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Dephasing-assisted parameter estimation in the presence of dynamical decoupling
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We study the dephasing-assisted parameter estimation precision (PEP) enhancement in an atom interferometer
with dynamical decoupling (DD) pulses. Through calculating the spin squeezing (SS) and the quantum Fisher
information, we find that dephasing noise can improve PEP by inducing SS, and the DD pulses can maximize
the improvement. It is indicated that when using the DD pulse the dephasing-induced SS can reach the limit of
“one-axis twisting” model ξ 2 � N−2/3 with ξ 2 being the SS parameter and N the number of atoms. In particular,
we find that the DD pulses can amplify the dephasing-induced quantum Fisher information by a factor of �N/2
compared with the noise-free case, which means that under the control of DD pulses, the dephasing noise can
enhance the precision of parameter estimation to the scale of

√
2/N , the same scale of the Heisenberg limit

(1/N ).
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I. INTRODUCTION

Atom interferometry has attracted much attention because
of its potential applications in quantum metrology [1–9].
Atomic Bose-Einstein condensates (BECs) are viewed as the
ideal sources for an atom interferometer, due to their unique
coherence properties and the possibility to yield controlled
nonlinearity [10,11]. The nonlinearity of BECs caused by
interatomic interactions can create squeezed states [12–17],
which can improve the precision of parameter estimation
(PPE).

The ability of BECs to create highly squeezed states
and serve as nonlinear interferometers, whose precision
exceeds the standard quantum limit (SQL) achieved with
coherent spin states (CSS), has been demonstrated in two
recent experiments [4,5]. However, the atom-atom nonlinear
interaction strength caused by s-wave scattering is usually
very small when the modes of the BEC have a spatial over-
lap [4,5,8]. Such nonlinearity enhancement currently resorts
to the use of Feshbach resonances [4] or spatially separating
the components of BEC [5], but the price of these methods is
significantly increased atom losses, limiting the achievable
squeezing. In Ref. [6], the authors proposed an approach
to drastically enhance the nonlinear dynamics of the BEC
based on collisions of the BEC with a thermal reservoir. This
enhanced nonlinear interaction stems from the decoherence
noise, which implies that the reservoir noise can also be
regarded as a resource to improve the parameter estimation
sensitivity. However, it is well known that the decoherence
typically plays a coherence-destructive role which is one of
the main obstacles to producing certain spin-squeezed states.
Much research showed that the decoherence may prevent
the production of certain spin-squeezed states and limit the
precision of quantum metrology [18–24]. Thus, it is important
to suppress the coherence-destructive role but at the same time
maintain the decoherence-induced nonlinearity interaction if
one wants to obtain a strong squeezing and improve PPE.
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The dynamical decoupling (DD) technique [25–34], which
has been widely employed in the area of quantum informa-
tion, provides an active way to fight against decoherence.
Recently, this technique has also been introduced into the
field of magnetometers to improve the sensitivity of oscillating
magnetic fields based on nitrogen-vacancy centers [35–38].
Combining the DD technique with quantum metrology can
preserve PPE in noisy systems by suppressing the decoherence
effect [34]. Thus a natural question arises: Is it possible to
realize decoherence-enhanced PPE under the DD pulses?

In this paper, we give a positive answer to the above
question by investigating the influence of the DD pulses
on the spin squeezing (SS) and quantum Fisher information
(QFI) [16,39–45], which are two important quantities relevant
in parameter estimation [16,44]. We compare the effects
of two different DD-pulse sequences: periodic DD (PDD)
sequence [25,26] and Uhrig DD (UDD) sequence [28,29].
Our findings show that both these sequences can effectively
suppress the coherence-destructive role while maintaining the
decoherence-induced nonlinearity interaction. It is also found
that in contrast to the PDD sequence the UDD sequence can
work more efficiently, which can enhance the decoherence-
induced SS to the limit of ξ 2 � N−2/3 [14,15] more easily,
where ξ 2 is the SS parameter and N is the number of atoms.
In particular, we find that it is possible for the UDD sequence
to amplify the QFI by a factor of �N/2 compared with the
initial CSS in the case of pure dephasing. It means that the
dephasing-assisted sensitivity of the estimated parameter can
be enhanced from the SQL 1/

√
N to

√
2/N , which approaches

nearly Heisenberg-limited precision (1/N) [46,47].
This paper is organized as follows. In Sec. II, we introduce

our physical model and Hamiltonian under control pulses. We
then investigate the dynamical evolution of the BEC system
in the dephasing environment with two different DD-pulse
sequences. In Sec. III, we study the effects of DD pulses on the
SS enhancement. In Sec. IV we discuss the dephasing-assisted
QFI amplification by using the DD pulses. It is found that the
UDD pulses can greatly amplify the QFI and enhance the PPE
to the scale of Heisenberg limit. Finally, we conclude this work
in Sec. V.
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II. DEPHASING IN TWO-COMPONENT BOSE-EINSTEIN
CONDENSATE SYSTEM WITH DD-PULSE SEQUENCES

In this section, we present the model used to study a
two-component BEC interacting with an external field in a
dephasing reservoir which models the effect of background
thermal atoms on the two-component BEC. We investigate
the dynamical evolution of the two-component BEC in the
dephasing reservoir under two different DD-pulse sequences:
PDD sequence and UDD sequence. The two-component BEC
system under our consideration is available from several
recent experimental systems properly involving two different
magnetic sublevels of an atom [4,5,48,49].

A. Model and Hamiltonian

We consider a two-component BEC in two different hyper-
fine states |A〉 and |B〉 coupled by a Raman laser or microwave
field. Under the resonant condition, the Hamiltonian of this
system is given by [50]

HS = HA + HB + HE, (1)

Hi =
∫

dx ψ̂
†
i (x)

[
− ∇2

2m
+ Vi(x)

+
∑

j

Uij

2
ψ̂

†
j (x)ψ̂j (x)

]
ψ̂i(x),(i,j ) = (A,B), (2)

HE = 1

2

∫
dx[�ψ̂

†
A(x)ψ̂B(x) + �∗ψ̂†

B(x)ψ̂A(x)], (3)

where ψ̂i(x) and ψ̂
†
i (x) are the atomic field operators in the

hyperfine state |i〉 (i = A,B), which annihilate and create
atoms at position x, respectively. The trapping potential for
atoms in state |i〉 is denoted by Vi(x) and their mass is m.
The interaction strengths are given by UAA,UBB , and UAB

for collisions between particles in state |A〉, state |B〉, and
interspecies collisions, respectively. � is the effective Rabi
frequency. It should be pointed out that here we neglect
the effects of three-body recombination [51–56], which is
the intrinsic particle loss mechanism of BEC, and strong
dependents on the s-wave scattering length, atom density,
and external magnetic field. In fact, when the system with
low densities is far away from a Feshbach resonance regime,
the effects of the three-body recombination can be neglected
in comparison to Uij [55]. Furthermore, these effects can be
inhibited by using an external magnetic field or resonant laser
pulses [55].

For a weakly interacting BEC at low temperature the
thermally excited atoms and the quantum depletion are
negligible, and the motional state is frozen to be approximately
the ground state. One may neglect all modes except for
the condensate mode and take the so-called single-mode
approximation of the atomic field operators as ψ̂A(x) ≈
aϕA(x) and ψ̂B(x) ≈ bϕB(x), where ϕi(x) (i = A,B) is a
normalized wave function for the atoms in the BEC in the
internal state |i〉, and a and b are usual bosonic annihi-
lation operators which obey bosonic commutation relations
[a,a†] = 1, [b,b†] = 1, [a,b†] = 0, and [a,b] = 0. Under the
single-mode approximation Hamiltonian (1) can be written

as [57,58]

HS = ωAa†a + ωBb†b + �

2
(a†b + ab†)

+uABa†ab†b + uAA

2
a†2a2 + uBB

2
b†2b2, (4)

where the relevant parameters are given by

ωi =
∫

dx ϕ∗
i (x)

[
− ∇2

2m
+ Vi(x)

]
ϕi(x) (i = A,B),

uij = Uij

∫
dx|ϕi(x)|2|ϕj (x)|2 (i,j = A,B), (5)

� = �

∫
dx ϕ∗

A(x)ϕB(x).

We define the angular momentum operators in terms of the
BEC operators in the usual way: Jx = (a†b + ab†)/2, Jy =
(ab† − a†b)/(2i), and Jz = (b†b − a†a)/2; the Hamiltonian
of the two-component BEC given by Eq. (4) reduces to the
“one-axis twisting” (OAT) Hamiltonian [14]

HS = �Jx + λJz + χJ 2
z , (6)

where the relevant parameters are given by

λ = ωB − ωA + (uBB − uAA)(N̂ − 1)/2,
(7)

χ = (uBB + uAA − 2uAB)/2.

Here we have neglected the constant energy shift, which
depends on the number operator N̂ = a†a + b†b. In Eq. (7), χ
is the effective nonlinearity arising from intra- and interspecies
interaction, determined by the s-wave scattering lengths uij

(i,j ) = (A,B).
It is interesting to note that the OAT Hamiltonian (6) has

been realized by two groups [4,5] in two nice experiments
on quantum metrology based on two-component BECs. In
these experiments, three scattering lengths uij (i,j ) = (A,B)
are very close. The ratio of three scattering lengths is uAA :
uBB : uAB = 100 : 97.7 : 95 in experiments [4], and uAA :
uBB : uAB = 100.4 : 95.0 : 97.7 in experiments [5]. It results
in only a very small effective nonlinear interaction denoted by
χJ 2

z which can be neglected when the system is in the Rabi
regime with χN/� � 1. It should be pointed out that χ � 0
indicates that intraspecies nonlinear interactions cancel out
interspecies nonlinear interactions in the two-component BEC.
This does not imply the neglect of interatomic interactions
in the two-component BEC in our model. This point can
be easily seen from Eq. (7) which indicates χ � 0 when
uBB + uAA � 2uAB .

We next investigate the effects of decoherence on the BEC
system. For the BEC system under our consideration the
dominant source of decoherence is due to the background
atoms [50,57–60]. There are two relevant types of two-body
interaction between the condensed and background atoms:
elastic interactions which preserve the number of condensate
atoms and inelastic interactions which do not. The former
produces phase damping, i.e., dephasing, and dominates when
there is only a small number of thermal atoms with sufficient
energy to knock atoms out of the condensate, that is, for
temperatures low enough that the fugacity is small compared
to 1 [59].
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Here we give a brief analysis about the temperature
limitations of the negligible particle-number fluctuations δ2N0

[61–64] in our model, with N0 being the average particle num-
ber in condensate. When the temperature T is below the critical
temperature Tc, for ideal Bose gas confined in a harmonic
trap, there is a very good approximation for the particle-
number fluctuations in the condensate [61]: 〈δN2

0 〉IBG =
π2

6ζ (3)N (T/Tc)3 [here N is the total atom number considered
and ζ (3) ≈ 1.202 is the Riemann zeta function [62]]. This
analytic expression can give us the request of the temperature
to neglect the effects of particle-number fluctuations. In our
model, it is clear that we should request δN0/N0 � 1. From
N0/N = 1 − (T/Tc)3, we have the following requirement for
the temperature of the system: (T/Tc)3/2/[1 − (T/Tc)3] �√

6ζ (3)N/π . For an ultracold atomic system with N the order
of ∼103, when T/Tc < 0.5 the above request can be always
satisfied. Note that for microcanonical the particle-number
fluctuations can be further reduced, and hence our scheme can
work better [64].

Hence, in the above temperature limitations, we can only
consider the effects of dephasing. We model the reservoir of the
condensed atoms by the use of a system of harmonic oscillators
with the creation and annihilation operators c

†
k and ck [6]. The

Hamiltonian of the reservoir is given by

HR =
∑

k

ωkc
†
kck, (8)

where ωk is the frequency of the oscillator for the kth reservoir
mode. The dephasing-interaction Hamiltonian between the
BEC and the reservoir can be described by [6,32,65–67]

HI = Jz

∑
k

gk(c†k + ck), (9)

which describes the dephasing interaction induced by elastic
collisions between the BEC atoms and background atoms or
phonons.

Below, we show that the coherence-destructive effect
produced by the dephasing interaction can be suppressed while
preserving the decoherence-induced nonlinearity interaction
by the use of DD-pulse sequences. A DD-pulse sequence
consists of n DD π pulses, which split the total time interval
t into n + 1 small intervals tj with t0 = 0 and tn+1 = t .
Each ideal DD π pulse corresponds to �(τ ) = �0δ(τ − tj )
and

∫ tj +σ

tj −σ
�(s)ds = π with τ ∈ [0,t] and σ → 0, which

transforms eiπJx Jze
−iπJx = −Jz at time tj .

In the interaction picture with respect to HR , the total
Hamiltonian with DD pulse is

HI (τ ) = λε(τ )Jz+χJ 2
z + ε(τ )Jz

∑
k

gk(b†ke
iωkτ + bke

−iωkτ ),

(10)

where the switch function ε(τ ) changes the sign of Jz (i.e.,
Jz → −Jz) at time tj , which is denoted by

ε(τ ) =
n∑

j=0

(−1)j θ (τ − tj )θ (tj+1 − τ ), (11)

with θ (x) the Heaviside step function.
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FIG. 1. (Color online) Comparison of dynamical behaviors of
functions R(t) and |�̃(t)| ≡ |�(t) + χt | under two different DD-
pulse sequences. Relevant parameters are chosen as coupling strength
α = 0.02, χ = 0.01, and temperature T = 0.5ωc < 0.5Tc.

Thus, the time evolution operator can be obtained by using
Magnus expansion [6,68]

U (t) = T+ exp

[
−i

∫ t

0
HI (t ′)dt ′

]

= exp
{−i

[
φ(t)Jz + �̃(t)J 2

z

]}
V (t) (12)

with T+ the time ordering, where φ(t) = ∫ t

0 λε(τ )dτ , and

�̃(t) ≡ �(t) + χt,

�(t) =
∑

k

g2
k

∫ t

0
dτ

∫ τ

0
dτ ′ε(τ )ε(τ ′) sin ωk(τ ′ − τ ), (13)

V (t) = exp

[
Jz

∑
k

(αkb
†
k − α∗

k bk)

]
,

with the amplitudes αk = −igk

∫ t

0 eiωkτ ε(τ ) ds. Here �(t) is
the noise-induced nonlinearity interaction, and for small χt we
have �(t) ≈ �̃(t), which means that the nonlinear effect can
be drastically enhanced by the dephasing noise [see Fig. 1(b)].

B. System dynamical evolution under DD-pulse sequences

Now, we investigate the dynamical evolution of the BEC
system, which suffers from dephasing noise with the DD-pulse
sequences. Assuming that the initial state (t = 0) of the total
system is given by

ρT (0) = |�(0)〉S 〈�(0)| ⊗ ρB, (14)
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where |�(0)〉S =∑m cm(0) |j,m〉 is the CSS, with the prob-
ability amplitudes cm = 2−j (Cj+m

2j )1/2 and total spin j =
N/2 for a system consisting of N condensate atoms. Such
a state is the optimal initial state to obtain the strongest
squeezing [14,15]. In Eq. (14), ρB is the thermal equilibrium
state of the reservoir, defined by

ρB = �k[1 − exp(−βωk)] exp(−βωkb
†
kbk), (15)

with β the inverse temperature (β = 1/kBT ; hereafter we set
the Boltzmanm constant kB = 1).

Based on Eq. (12), the time-evolution reduced matrix
elements of the BEC system can be determined from the
relation

ρS
jm,jl(t) = TrB[〈j,m| U (t)ρ(0)U−1(t) |j,l〉]

= e−iφ(t)(m−l)e−i(m2−l2)�̃(t)e−(m−l)2R(t)ρjm,jl(0).

(16)

In Eq. (16), the decoherence function with n DD pulse (see
Appendix A for details)

Rn(t) =
∫ ∞

0
dω Fn(ω,t)G(ω) (17)

is the overlap integral of the filter function

Fn(ω,t) = 1

2ω2

∣∣∣∣∣∣1 + (−1)n+1eiωt + 2
n∑

j=1

(−1)j eiωtj

∣∣∣∣∣∣
2

, (18)

and the temperature-dependent interacting spectrum

G(ω) = J (ω)[2n(ω) + 1] = J (ω) coth(βω/2), (19)

where J (ω) is the spectral density and n(ω) = [exp(βω) −
1]−1 is the bosonic distribution function of the heat reservoir.

Substituting the spectral density J (ω) =∑k g2
k (ω − ωk)

into Eq. (13), then the noise-induced nonlinear term with n

DD pulse can be rewritten as (see Appendix B)

�n(t) =
∫ ∞

0
dω J (ω)fn(ω,t), (20)

with

fn(ω,t) = ϑn(ω,t) + μn(ω,t) − t/ω,

ϑn(ω,t) = 1

ω2

[
2

n∑
m=1

(−1)m sin(ωtm) + (−1)n+2 sin(ωt)

]
,

μn(ω,t) = 2

ω2

{
n∑

m=1

m∑
j=1

(−1)m+j (sin[ω(tm+1 − tj )]

− sin[ω(tm − tj )])

}
, (21)

which is temperature independent. Note that the result attained
in the above equation is more complex than that in Ref. [28]
for the single-qubit DD case.

When restricting our discussion in the one-dimensional
trap, then the spectral density of the heat reservoir can be
expressed in the Ohmic form

J (ω) = αωe−ω/ωc , (22)

where α is the coupling strength between the system and the
reservoir and ωc is the cutoff frequency. According to Eqs. (17)
and (20), we find in the absence of control (n = 0) [67,69,70],

R0(t) = α

∫ ∞

0
dω ωe−ω/ωc coth(βω/2)

1 − cos(ωt)

ω2
,

(23)
�0(t) = α[arctan(ωct) − ωct],

where the decoherence function R(t) can be further reduced
as

R0(t) = α

{
1

2
ln
(
1 + ω2

c t
2
)+ ln

[
β

πt
sinh(πt/β)

]}
(24)

in the low temperature case (βωc � 1).
For the PDD sequences, in which the π pulse is applied at

equidistant intervals

tPDD
j = j t/(n + 1), (25)

the modulation spectrums Fn(ω,t) and fn(ω,t) in Eqs. (17)
and (20) can be, respectively, given by [28]

F PDD
n (ω,t) = tan2[ωt/(2n + 2)][1 + (−1)n cos(ωt)]/ω2,

f PDD
n (ω,t) = 2(−1)n+1 sin(ωt) + ωt

ω2

+ 2 tan

(
ωt

2n + 2

)
(−1)n cos(ωt) − n

ω2

+ tan2

(
ωt

2n + 2

)
(−1)n sin(ωt)

ω2
. (26)

Whereas for the UDD sequences [28]

tUDD
j = t sin2 [jπ/(2n + 2)] , (27)

the filter function is

F UDD
n (ω,t) ≈ 8(n + 1)2J 2

n+1(ωt/2)/ω2, (28)

where Jn(x) is the Bessel function and has (n + 1)J 2
n+1(x) ∝

[x/(n + 1)]2n+2 manifesting the effects of the vanishing
leading derivatives [28]. The function f UDD

n (ω,t) can also be
attained by inserting tUDD

j into Eq. (21).
It is worth noting that although both the functions of R(t)

and �(t) stem from environment noise, they play different
roles. In other words, �(t) can induce the quantum correlation
in the system, while R(t) destroys it. These results imply
that if one wants to make full use of the advantage of
environment noise to enhance the desired quantum correlation,
the coherence-destructive process must be suppressed. Fortu-
nately, from Fig. 1, it is found that the DD pulse can effectively
average the decoherence function R(t) nearly to zero, but does
not completely remove the noise-induced nonlinear term �(t)
[i.e., �̃(t) > χt].

Moreover, from Fig. 1 we can find that the UDD sequences
are more effective when used to suppress the decoherence
function R(t). The reason can be explained as follows. From
Eq. (26), it is clear that PDD can only eliminate F PDD

n (ω,t)
up to O(t2) for a short duration, which means RPDD(t) ∼
O(t2), while from Eq. (28) we find that UDD can eliminate
F UDD

n (ω,t) up to O(t2n+2) [i.e., RUDD(t)(ω,t) ∼ O(t2n+2)] for
a short duration, and only needs n pulses [28]. Thus, the UDD
sequences can greatly eliminate the coherence-destructive
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process when the same number of pulses are applied. In
fact, the UDD is the most efficient sequence to eliminate
pure dephasing, for that is the best way to make the first
n derivatives of ε(ω,t) vanish, while requiring only linear
number of pulses [28,29].

Next, we will investigate how to obtain the best squeezing
and QFI, which are two quantities relevant in interferometry,
in the presence of dephasing by using DD-pulse sequences.
Additionally, we also demonstrate the advantage of UDD
sequences.

III. SPIN SQUEEZING IN THE PRESENCE OF
DEPHASING UNDER DD-PULSE SEQUENCES

In this section, we shall evaluate the magnitude of the SS,
and demonstrate how to improve it in the presence of dephasing
by employing the DD schemes considered above. To quantify
the degree of SS, we introduce the SS parameter given by
Kitagawa and Ueda [14]:

ξ 2 = 4(�J�n⊥ )2
min

N
, (29)

where (�J�n⊥ )min represents the minimal variance of the spin
component, which is over all directions denoted by �n⊥,
perpendicular to the mean spin direction.

With the use of Eq. (16), we can obtain the degree of SS for
the initial state given in Eq. (14) in the case of pure dephasing
noise

ξ 2 = 1 + N − 1

4
(A −

√
A2 + B2), (30)

in the optimally squeezed direction ψopt = [π +
tan−1(B/A)]/2, where

A = 1 − cosN−2[2�̃(t)] exp[−4R(t)],
(31)

B = −4 sin[�̃(t)] cosN−2[�̃(t)] exp[−4R(t)].

Compared with Refs. [14,15], the controllable decoherence
function R(t) is introduced and the scaled time χt is replaced
by �̃(t) in the above equations. From Eqs. (30) and (31), we
can clearly find again that dephasing noise plays two roles: On
one hand, it can generate the SS by enhancing the nonlinear
interaction in �̃(t). In particular, when χ � 0 the SS is mainly
generated by the noise-induced nonlinearity interaction �(t);
on the other hand, it degrades the degree of SS via the
decoherence function R(t). However, from Eqs. (17), (26),
and (28), it is found that if t/(n + 1) → 0, we have R(t) → 0,
then the coherence-destructive effect is suppressed. Therefore,
in the short-time limit and the large particle number limit
(N � 1), the best squeezing can be approximated as

ξ 2
min � 3

2N

(
N

3

)1/3

� N−2/3, (32)

which is the well-known result appearing in Refs. [14,15] for
the ideal noise-free case.

To clearly observe the effects of the DD pulses on SS, a
comparison of the consequence for two different DD schemes
on the dynamics of SS is given in Fig. 2. It indicates that both
these DD sequences can effectively improve the magnitude of
squeezing, and the UDD pulses work more efficiently than the

10−1

100

ξ2

(a)

0 2 4 6 8

10−1

100

ωct

(b)

ξ2

n= 0
n= 2
n= 4
n= 6

PDD

UDD

ξ2
min

ξ2
min

FIG. 2. (Color online) Spin squeezing ξ 2 with respect to scaled
time ωct for the (a) PDD sequence and (b) UDD sequence with
different numbers of control pulse n. Relevant parameters are chosen
as N = 100,χ = 0.01,α = 0.02, and T = 0.5ωc < 0.5Tc. Here ξ 2

min

is the approximations given in Eq. (32).

PDD pulses when they are used to enhance the SS; for the
fixed pulse number the better squeezing can be obtained by
applying a UDD pulse sequence. From Fig. 2, we can see that
the strongest squeezing ξ 2

min for OAT given in Eq. (32) can be
obtained if the number of DD pulses is large enough. This is an
interesting phenomenon since this squeezing limit is usually
thought to be achieved only in the ideal noise-free OAT case,
but we find that it can be reached by the environment noise
with DD-pulse sequences.

The SS characterizes the sensitivity of a state with respect
to SU(2) rotations and has been studied in quantum metrology,
which showed that the SS is a useful resource to improve PPE.
Dephasing can induce the squeezing, which means that the
dephasing noise also can be regarded as a resource to enhance
the PPE, when self-interaction χ is very small.

IV. DEPHASING-ASSISTED QFI AMPLIFICATION
IN THE PRESENCE OF DD PULSES

To better understand the behaviors of dephasing-assisted
enhancement of parameter sensitivity, we evaluate the QFI F ,
which gives a theoretical-achievable limit on the precision of
an unknown parameter θ via Cramér-Rao bound

�θmin = 1√
υF

, (33)

with υ the number of measurements. Below, we set υ = 1 for
simplicity.
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According to Refs. [8,42–45], the QFI F with respect to θ ,
acquired by an SU(2) rotation, can be explicitly derived as

F [ρ(θ,t),J�n] = Tr
[
ρ(θ,t)L2

θ

] = �nC�nT , (34)

where

ρ(θ,t) = exp(−iθJ�n)ρ(t) exp(iθJ�n) (35)

and the matrix element for the symmetric matrix C is

Ckl =
∑
i �=j

(pi − pj )2

pi + pj

[〈i|Jk|j 〉〈j |Jl|i〉 + 〈i|Jl|j 〉〈j |Jk|i〉],

(36)

where pi(|i〉) are the eigenvalues (eigenvectors) of ρ(θ,t).
In particular, if ρ is a pure state, the above matrix can be

simplified as [42–45]

Ckl = 2 〈JkJl + JlJk〉 − 4 〈Jk〉 〈Jl〉 . (37)

From Eq. (34), one finds that to get the highest possible
estimation precision �θ , a proper direction �n should be chosen
for a given state, which maximizes the value of the QFI. With
the help of the symmetric matrix, the maximal QFI can be
obtained as

Fmax = λmax, (38)

where λmax is the maximal eigenvalues of C. And for the initial
CCS we have F CSS

max = N , then �θmin = 1/
√

N , which reaches
SQL.

As discussed in the previous sections, the DD pulses
can decouple the state of the system from environment by
averaging the decoherence function R(t) to zero. To further
check its consequence, here we introduce the purity of a
quantum state, which is defined by

P (ρ) ≡ Tr(ρ2). (39)

The quantum state is pure if its purity takes the maximum value
1, while it is the maximally mixed state ρm ≡ I/D if its purity
takes the minimum value 1/D with D being the dimension of
the quantum system [71].

In Fig. 3, we give a comparison of the effects between UDD
and PDD sequences for different values of α on protecting the
purity of the quantum state. Figure 3 indicates the advantage
of the UDD sequence in preserving the purity of a quantum
state. In contrast to the PDD pulses, the UDD pulses can
preserve the maximum value of purity for a longer time and
the behavior for different couplings α does not change as
obviously as in the case of PDD pulses. This feature of a UDD
pulse means it has a long preservation time for maximal purity
even with large coupling. Thus, we can obtain a pure state
[P (ρ) = 1] at certain times if the UDD pulses are applied.
Figure 3 also indicates that a larger number of UDD pulses
conduces longer preservation time of pure state, which implies
that the coherent-destructive effect can be nearly completely
suppressed.

We now investigate the influences of the number of UDD
pulses as well as the temperature on the QFI amplification rate.
Based on Eqs. (34)–(38), the maximal QFI amplification rate
with respect to the initial state can be defined as

η = Fmax/F
CSS
max = λmax/N. (40)
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FIG. 3. (Color online) Purity defined in Eq. (39) vs time ωct for
different numbers of DD pulse with T = 0.5ωc < 0.5Tc, N = 100,
and χ = 0.05. Solid (red) curves are for the UDD sequence and
dashed (black) curves are for the PDD sequence. From the bottom to
the top, the curves correspond to α = 0.05,0.02, and 0.01.

In Fig. 4, we plot the QFI amplification rate η as a function
of scaled temperature T/ωc for various numbers of UDD
pulses. From Fig. 4(a) to Fig. 4(c), we can see that the QFI
amplification rate significantly increases and its temperature
dependence can be significantly suppressed with the number
of UDD pulses. As can be seen, in the absence of DD pulses
the amplification rate η decreases when increasing the scaled
temperature T/ωc [see Fig. 4(a)]. However, when increasing
the number of DD pulses, η becomes insensitive to the change
of T/ωc. In particular, when increasing the number of DD
pulses, the QFI amplification rate η increases gradually. As
shown in Fig. 4(c), when n = 15 we can obtain the largest η

and its value is almost independent of the temperature. These
results can be explained as follows.

From Eq. (17) and Fig. 1(a) we can see that when the
number of DD pulses is sufficiently large, the temperature-
dependent term R(t) is suppressed with R(t) → 0. Hence the
states given in Eq. (16) can approach a pure state with P (ρ) →
1. In this case, based on Eqs. (37), (38), and (40) we can obtain
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c
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n = 15, α =  0.05, ω
c
t = 4

FIG. 4. (Color online) QFI amplification rate η ≡ Fmax/N as a
function of scaled temperature T/ωc (ωc > 2Tc) for various numbers
of UDD pulse: (a) n = 0, (b) n = 10, and (c) n = 15. Other relevant
parameters are chosen as N = 100,ωct = 4, χ = 0.01, and α = 0.05.
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the explicit form of the maximal QFI amplification rate (see
Appendix C):

η(N,t) = max

{
1 + N − 1

4
(A′

+ +
√

A′2+ + B ′2) ,

1 + N − 1

2
A′

− − N cos2N−2[�̃(t)]

}
, (41)

with

A′
± = 1 ± cosN−2[2�̃(t)],

(42)
B ′ = −4 sin[�̃(t)] cosN−2[�̃(t)].

Clearly, Eq. (41) is independent of temperature T . Therefore,
we can conclude that the QFI amplification rate can be
significantly enhanced and the temperature influence can be
sufficiently suppressed through increasing the number of UDD
pulses.

Now we examine the validity of Eq. (41) in the presence of a
UDD pulse. In Fig. 5(a), we compare the QFI amplification rate
η versus scaled time ωct between the analytical results given in
Eq. (41) and the numerical results of actual states with a fixed
UDD pulse (n = 20). It can be seen from Fig. 5(a) that the
analytical results are in good agreement with the numerical
results in the pure state regimes (ωct < 5). Figure 5(a) also
indicates that large amplification rate η can be easily reached
for large α by using UDD pulses. And the amplification rate η

is �50 with respect to the initial state (CSS) when α = 0.05
and N = 100. Another interesting behavior is that the large α
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FIG. 5. (Color online) (a) QFI amplification rate η vs the scaled
time ωct for different values of coupling strength α with the number
of atoms N = 100. The solid lines are the analytical results of the
pure state, while the solid circles lines present the numerical results of
Eq. (40). In the pure states regime they fit well. (b) QFI amplification
rate η as a function of atom number N at fixed time ωct = 4 with
α = 0.05. Here the self-interaction is χ = 0.01, the temperature is
set as T = 0.1ωc, and the number of UDD pulses is n = 20.

(such as α = 0.05) can maintain the QFI unchanged until the
quantum state into the mixed states regime. In the mixed states
regime the amplification rate is reduced, which implies that
a larger number of UDD pulses is needed to extend the pure
states preservation time, if one wants to maintain the maximal
steady amplification rate.

The QFI amplification rate η as a function of atom number
N at fixed scale time ωct = 4 is given in Fig. 5(b). As shown,
the amplification rate is proportional to the atom number N ,
and the scale factor is �1/2. It indicates that the amplification
rate given in Eq. (41) has the maximum approximation value
ηmax(N ) � N/2, thus the maximal QFI is Fmax � N2/2 in this
case.

According to the quantum Cramér-Rao theorem, we know
that the larger the QFI, the higher the precision of estimation
is obtained. Thus, the dephasing-induced amplified QFI can
greatly improve the parameter estimation precision; the best
result is that it can enhance the phase sensitivity from SQL
�θmin = 1/

√
N to �θmin = √

2/N , which is the same order
of magnitude of the Heisenberg limit (1/N ). It should be
pointed out that both SS and QFI are related to the precision
in parameter estimation. The QFI determines the ultimate
precision, but metrology based on SS is comparatively easy to
implement in experiments [8].

V. CONCLUSION

In summary, we have studied the dephasing-assisted PPE
enhancement in a two-component BEC system with DD
pulses, through calculating dephasing-induced SS and QFI. We
have found that the dephasing noise can improve PPE by induc-
ing SS, and the DD pulses can maximize the improvement. We
have compared the effects between PDD sequence and UDD
sequence. Our results showed that the UDD sequence can work
more efficiently, which can enhance the decoherence-induced
SS to the limit of ξ 2 � N−2/3 more easily and it can amplify
the QFI by a factor of �N/2 for the initial state of CSS. It
implied that the sensitivity �θ of the estimated parameter θ can
be enhanced from the SQL 1/

√
N to

√
2/N , which achieves

nearly Heisenberg-limited precision (1/N).
We would like to point out that we have subjected to the

assumption of negligible effects of atom losses; although these
will limit the achievable squeezing and affect the precision of
metrology to some extent, our results highlight that there is
no fundamental obstacle to improving the dephasing-assisted
PEP. What is more, all the π control pulses are assumed to
execute quickly and perfectly, during which the coupling with
environment is negligible. In addition, we also have noted that
the Heisenberg-limited precision estimation precision has been
reached theoretically, via transforming the OAT into “two-
axis twisting” [17,32] if some more complex control fields
are employed. Finally, we expect that our idea might have
promising applications in quantum metrology and be realized
within current experiments.
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APPENDIX A: DERIVATION OF THE DECOHERENCE FUNCTION R(t)

Here, we present a detailed derivation of the decoherence function R(t). From Eq. (16), the reduced density matrix elements
of the system can be obtained as

ρS
m,l(t) = TrB[〈m|U (t)ρ(0)U−1(t)|l〉] = e−iφ(t)(m−l)e−i(m2−l2)�̃(t)TrB

{
exp

[
(m − l)

∑
k

(αkb
†
k − α∗

k bk)

]
ρB(0)

}
ρm,l(0) (A1)

with αk = −igk

∫ t

0 eiωksε(τ ) dτ and φ(t) = ∫ t

0 λε(τ ) dτ .
To obtain the explicit expression of Eq. (A1), the main task becomes to calculate the expectation value of displacement

operator

�kTrB [D(zk)ρB] = TrB

{
exp

[
(m − l)

∑
k

(αkb
†
k − α∗

k bk)

]
ρB

}
(A2)

with zk = (m − l)αk . Making use of the following formula [67]:

TrB [D(zk)ρB] = exp[−(〈nk〉 + 1/2) |zk|2], (A3)

where nk = 1/(eβωk − 1), we arrive at

〈D(zk)〉 = TrB [D(zk)ρB] = exp

{
−(m − l)2

∫ ∞

0
dω J (ω)[2n(ω) + 1]Fn(ω,t)

}
= exp[−(m − l)2R(t)]. (A4)

In Eq. (A4), the function Fn(ω,t) is given as

Fn(ω,t) = |ε(ω,t)|2 /2 = 1

2

∣∣∣∣
∫ t

0
eiωτ ε(τ )dτ

∣∣∣∣
2

= 1

2

∣∣∣∣∣∣
n∑

j=0

∫ t

0
eiωτ (−1)j θ (τ − tj )θ (tj+1 − τ )dτ

∣∣∣∣∣∣
2

= 1

2ω2

∣∣∣∣∣∣1 + (−1)n+1eiωt + 2
n∑

j=1

(−1)j eiωtj

∣∣∣∣∣∣
2

. (A5)

Therefore, the decoherence function in Eq. (17) is obtained.

APPENDIX B: DERIVATION OF f (ω,t)

In this appendix, we present the details of the derivation of Eq. (21). Based on Eqs. (11) and (13), we have

f (ω,t) =
∫ t

0
dτ

∫ τ

0
dτ ′ε(τ )ε(τ ′) sin[ω(τ ′ − τ )] = [x∗(ω,t) − x(ω,t)]/(2i) = −Im[x(ω,t)], (B1)

where x(ω,t) is given by

x(ω,t) =
∫ t

0
ds ε(τ )eiωτ

∫ τ

0
dτ ′ε(τ ′)e−iωτ ′ =

n∑
m=0

∫ tm+1

tm

ds(−1)meiωτ

∫ τ

0
dτ ′ε(τ ′)e−iωτ ′

=
n∑

m=0

∫ tm+1

tm

dτ (−1)meiωτ

⎡
⎣ m∑

j=1

∫ tj

tj−1

dτ ′(−1)j−1e−iωτ ′ + (−1)m
∫ τ

tm

dτ ′e−iωτ ′

⎤
⎦

= − i

ω

⎧⎨
⎩

n∑
m=0

∫ tm+1

tm

dτ (−1)meiωτ

⎡
⎣1 + 2

m∑
j=1

(−1)j e−iωtj + (−1)m+1e−iωτ

⎤
⎦
⎫⎬
⎭

= 1

ω2

[
1 + (−1)n+1eiωt + 2

n∑
m=1

(−1)me−iωtm

]
− 2i

ω

n∑
m=1

m∑
j=1

∫ tm+1

tm

ds(−1)m+j eiωτ e−iωtj + it/ω. (B2)

We therefore have

fn(ω,t) = ϑ(ω,t) + μ(ω,t) − t/ω, (B3)
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with

ϑ(ω,t) = 1

ω2

[
2

n∑
m=1

(−1)m sin(ωtm) + (−1)n+2 sin(ωt)

]
,

μ(ω,t) = 2

ω2

⎧⎨
⎩

n∑
m=1

m∑
j=1

(−1)m+j (sin[ω(tm+1 − tj )] − sin[ω(tm − tj )])

⎫⎬
⎭ , (B4)

which is Eq. (21) of the main text.

APPENDIX C: QFI OF PURE STATES

Here, we will give the derivation of the QFI for the case of
pure states. Based on Eq. (37) of the main text, we have

C = 4

⎛
⎝ (�Jx)2 cov(Jx,Jy) cov(Jx,Jz)

cov(Jx,Jy) (�Jy)2 cov(Jy,Jz)
cov(Jx,Jz) cov(Jy,Jz) (�Jz)2

⎞
⎠ , (C1)

with cov(Jm,Jl) = 1
2 〈JmJl + JlJm〉 − 〈Jm〉 〈Jl〉.

When the UDD pulses are employed, we have φ(t) =∫ t

0 λε(τ ) dτ = 0 in Eq. (12). Following Eq. (16) and Ref. [15],
the expectation values relevant in cov(Jm,Jl) can be obtained
as

〈JxJy + JyJx〉 = Im〈J 2
+〉 = 0,

〈JxJz + JzJx〉 = Re〈J+(2Jz + 1)〉 = 0, (C2)

〈JyJz + JzJy〉 = Im〈J+(2Jz + 1)〉,
with

〈J+(2Jz + 1)〉 = iN (N − 1) cosN−2[2�̃(t)] sin[�̃(t)]/2,

〈J+〉 = N cosN−1[�̃(t)]/2, (C3)

〈J 2
+〉 = N (N − 1) cosN−2[2�̃(t)]/4,

and

〈Jx〉 = N cosN−1[�̃(t)]/2, 〈Jy〉 = 〈Jz〉 = 0,
〈
J 2

z

〉 = N/4,〈
J 2

x

〉 = (N (N + 1) + N (N − 1) cosN−2[2�̃(t)])/8, (C4)〈
J 2

y

〉 = (N (N + 1) − N (N − 1) cosN−2[2�̃(t)]|)/8.

Hence, the symmetric matrix C can be rewritten as

C = 4

⎛
⎝(�Jx)2 0 0

0
〈
J 2

y

〉
cov(Jy,Jz)

0 cov(Jy,Jz)
〈
J 2

z

〉
⎞
⎠ , (C5)

and the maximal eigenvalue for Eq. (C5) can be obtained as

λmax = 4 max{(�Jx)2,λ±}, (C6)

where

λ± =
〈
J 2

y + J 2
z

〉±√(〈J 2
y + J 2

z

〉)2 + 4 cov(Jy,Jz)2

2
,

(�Jx)2 = N

4

(
N + 1

2
+ N − 1

2
cosN−2[2�̃(t)]

−N cos2N−2[�̃(t)]

)
. (C7)
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