a

†
−k+q↓bq + H.c.),

Hint = U

V

∑
k,k′,q

a
†
k+q↑a

†
−k+q↓a−k′+q↓ak′+q↑.

Here, ak,σ (a†
k,σ ) is the annihilation (creation) operator for

atoms with pseudospin σ and momentum k, εk = �
2k2/2m

is the single fermion dispersion, bq(b†q) is the annihilation
(creation) operator for the closed channel molecules, α

is the Rashba SOC strength, V is the quantization vol-
ume, and H.c. stands for Hermitian conjugate. The bare
atom-molecule coupling rate g, the bare background in-
teraction rate U , and the bare detuning γ are connected
with the physical ones {gp,Up,γp} through the standard
renormalization relations: U = �Up, g = �gp, γ = γp −
�g2

p/Uc, where � = (1 + Up/Uc)−1, U−1
c = −∑

k 1/2εk,
and Up = 4π�

2abg/m, g2
p = 4π�

2abgWμco/m, and γp =
μco(B − B0) [49]. Here, abg is the background scattering
length in the open channel, W is the Feshbach resonance width,
μco is the magnetic moment difference between the closed and
open channels, and B − B0 is the magnetic field detuning with
B0 the Feshbach resonance point.

To be consistent with the experimental parameters, we
adopt the unit of energy as E0, and define the unit of the
momentum k0 and the unit of density n0 as

k0 =
√

2mE0

�2
, n0 = k3

0

3π2
. (2)

We then obtain a dimensionless version of the parameters in the
Hamiltonian, which will be used in the following discussion.

III. TWO-BODY BOUND STATES

In this section, we investigate the two-body bound-state
solution under the Hamiltonian given by Eq. (1). Due to
the presence of SOC, the relative motion of the fermions is
dependent on the c.m. motion. As a result, the bound-state
energy also acquires dependence on the c.m. momentum. For
the lowest-energy case of zero c.m. momentum, the two-body
bound-state wave function can be written as

|�〉 =
{
βb

†
0 +

∑
k

′[η↑↓(k)a†
k,↑a

†
−k,↓ + η↓↑(k)a†

k,↓a
†
−k,↑

+ η↑↑(k)a†
k,↑a

†
−k,↑ + η↓↓(k)a†

k,↓a
†
−k,↓

]}|0〉, (3)

where β and ησσ ′
denote the closed-channel and open-channel

coefficients, respectively, and the summation over momentum
space

∑′
k runs over half of the momentum space with ky > 0.

By solving the Schrödinger’s equation H |�〉 = E|�〉 and
matching coefficients, we obtain the equation for the two-body
binding energy E,[

Up − g2
p

γp − E

]−1

= S(α,E), (4)

where S(α,E) is defined as

S(α,E) ≡ 3π

8
√

2

[√−E − α√
2

arctanh

(
α√−2E

)]
. (5)

In Fig. 1, we plot typical results for the two-body binding
energy Eb ≡ E − Eth for both cases of positive and negative
background scattering lengths, where Eth = −α2/2 is the
threshold. In the absence of SOC [see Figs. 1(a) and 1(c)],
there are two branches of the bound-state solution for positive
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FIG. 1. (Color online) Two-body binding energy as a function of
detuning for (a),(b) positive background scattering length and (c),(d)
negative background scattering length. The results for a two-channel
model (solid red line) are compared with those from a single-channel
model (dashed blue line). Using the unit system defined within the
text, the dimensionless atom-molecule coupling constant gp = 7 for
all panels. Other parameters are (a) Up = 0.17, α = 0; (b) Up =
0.17, α = 5; (c) Up = −0.17, α = 0; and (d) Up = −0.17, α = 5.

background scattering length, while there is only one branch
for negative background scattering length. This is consistent
with the calculations of Ref. [45]. For finite SOC, an
additional branch of the bound state emerges for the case
with negative background scattering length [see Fig. 1(d)],
which is consistent with the results of Refs. [42,43]. As a
comparison, results obtained from a single-channel model with
corresponding parameters are also shown.

The position of the bound-state threshold in the upper
branch can be determined analytically for both cases of positive
and negative background scattering length, leading to

γc = −α2

2
+ g2

p

Up

. (6)

It is clear that the positions of the bound-state threshold in
both cases are pushed towards the BEC side of the Feshbach
resonance as the SOC strength increases. This is the direct
result of decreasing threshold energy with increasing SOC.

In the large-detuning limit, the binding energy in either
branch asymptotically approaches a common value Einf , which
is determined by the following equation:

Up = 16

3π

1√−2Einf − αarctanh(α/
√−2Einf)

. (7)

One can easily read from this result that Einf becomes more
negative with increasing SOC strength.

IV. MANY-BODY PAIRING STATES

In this section, we characterize the many-body properties
of the system at zero temperature. Following the standard BCS
mean-field theory, the effective Hamiltonian can be written in

a matrix form in the pseudospin basis {ak,↑,a
†
−k,↑,ak,↓a

†
−k,↓}T :

Heff − μN = 1

2

∑
k

⎡
⎢⎢⎢⎣

λk � 0 κ−
k

� −λk κ−
k 0

0 κ+
k −λk −�

κ+
k 0 −� λk

⎤
⎥⎥⎥⎦

+
∑

k

(εk + Uf ) + (γ − 2μ)|ψm|2

−U (|p|2 + f 2). (8)

Here, λk = εk − μ + Uf,κ±
k = α(kx ± iky), the order pa-

rameter � = gψm + Up, and the mean-field parameters are
defined as

ψm = 〈b0〉, p =
∑

k

〈a−k,↓ak,↑〉,

f =
∑

k

〈a†
k,↑ak,↑〉 =

∑
k

〈a†
k,↓ak,↓〉. (9)

Notice that the dimensionless total particle number N = 1 in
the unit system defined in Sec. II.

By diagonalizing the effective Hamiltonian given by Eq. (8)
and by imposing the renormalization condition with physical
parameters, we obtain the expression for the ground-state
thermodynamic potential at zero temperature,

� =
∑

k

[
εk − 1

2
(Ek,+ + Ek,−) + Uf

]

+ (γ − 2μ)|ψm|2 − U (|p|2 + f 2), (10)

where the quasiparticle dispersion Ek,± =
√

A2
k,± + �2, and

Ak,± = εk − μ + Uf ± αk⊥ with k⊥ =
√

k2
x + k2

z is defined
to simplify notation.

From the extrema conditions ∂�/∂f = 0, ∂�/∂p = 0,
∂�/∂ψm = 0, and the number equation N = −∂�/∂μ, we
have a set of self-consistent equations [41]:

ψm = − gpp

(γp − 2μ)
, 2f =

∑
k

(
1 − A+

2E+
− A−

2E−

)
,

1 =
(

Up − g2
p

γp − 2μ

) ∑
k

(
1

2εk
− 1

4Ek,+
− 1

4Ek,−

)
,

1 = 2f + 2|�|2
[
gp − (γp − 2μ)Up

gp

]−2

, (11)

from which the ground-state parameters can be determined.
Note that for the parameter regime discussed in this work, we
find that the influence on the chemical potential induced by
the Hartree term f remains negligible. Thus, the quasiparticle
dispersion can be approximated as

Ek,± ≈
√

(εk − μ ± αk⊥)2 + �2. (12)

Note that the self-consistent Eqs. (11) can be reduced to the
more familiar forms of the gap and number equations under
SOC in a single-channel model by setting gp = 0 [16]. We
also define the closed-channel fraction as

nb = 2|�|2
{[

gp − (γp − 2μ)Up

gp

]2}−1

, (13)
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FIG. 2. (Color online) The superfluid order parameter �, the shifted chemical potential μb ≡ μ + α2/4, and the molecular fraction nb

associated with (a)–(c) the upper-branch solution and (d)–(f) the lower-branch solution for the case of a positive background scattering length.
For all panels, dimensionless parameters are chosen as Up = 0.17, gp = 7, α = 1 (solid red line), Up = 0.14, gp = 5, α = 1 (dashed black
line), and Up = 0.1, gp = 2.5, α = 1 (dash-dotted blue line).

which will be used to describe the properties of the underlying
system.

A. Positive background scattering length

For the case of a positive background scattering length
abg > 0, there exists a weakly bound state in the open channel
away from the Feshbach resonance. As the magnetic field
is tuned close to the resonance point, the coupling between
the bound states in the open and the closed channels gives
rise to the two branches of the many-body solution in the
absence of SOC. Previous studies have shown the existence
of a quantum phase transition in the upper branch where the
many-body ground state changes from a superfluid state to
a normal state [45]. The qualitative picture remains valid in
the presence of SOC, where quantitative modifications can be
induced by the SOC. In Fig. 2, we map out various mean-field
quantities as functions of the detuning for several scattering
parameters.

In Figs. 2(a)–2(c), we show the results of order parameter,
the chemical potential, and the molecular fraction as functions
of detuning for the upper branch, which corresponds to the
weakly bound state in the two-body case. Here, the chemical
potential is plotted after subtracting the single-particle thresh-
old with SOC, i.e., μb ≡ μ + α2/4. An interesting feature
here is the existence of a quantum phase transition, whose
location can be identified as the detuning where the order
parameter approaches zero [see Fig. 2(a)]. As the resonance
width narrows, the location of the phase-transition point moves
towards the BEC side of the Feshbach resonance. Importantly,
with appropriate resonance width and SOC strength, the
location of the quantum phase transition point may cross the
Feshbach resonance and reach the BEC side, as we will show
in Sec. V. We also note that the shifted chemical potential μb in
the upper branch crosses zero on the BEC side of the resonance,
demonstrating the existence of a BCS-BEC crossover [see the
inset of Fig. 2(b)]. We show in Figs. 2(d)–2(f) the properties of
the lower branch, which corresponds to the deeply bound state
in the two-body case. It is apparent that the shifted chemical
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FIG. 3. (Color online) The superfluid order parameter �, the shifted chemical potential μb ≡ μ + α2/4, and the molecular fraction nb

associated with (a)–(c) the upper-branch solution and (d)–(f) the lower-branch solution for the case of a negative background scattering length.
Dimensionless parameters used in this figure are Up = −0.17, gp = 7, α = 5 (solid red line), Up = −0.14, gp = 5, α = 5 (dashed black
line), and Up = −0.1, gp = 2.5, α = 5 (dash-dotted blue line).
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potential stays negative with an order parameter approaching
finite values in both the weak- and strong-coupling limit.
Physically, the solution in the lower branch corresponds to
a condensate of tightly bound molecules, which become
rashbons in the large SOC limit [12].

B. Negative scattering length

We now turn to the case with negative background
scattering length abg < 0. In the absence of SOC, there is
only one branch of the many-body solution, which features a
BCS-BEC crossover as the interaction strength is tuned [45].
When SOC is turned on, however, this picture is drastically
modified. Similar to the two-body case, an additional branch
(upper branch) of many-body solution emerges. Interestingly,
a quantum phase transition can also be identified in this upper
branch.

In Figs. 3(a)–3(c), we show the results of the order
parameter, the shifted chemical potential, and the molecular
fraction as functions of detuning for the upper branch. Here,
the location of the quantum phase transition is pushed towards
the BEC limit with increasing SOC strength or Feshbach
resonance width, and the shifted chemical potential μb remains
positive for arbitrary detuning. In Figs. 3(d)–3(f), we show the
same quantities for the lower branch. Notice that there is no
quantum phase transition in this branch, as the order parameter
is always finite. For small SOC, the shifted chemical potential
is positive in the BCS limit, indicating the existence of a Fermi
surface. Hence, the system in the lower branch undergoes a
BCS-BEC crossover as the interaction becomes stronger or as
the SOC strength increases.

V. QUANTUM PHASE TRANSITION

In previous sections, we see that the quantum phase
transition in the upper branch is intimately connected with
the SOC. For positive background scattering length, SOC
can modify the location of the phase-transition point, while
for negative background scattering length, the quantum phase
transition is induced by SOC. In this section, we discuss in
detail the dependence of the phase-transition point on various
parameters.

The condition for the onset of this quantum phase transition
can, in fact, be obtained analytically by examining the gap and
the number equations (11). At the critical detuning where the
quantum phase transition occurs, we have � = 0. For the upper
branch, regardless of the sign of the background scattering
length, this is only possible when the right-hand side of the
gap equation also tends to infinity as the quantum critical point
is approached. Therefore, at the critical point, the denominator
of the left-hand side of the gap equation must vanish, leading to

Up = g2
p

γ c
p − 2μ

. (14)

Here, γ c
p is the critical detuning of the quantum phase

transition point in the upper branch. Similarly, the number
equation at the critical point takes the form

1 =
∑

k

(
1 − A′

k,+
2|A′

k,+| − A′
k,−

2|A′
k,−|

)
, (15)
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FIG. 4. (Color online) Critical detuning γ c
p for the quantum phase

transition in the upper branch as functions of gp and α. Dimensionless
parameters used in these plots are (a) α = 2, Up = 0.06; (b) α =
5, Up = −0.06; (c) gp = 0.5, Up = 0.06; and (d) gp = 0.5, Up =
−0.06.

where A′
k,± = εk − μ ± αk⊥. From these equations, we see

that SOC only affects the quantum critical point through the
chemical potential μ.

We show in Fig. 4 the phase-transition point in the upper
branch as functions of the scattering parameter gp and the SOC
strength. For a fixed background interaction rate Up, the width
of the Feshbach resonance typically narrows with decreasing
gp. For a positive background scattering length, the critical
detuning can be made to cross the resonance point when either
the resonance width or the SOC strength is tuned [see Figs. 4(a)
and 4(c)]. For systems with negative background scattering
length, however, the critical point is always lying on the BEC
side of the Feshbach resonance in any realistic situation. By
choosing a narrow resonance with small SOC strength, this
quantum phase transition can be tuned closer to the resonance
points, as can be seen in Figs. 4(b) and 4(d). This observation
suggests that for the experimental observation of this quantum
phase transition, a system with narrow Feshbach resonance
under moderate SOC strength should be preferred.

VI. SUMMARY

We have studied a spin-orbit-coupled ultracold Fermi gas
near a Feshbach resonance by using a two-channel model.
We find that under a finite SOC and with a finite background
scattering length, there are, in general, two branches of solution
for both the two-body and the many-body ground states. This
is in contrast to the conventional BCS-BEC crossover picture,
where the background scattering length is typically neglected,
and is different from the case without SOC, where the upper-
branch solution only exists for a positive background scattering
length. As a result, for a negative background scattering
length, the bound state in the open channel is purely SOC
induced. These lead to the interesting situation that a quantum
phase transition exists in the upper branch of the many-body
solution. The location of the quantum phase transition can
be tuned by the SOC strength, or by choosing Feshbach
resonances with different resonance widths. In particular, the
critical point of the quantum phase transition can be tuned
close to or across the resonance point, where the Fermi gas is
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most stable against three-body losses. It is therefore hopeful
that such phase transitions can be observed in experiments.
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[46] D. L. Campbell, G. Juzeliūnas, and I. B. Spielman, Phys. Rev.

A 84, 025602 (2011).
[47] Z. F. Xu and L. You, Phys. Rev. A 85, 043605 (2012).
[48] B. M. Anderson, I. B. Spielman, and G. Juzeliūnas, Phys. Rev.
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