
PHYSICAL REVIEW A 89, 063421 (2014)

Nuclear-wave-packet dynamics mapped out by two-center interference in the HeH2+ molecule
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Photoemission from diatomic molecules closely resembles the Young-type double-slit experiment where each
of the two atomic sites represents a coherent emission source. When the photoelectron wavelength becomes
commensurate with the effective interatomic distance, the resulting spatial interference gives rise to oscillations
in the photoionization total and differential cross sections. This phenomenon provides detailed information on
the molecular geometry, a fact that can be utilized for probing the nuclear dynamics triggered by the interaction
with a laser field. We demonstrate how this coherent wave-packet evolution can be traced by observing the
photoelectron angular distribution. Based on ab initio scattering calculations we perform a proof-of-principle
reconstruction of the nuclear-wave-packet evolution in the HeH2+ molecule.
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I. INTRODUCTION

The impressive experimental advance over recent years
in generating ultrashort, high-energy coherent x-ray laser
pulses enabled new insight in the electronic structure of
extended solid-state systems, large biomolecules down to
small molecules, and atoms, allying submolecular spatial with
femtosecond temporal resolution [1–6]. In particular, the x-
ray absorption (XAS) reveals detailed structural information,
especially at the photon energy high enough to eject a core
electron to the continuum. The subsequent multiple scattering
of the photoelectron from the neighboring atoms and its
interference gives rise to an oscillatory behavior of the x-ray
absorbance, known as extended x-ray absorption fine structure,
whose period is directly related to the structural arrangement
of the sample [7,8].

Similar interference effects have also been predicted for
the photoemission cross section of diatomic molecules [9],
highlighting the analogy to the Young-type double-slit ex-
periment. However, due to the typically smaller internuclear
distance, tracing those oscillations has been a challenge, for
it requires tuning the photon energy over several hundred
electron volts [10–14]. Moreover, the hybridization of the
atomic wave functions into molecular states gives rise to new
effects, such as oscillations in the angle-resolved distribution
of the emitted electrons as a function of energy, as well. The
photoelectron angular distribution (PAD) strongly depends on
the parity of the electron wave function and thus contains the
signature of the respective angular momentum [14] or exhibits
asymmetries due to the superposition of gerade and ungerade
states [15,16].

On the other hand, diatomic molecules are convenient
testing systems where important insights [17–19] in the nuclear
dynamics can be gained either by means of (e.g., two-color)
pump-probe techniques [20–22] or by recolliding electrons
giving rise to higher harmonics generation [23]. For both
scenarios, the fragmentation of the molecule after electron
ejection by an ultrashort laser pulse—the Coulomb explosion
(CE)—provides rich information on the initial or excited
molecular configuration and even allows for reconstructing the
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corresponding nuclear wave packet (NWP) [17,20–22,24,25].
Mapping out the NWP can be ambiguous for more complex
targets due to the variety of accessible electronic channels;
additionally measuring the PAD narrows down the number of
pathways and improves the NWP reconstruction [25].

The simplest systems proving this kind of physics are the
homonuclear dihydrogen cation H2

+ and the heteronuclear
helium hydrogen double cation HeH2+. Whereas the former
allows for investigating the interference from identical atoms
[26–28], the HeH2+ system provides an example of inter-
ference from different emission centers [29,30]. From the
theoretical point of view, highly precise methods exploiting the
axial symmetry of these molecules can further be employed
as a basis for two-or-more-electron systems as, for example,
for studying the ro-vibrational photodissociation of the HeH+
molecule [31–33].

The HeH2+ molecule, which is the system studied in this
contribution, has a number of interesting electronic properties.
Its ground electronic state (1sσ ) potential energy surface
(PES) does not possess a minimum, such that the molecule
dissociates right away in this state. In contrast, the first excited
state (2pσ ) shows a metastable potential minimum (with the
lifetime of 3.9 ns [34]). The equilibrium atom-atom separation
of R = R0 = 3.89 a.u. � 2.06 Å [35,36] is twice as large as
for the H2

+ molecule and thus requires only one-fourth of the
photoelectron energy to achieve the same interference effects.

Our goal is to analyze the asymmetry of the photoemission
probability in the direction of the hydrogen or the helium atom,
respectively. Such asymmetries have also been observed for
homonuclear systems (due to the Fano resonance of competing
channels) and exploited for probing molecular wave-packet
dynamics [16]. We demonstrate how the impact of the Young-
type interference to the PAD can be related to the nuclear
dynamics of the HeH2+ molecule upon optimized laser-
induced electronic transitions, including the reconstruction of
the dissociative wave functions (Sec. III). The latter becomes
possible because of the rich information encoded in the
PAD (compared to angle-independent quantities like the total
photoabsorption cross section). Large-scale numerical studies
of the coupled electron and nuclear and laser field degrees
of freedom are accomplished by invoking the renormalized
Numerov method [37], which we have employed for com-
puting accurate bound states of large fullerene molecules in
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previous studies [38]. We have extended the method (presented
in Sec. II) to efficiently deal with unbounded states, making
it well suited for a variety of scattering problems. We adopt
atomic units consistently throughout the text.

II. COMPUTATIONAL METHODS

Invoking the adiabatic approximation, the wave function
in the combined electronic and nuclear Hilbert space can be
expanded as [39]

�(r,R,t) =
∑

α

χα(R,t)ψ (α)(r; R), (1)

where α labels electronic states parametrically dependent on
the interatomic distance R. Inserting Eq. (1) into the time-
dependent Schrödinger equation (TDSE) with the Hamiltonian
[39]

H (t) = H0 + V (t) = Tc(R) + Te(r) + Vec(r,R) + Vcc(R)

+Vel(r,t) + Vcl(R,t) (2)

and projecting out the electronic part yields a standard coupled-
channel evolution equation,

i∂t χα(R,t) =
∑

β

〈ψ (α)|H (t)|ψ (β)〉χβ(R,t). (3)

The first two terms in Eq. (2) describe the kinetic energy of
the cores and electrons, respectively, whereas the next two
terms stand for the Coulombic electron-core and the core-core
interactions. Remaining time-dependent terms represent the
interaction of the particles with the laser field, which is treated
on the level of the dipole interaction. The matrix element
〈ψ (α)|H (t)|ψ (β)〉 in Eq. (3) (with the integration over r only)
reads

〈ψ (α)|H (t)|ψ (β)〉 = − 1

2μ

d2

dR2
δαβ + Eαβ(R) − Dαβ(R)E(t),

(4)

where the first term corresponds to the kinetic energy Te(R)
of the two-nuclei system with the reduced mass μ and Eαβ(R)
captures three other time-independent operators in Eq. (2),
while Dαβ(R) describes the dipole elements and E(t) the
electric field. The adiabatic approximation ignores derivatives
of the electronic wave functions with respect to R, such that
Eαβ(R) become diagonal with the diagonal elements Eα(R)
fulfilling the purely electronic eigenvalue condition for fixed
R. The validity of the adiabatic approximation is constrained
by the energy separation between different PESs [given by
the R-dependent eigenvalues Eα(R)]. Hence, a modification
of this scheme becomes necessary in the vicinity of avoided
crossings.

A. Electronic states

As outlined above, finding the electronic eigenstates ψ (α)

for all (fixed) values of R is the basic ingredient for solving
for the molecular dynamics. We expand the wave functions in
terms of the spherical harmonics:

ψ (α)(r) =
∑

m

φ
(α)

m (r)

r
Y
m(r̂). (5)

Note that the dependence on R has been omitted for brevity.
The origin of coordinate system is set at the geometric center
of the molecule and the zenith is in the direction of the He
atom. Inserting Eq. (5) into the Schrödinger equation yields
the coupled-channel eigenvalue equation∑


′m′

[
− 1

2

d2

dr2
δ

′δmm′ + V
m
′m′(r)

]
φ

(α)

′m′(r) = Eαφ

(α)

m (r),

(6)

where V
m
′m′ (r) = Vcc(R)δ

′δmm′ + 〈
m|Vec|
′m′〉 is evalu-
ated by expanding the Coulombic potentials in terms of Legen-
dre polynomials followed by the Clebsch-Gordan algebra [40].
We note that the cylindrical symmetry of the molecule implies
that the Hamiltonian is diagonal with respect to m, such that
electronic states can be classified spectroscopically according
to their phase change when rotating around the molecular axis.

In what follows, we represent all wave functions and
operators by vectors and matrices which are spanned in the
(
,m) space (marked as bold face). Thus, Eq. (6) can be cast
into a general multichannel form,{

d2

dr2
I + 2[EI − V(r)]

}
φ(r) = 0. (7)

The renormalized Numerov method [37] is then implemented
as follows: The vector φ(r) expressed as a product of the
fundamental solution matrix �(r) with a constant vector c
(to be determined). The coordinate r is now represented by
an equidistant grid with the step size h. The basic idea is to
eliminate the wave-function-like quantity �n ≡ �(rn) in favor
of the ratio matrix Rn relating the function’s values at adjacent
grid points. Let us denote

Tn = −h2

6
[IE − V(rn)] and

Un = (I − Tn)−1(2I + 10Tn).

Applying Numerov’s finite differences formula and substitut-
ing Fn = [I − Tn]�n, one finds

Fn+1 = RnFn, (8)

where the ratio matrix obeys the recurrence relation,

Rn = Un − Rn−1. (9)

Similar recursion relations can also be written for the back-
ward propagation, as discussed in detail by Johnson [37].
Importantly, propagation of the ratio matrix is a very stable
procedure, unlike working with the wave function itself.
The benefits become evident in classically forbidden regions:
Whereas the wave function contains an exponentially growing
term that can possibly lower the precision, the ratio matrix
varies only slowly. This can also be understood by the close
relationship between the ratio matrix and the logarithmic
derivative.

The energy eigenvalues are then found by choosing a
matching point rM and solving the recurrence relation Eq. (9)
starting from the left and the right boundaries separately until
rM is reached. The continuity of the wave function and its
first derivative at this point are the determining conditions for
the energy eigenvalues. The search is performed by the Brent
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FIG. 1. (Color online) The PES of the first σ (solid black),
π (dashed blue), and δ (dot-dashed red lines) states along with
their spectroscopic labels of the HeH2+ molecule as a function
of interatomic distance R. The insets depict a cut through the
σ -molecular orbitals with a plane parallel to the molecular axis (at
the equilibrium distance). Blue color indicates positive vales of ψ (α)

and orange negative values.

method for nondegenerate states and by the node-counting
algorithm otherwise [38]. The actual wave function can easily
be obtained from Eq. (8) once the energy is fixed.

Using the renormalized Numerov method, we have com-
puted the first four eigenstates ψ (α)(r; R) for m = 0 and lowest
energy states for m = 1,2 for various values for R. The sum
over 
 in Eq. (5) has been truncated at 
max = 24, providing
an accuracy of at least five digits for all eigenvalues. The PES
Eα(R) for these states is shown in Fig. 1, along with an orbital
representation of the corresponding wave functions.

B. Scattering properties

In order to describe the photoemission from an (general)
electronic state |ψ0〉 (initial energy E0) within the weak-field
approximation, an expansion in terms of the photon numbers
proves to be particularly useful, which is nothing else but
the Floquet series. Suppose the time-dependent Hamiltonian
reads H (t) = H0 + {δHe−iωt + δH †eiωt }, the projection on
the different laser-dressed states with a particular photon
number N yields the Floquet hierarchy [41],

[E0 + Nω − H0]|ψN 〉 = δH |ψN−1〉 + δH †|ψN+1〉. (10)

Note that the operator δH in Eq. (10) only allows for single-
photon transitions. For low laser field intensity, Eq. (10) can
be truncated at N = 1, such that we obtain the inhomogeneous
or driven Schrödinger equation (DSE),

[E0 + ω − H0]|ψ+〉 = δH |ψ0〉. (11)

Here |ψ+〉 denotes the first-order correction to the initial
wave function upon the irradiation with the laser field.
Equation (11) is consistent with the standard time-dependent
perturbation theory [42]. Solving DSE (11) with outgoing
boundary conditions [42] (the superscript + has been added

for this reason) reproduces the scattering amplitude without
the necessity of computing the transition matrix elements in
perturbative treatments. Thus, it represents a very economical
tool to study photoemission and related processes [43–45].
The only ingredient required is the asymptotic behavior of the
scattering solution |ψ+〉. For an electron subject to spherically
symmetric short-range Vsh(r) and Coulomb Z/r potentials the
asymptotic solution of Eq. (11) for a particular set (
,m) of
angular momentum quantum numbers reads

ψ+

m(r)

Vsh (r)∼ →0
i−
e−iσ
(k)F
m(k)H+


 (kr; η)Y
m(r̂), (12)

where k = √
2(E0 + ω) is the photoelectron momentum,

σ
 = arg �(
 + 1 + iη) the Coulomb phase shift, and η =
Z/k the Sommerfeld parameter. The Hankel function ([46],
Sec. 32.2.11) H+


 (kr; η) = iF
(kr; η) + G
(kr; η) (where F


and G
 are the regular and the irregular Coulomb functions,
respectively) ensures the purely outgoing asymptotic proper-
ties. The scattering amplitude F
m(k) includes all the scattering
phase shifts from Vsh(r) and therefore completely determines
the PAD.

For our specific case of the HeH2+ molecule, asymptotic
solutions can also be easily constructed: At sufficiently
large distances r > rC from the molecule the one-center
approximation is valid and it suffices to take the first term
−3/r from the multipole expansion of the Coulomb potential.
The outgoing wave takes a form of Eq. (12) with Z = 3. A
particular choice of rC was found to have little influence on
the final results, and we set rC = 80 a.u. as the cutoff distance.

In order to numerically determine for a given initial
state ψ0(r) the yet unknown scattering amplitude F
m(k), we
generalize (similar to Ref. [48]) the renormalized Numerov
method from Sec. II A to incorporate the driving term [cf.
Eq. (11)]. This can easily be achieved by extending Eq. (8) to

Fn+1 = RnFn + bn, (13)

with the ratio matrix Rn still obeying Eq. (9), whereas the
additional vector bn satisfies the recurrence relation

bn = h2

12
[s(rn+1) + 10s(rn) + s(rn−1)] − R−1

n−1bn−1. (14)

The function s(r) is the vector representation (with respect to
the spherical harmonics) of δHψ0(r) = −(E0 · r)ψ0(r); i.e., it
describes the interaction of the electron with linearly polarized
light with the electrical field of amplitude E0 within the dipole
approximation. Note that instead of propagating all linearly
independent vectors spanning the space of possible initial
derivatives as in Eq. (8), for the driven equation it is sufficient
to start with already known bound state and, thus, propagate
only one vector [Eq. (13)]. This is consistent with the loss of
arbitrariness of the normalization in the case of DSE.

The numerical scheme now runs as follows. (i) Equations
(9) and (14) are propagated from r = 0 to r = rC . This
procedure yields RC and bC . (ii) The scattering amplitude
F
m(k) can now be found by comparing RC with known
asymptotic solutions R̃C . As Eq. (12) demonstrates the ratio
matrix R̃C in the asymptotic limit does not mix different
components; i.e., it is diagonal. Therefore, it can be constructed
from the known asymptotic solution at two adjacent grid
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points,

R̃C = F̃C+1F̃−1
C

= [I − TC+1]diag

{
H+


 (krC+1; η)

H+

 (krC ; η)

}

m

[I − TC]−1 .

(iii) Imposing the continuity condition yields

FC+1 = R̃CFC = RCFC + bC. (15)

This equation makes it possible to determine FC and thus
the scattering wave function at rC . The desired scattering
amplitude F
m(k) is then obtained by the comparison with
Eq. (12).

Hence, the outlined procedure does not require exact
scattering wave functions for the calculation of scattering
amplitudes. Only a single outward propagation (for fixed
photoelectron energy) is necessary to compute F
m(k).

C. Diabatic representation

Figure 1 reveals the existence of a crossing point at
Rcr = 3.595 a.u. between the ψ (3dσ ) and the ψ (4dσ ) states,
which is in fact an avoided crossing with a gap energy
E4dσ (Rcr) − E3dσ (Rcr) = 2.6467 × 10−3 � 72 meV. The small
energy separation hence necessitates a transformation from
the adiabatic to the diabatic representation to account for the
coupling of the two PESs. The adiabatic transition of the state
ψ (3dσ ) to ψ (4dσ ) can be pictured by the upper negative (orange)
lobe of the orbital corresponding to ψ (3dσ ) (see Fig. 1) moving
downwards, as the negative lobe is “squeezed” out to resemble
the shape of ψ (4dσ ). We determine the diabatic surfaces ED

ij (R),
i,j = 1,2, by a simple interpolation technique; that is, we
impose ED

11(Rcr) = ED
22(Rcr) = [E4dσ (Rcr) + E3dσ (Rcr)]/2 and

ED
11(R)[ED

22(R)] → E3dσ (R)[E4dσ (R)] as |R − Rcr| grows. The
actual transformation is accomplished by the rotation

U†(R)

(
ED

11(R) ED
12(R)

ED
12(R) ED

22(R)

)
U(R) =

(
E3dσ (R) 0

0 E4dσ (R)

)
,

(16)

where

U(R) =
(

cos �(R) sin �(R)
− sin �(R) cos �(R)

)
. (17)

Together with the aforementioned conditions, solving Eq. (16)
allows for interpolating �(R) and thus yields the diagonal and
off-diagonal diabatic PESs. Once U(R) is known, calculations
can be performed within the diabatic basis. Observables are
computed by the corresponding backwards transformation.

All following calculations are carried out in cylindrical
symmetry, as we take the laser polarization E0 along the
molecular axis. Hence, the (not avoided) crossing of the σ

orbitals with the 2pπ state does not require special treatment
as π ↔ σ dipolar transitions are forbidden by the symmetry
selection rules.

III. PUMP-PROBE INTERFERENCE SPECTROSCOPY

Within a simple LCAO model [49] for the initial states and
plane waves (PWs) as the final states, the PAD takes the form

dP

d�
∝ (ε · k)2[A(k) + B(k) cos(k · R)], (18)

where ε denotes the polarization direction of the laser field,
k is the photoelectron momentum, while R is a vector along
the molecular axis with length R. The parameters A(k) and
B(k) are determined by shape of orbitals in momentum
space. The interference term in Eq. (18) suggests a close
connection between the PAD and the molecular geometry,
a dependence that can be exploited for tracing the nuclear
dynamics. Additionally, the photoelectron energy can also
be tuned, providing even more information. We stress that
an accurate treatment of both the initial and moreover the
final states is required for correct angular distributions [27];
projecting on PWs excludes a class of transition channels due
to the wrong parity properties [30].

We invoke two approximations for the photoionization
process: (i) the sudden approximation, that is, the photoelec-
tron is not influenced by the molecule dynamics after the
liberation, and (ii) the spectral resolution of laser pulse is
fine enough to resonantly separate the different PESs. Under
these assumptions, the PAD for the total state �α(r,R,t) =
χα(R,t)ψ (α)(r; R) reads

dPα

d�dk
=

∫
dR

∣∣∣∣ ∑

m

(−i)
eiσ
(k)F (α)

m(k; R)Y
m(k̂)

∣∣∣∣2

nα(R,t),

(19)

where the scattering amplitude F (α)

m(k; R) for an initial elec-

tronic state ψ (α) is computed using the methods from Sec. II B.
nα(R,t) = |χα(R,t)|2 is the probability density of finding the
NWP at the position R at time t when electronic state of the
system is given by ψ (α).

For utilizing the interference phenomenon to probe the
molecule wave function, we take the laser polarization axis
along the molecule axis and consider photoemission in a
small cone around that direction. In this way, the emitted
electrons are most likely influenced by one of the atoms
as they propagate to infinity (Fig. 2). In order to follow
the nuclear dynamics we propose to use a typical pump-
probe scheme [18,19,50]: A femtosecond laser pulse induces
electronic transitions that subsequently drive the vibrational
or dissociative dynamics of the molecule. The latter is then
probed by a short pulse that promotes the electron in a
scattering state. The probe-pulse needs to contain a sufficient
number of optical cycles in order to address the system
resonantly. Varying the delay �t between the two pulses then
makes it possible to monitor the evolution of nα(R,�t). As
the observable we chose the integrated probability to detect a
photoelectron within the detector angle θD either in the forward
or the backward direction (see Fig. 2):

P F
α =

∫ 2π

0
dφ

∫ θD

0
sin θ

dPα

d�dk
, (20a)

P B
α =

∫ 2π

0
dφ

∫ π

π−θD

sin θ
dPα

d�dk
. (20b)
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FIG. 2. (Color online) In the proposed setup for the pump-probe
interference spectroscopy we only consider oriented molecules and
allow for the photoelectron detection only within the acceptance angle
θD. The time delay �t between the pump and the probe pulses serves
as the reference time for the induced dynamics.

In what follows we fix θD = 0.2π = 36◦.

A. Interference profiles

Before we describe how the NWP dynamics triggered by the
electronic excitation is reflected in the PAD, it is instructive to
discuss the photoemission properties for a fixed geometry first
[i.e., the averaging with respect to the nuclear wave function
in Eq. (19) is ignored]. The forward (backward) emission
probability P F

α (P B
α ) for 1sσ, 2pσ , and 3dσ and 4dσ states

is depicted in Figs. 3–5, respectively. The magnitude of the
electrical field is set to |E0| = 0.01 a.u., which corresponds
to an intensity of ∼3.5 × 1012 W cm−2. Conceptionally, the
pulse is infinitely long; estimating, however, that the resonance
condition is matched within ten optical cycles, the minimum
temporal length is about 1.0 fs for the photoelectron energies
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FIG. 3. (Color online) The emission probability P F
1sσ (blue lines,

marked with F) and P B
1sσ (orange lines, marked with B) according

to Eq. (20) for fixed values of R. The photoelectron energy εk is
displayed in each panel.

studied here. Let us consider the photoemission from the 1sσ

state first (Fig. 3). Depending on the energy of the photoelec-
tron εk = k2/2, the probability for the emission in the direction
of the hydrogen atom shows an oscillatory behavior for varying
R. In contrast, the emission in the He direction demonstrates
only slight increase of probability with increasing R. These
features are easily understood in terms of the wave function
ψ (1sσ ) (cf. the inset in Fig. 1). The helium atom carries most
of the electron density; as R → ∞ the electron becomes
completely localized around its nucleus (He+ + H+). This
density localization leads to an enhanced photoemission
probability. On the other hand, the photoelectrons are not
subject to any additional scattering when being emitted in
the forward direction (i.e., no interference effects occur);
interference effects come into play only for the backward
(hydrogen) direction. The distance between the minima and
the maxima is reduced with raising εk (as expected physically).
The dependence is, in fact, square-root-like, but deficiencies of
the explanation provided by the LCAO + PW model [Eq. (18)]
become immediately apparent.

The situation is reversed for the 2pσ state (Fig. 4). Unlike
the 1sσ state, the 2pσ PES asymptotically describes the
dissociation into H + He2+; i.e., the electron remains bound
to the hydrogen atom. As a consequence, the photoemission
in the backward direction is slightly larger than in the helium
direction and shows more pronounced interference features.
However, the localization of the electron density is not as
strong as for the 1sσ state for the internuclear distance around
the equilibrium value. Therefore, the forward emission is
subject to the spatial interference as well. Even though the
HeH2+ molecule lacks the inversion symmetry, certain parity
effects that occur for inversion-symmetric systems (H+

2 , for
example) can also be observed here. Comparing Fig. 4 to
Fig. 3 shows a phase shift between the two sets of curves. If we
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FIG. 4. (Color online) The emission probability P F
2pσ (blue lines,

marked with F) and P B
2pσ (orange lines, marked with B) according

to Eq. (20) for fixed values of R. The photoelectron energy εk is
displayed in each panel.
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FIG. 5. (Color online) The emission probability P F
α (blue lines,

marked with F) and P B
α (orange lines, marked with B) for the 3dσ

(solid lines) and the 4dσ initial state (dot-dashed lines) for fixed
values of R. The diabatic representation (Sec. II C) has been used to
interpolate in the vicinity of the crossing point. The photoelectron
energy εk is displayed in each panel.

follow, for instance, the first maximum of P B
1sσ upon increasing

εk we notice that P F
2pσ has an almost sine-like behavior at those

R points. This is consistent with a phase change of the wave
function from positive to negative values when going along the
molecule axis (cf. Fig. 1). However, as the parity is not defined
for HeH2+, the explained dependence is only approximate.

The behavior of probability profiles for the 3dσ and the
4dσ states (Fig. 5) can be understood as a mixture of the
profiles of the two lower states. For R > Rcr, P F

3dσ and P B
3dσ

are almost parallel, but with P F
3dσ > P B

3dσ . This becomes clear
by noting that ψ (3dσ ) is almost symmetrical with respect to the
geometric center of the molecule (Fig. 1), while the majority
of the localization probability is situated in the lower half.
Interpreting the phase relation as for the 2pσ state is, however,
not feasible since the electron emission can also take place the
“middle” of the molecule and not only from the atom sites. The
4dσ state, on the other hand, has a node close to the position of
the He atom, that is, positive and negative phase contributions
close to each other that reduce the interference variations.

B. Nuclear-wave-packet dynamics

With the physical understanding of the interference phe-
nomenon for photoionization of the σ states (Sec. III A) at our
disposal, we can now draw our attention to the manifestation
of the NWP dynamics. The molecule is assumed to be initially
in the �2pσ (r,R) = χ2pσ (R)ψ (2pσ )(r; R) quantum state where
χ2pσ (R) is the nuclear ground state with respect to E2pσ PES.
With the laser polarization oriented along the molecule axis,
the only possible excitation channels are the σ states. We
solve Eq. (3) inserting a Gaussian-shaped pump laser pulse
E(t) = Epumpe

−(t−tm)2/2T 2
p cos[ω(t − tm)] such that the central

0 10
2

4

6

8

10

R
 (a

.u
.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

5
Δt (fs)

10
8      P

robability 
3

2.5

2

1.5

1

3

ε  = 0.2
ε  = 0.6B

FIG. 6. (Color online) The NWP evolving in the PES E1sσ after
the pump pulse (see text). The grayscale map in the background
depicts the NWP density n1sσ (R,�t), while the overlaid graphs show
the emission probability P B

1sσ evaluated by Eq. (20) for εk = 0.2 a.u.
(solid line) and εk = 0.6 a.u. (dot-dashed line). The latter has been
multiplied by 3.0 to make it comparable with the solid line.

frequency ω matches the 2pσ → 1sσ resonant transition at
R = R0 = 3.89 a.u. The pulse duration Tp was chosen to be as
small as possible under the constraint that only the target PES
lies in its spectral range. The laser amplitude was optimized to
have the largest possible population transfer.

For transition ψ (2pσ ) → ψ (1sσ ) the pump field amplitude
amounts to Epump = 0.5 a.u. (corresponds to peak intensity
Ipump = 8.8 × 1015 W cm−2) and Tp = 0.5 fs. With these
parameters, the population transfer takes place in about 0.8 fs, a
time scale on which the nuclear dynamics is basically frozen.
For this reason, we present only the wave-packet dynamics
after the population has been transferred; i.e., the origin of
the time delay �t (see Fig. 2) is set to 1.0 fs. As E1sσ (R) is
purely repulsive, the resulting wave-packet dynamics (Fig. 6)
is dissociative.

Within 10 fs, the NWP moves outwards in an al-
most classical fashion (that is, the spreading remains
approximately constant). Therefore, the expectation value
〈χ1sσ (�t)|R|χ1sσ (�t)〉 is a suitable quantity that can be
compared to the interference profiles in Fig. 3. For εk =
0.2 a.u., the emission probability has a maximum around
R = 4.2 a.u. and a minimum around R = 5.5 a.u., which can
also be seen in Fig. 6, as the wave packet evolves. Taking
εk = 0.6 a.u. instead turns the minimum (approximately)
into a maximum, as present in Fig. 6, too. Hence, selecting
certain values for the energy of the photoelectron makes it
possible to focus on distinct regions in the R space where the
photoemission is enhanced.

Even with optimal parameters, only about 90% of the
ground-state population is transferred to the 1sσ state. Due
to the R dependence of the transition matrix element and
the energy separation, the remaining nuclear wave function
χ2pσ (R,�t = 0) is (apart from having a smaller norm) shifted
with respect to the vibronic ground state, launching a purely
bound oscillatory dynamics (Fig. 7).

Within the region 3.0 < R < 5.0, both the forward and
the back emission probability have an almost linear slope for
εk = 0.4 a.u. (see Fig. 4). Therefore, the detected
signal is a good measure of the expectation value
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FIG. 7. (Color online) The NWP evolving in the PES E2pσ after
the pump pulse (see text). The grayscale map in the background
depicts the nuclear wave function density n2pσ (R,�t), while the
overlayed graphs show the forward (blue) and backward (orange)
emission probability according to Eq. (20). The photoelectron energy
amounts to εk = 0.4.

〈χ2pσ (�t)|R|χ2pσ (�t)〉, which should undergo a nearly har-
monic time dependence. This is confirmed by Fig. 7 (overlaid
graphs), which depicts P

F/B
2pσ as a function of �t .

In order to target the 3dσ state instead one needs to
account for a smaller energy separation between the PESs and
correspondingly adjust the pump-pulse parameters. Because
it is not possible to separately address ψ (3dσ ) and ψ (4dσ )

states, Eq. (3) is solved using the diabatic representation,
taking ω = [ED

11(R0) + ED
22(R0)]/2. We found that Tp = 1.0 fs

provides a good compromise between a fast transfer and
sufficient spectral sharpness, while Epump = 0.08 a.u. (Ipump �
2.2 × 1014 W cm−2) serves for an optimal population transfer.
However, the electron remains with more than 70% probability
in the 2pσ state. The transition can be imagined as “drilling” a
Gaussian-shaped hole into the nuclear ground state, separating
χ2pσ (R,�t) into an “inner” and an “outer” wave packet.
The latter one is dissociating, whereas the inner wave packet
performs small oscillations. Because both 3dσ and 4dσ PESs
are strongly repulsive, the transferred wave packets quickly
propagate out of the crossing region, and we can safely
identify them with χ3dσ (R,�t) [or χ4dσ (R,�t)] corresponding
to the electronic state ψ (3dσ ) (or ψ (4dσ )). The majority of the
population is found in the 3dσ state, which, similarly to Fig. 6,
gives rise to a fast dissociation dynamics (Fig. 8). Since we
can no longer regard the nuclei as frozen during the time when
the pump field is switched on, Fig. 8 depicts the full dynamics
starting from zero population in the 3dσ state. The time delay
�t is in this case measured from 3.0 fs before the peak field is
reached (bottom panel in Fig. 8). The photoemission requires
a sufficient separation between the initial states in order to
be able to resolve them. Therefore, the population transfer
dynamics for �t < 5 fs in Fig. 8 cannot be observed in such
an experiment (Fig. 8 only includes the 3dσ state). For �t > 5
fs the NWP completely leaves the crossing region and can be
treated within the adiabatic approximation. Again, we can
pick certain values for εk in order to extract different features
of the wave packet (see Fig. 5). Choosing εk = 0.2 a.u. allows
for tracing the evolving wave function in the region around
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FIG. 8. (Color online) The electronic population and the NWP
dynamics in the coupled-channel diabatic PES ED

ij , i,j = 1,2 as
functions of time. The grayscale map in the background depicts
the nuclear wave function density n1(R,�t) [which is identical to
n3dσ (R,�t) for �t � 5 fs], while the overlayed graphs show the
forward (blue) and backward (orange) emission probability according
to Eq. (20). The photoelectron energy amounts to εk = 0.2 a.u. (solid
lines) and εk = 0.6 a.u. (dot-dashed lines).

R = 5.5 a.u., where the emission probability shows a dip,
and to observe the respective increase when moving outwards.
Similarly, setting εk = 0.6 a.u. shifts the emission maximum
in the forward direction to smaller values of R, such that the
region around R = 7 a.u. is probed.

C. Nuclear-wave-packet reconstruction

The dependence of the photoemission probabilities on
the photoelectron energy enables us to extract even richer
information, provided the laser frequency ω can be tuned fine
enough. We demonstrate here that not only certain expectation
values, but the whole NWP density can be reconstructed from
the mentioned energy dependence. This procedure works well
when a bounded region where the wave packet is currently
localized, can be estimated. This can be achieved by the
analysis of Secs. III A and III B. Choosing εk such that the R

dependence of the interference profiles is adequately described
by a parabola, the corresponding photoemission probabilities
with respect to a NWP χα(R,t) allow for determining the
expectation values of R and R2, from which the width of the
wave packet can be estimated. Once this is done, the function
nα(R,t) = |χα(R,t)|2 (for a fixed time) can be obtained by
solving the integral equation corresponding to Eq. (19). We,
however, found it more convenient to work with the relative
forward photoemission rate

P̃ F
α = P F

α

P F
α + P B

α

(21)

instead, in order to eliminate the reduction of the probability
for increasing εk . Equations (19) and (20) imply the integral
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equation

P̃ F
α (εk) =

∫
dRKF(εk,R)nα(R,t) (22)

with a kernel

KF(εk,R) = PF
α (εk,R)

PF
α (εk,R) + PB

α (εk,R)
. (23)

The functions PF/B
α in Eq. (23) are defined as

PF
α (εk,R) =

∫ 2π

0
dφ

∫ θD

0
dθ sin θ

×
∣∣∣∣∣∑


m

(−i)
eiσ
(k)F (α)

m (k; R)Y
m(k̂)

∣∣∣∣∣
2

(24)

(and PB
α analogously). In order solve Eq. (22) for the NWP

density, we discretize the R coordinate (into N points) in the
region Rmin � R � Rmax, where the wave packet is localized
and approximate the integration (22) by the trapezoidal rule in
order to obtain a system of M linear equations,

P̃ F
α (εki

) =
N∑

j=1

wjK
F(εki

,Rj )nα(Rj ,t), i = 1, . . . ,M, (25)

where the weights w1 = wN = (Rmax − Rmin)/2N and wj =
(Rmax − Rmin)/N otherwise. It is clear that we need M � N

values for εk to solve Eq. (25).
We have approximated the kernel Eq. (23) by a simple

fifth-order polynomial in εk and R and computed P̃ F
α (εk)

for M = 40 values for the photoelectron energy, distributed
equidistantly in the interval 0.2 � εk � 1.0. Solving Eq. (25)
directly is, however, troublesome due to a nearly singular
coefficient matrix KF(εki

,Rj ). This problem can be avoided
by reformulating Eq. (25) in terms of a minimization prob-
lem, where we have added a term suppressing oscillatory
solutions. This leads to a numerically stable procedure for
the reconstruction of the dissociative wave packets. A typical
result is presented in Fig. 9. Unfortunately, finer structures
could not be resolved, as can be seen, for instance, by
|χ3dσ (R,t = 4 fs)|2 and the respective reconstructed density.
However, more observables (possibly the complete PAD)
can be added to the reconstruction algorithm to improve
its accuracy. We propose it as a new technique for map-
ping NWP or to complement and support CE experiments.
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FIG. 9. (Color online) Comparison between the original NWP
densities and the reconstruction for the 1sσ (top panel) and the 3dσ

state (bottom panel) (see also Figs. 6 and 8) for different times. The
solid lines are the original wave packets, whereas the squares in the
corresponding color represent the reconstructed solutions. The curves
for t > 2 fs have been shifted upwards for better visibility.

IV. CONCLUSIONS

In summary, a detailed study of the photoionization of the
HeH2+ molecule in the weak-field regime has been performed.
We have shown how the forward and backward photoemission
rates (with respect to the molecular axis parallel to the laser
polarization) depend on the interatomic distance and explained
their oscillatory behavior by the interference effects. For the
proposed pump-probe experimental setup we have computed
the evolution of the NWP triggered by electron transitions
(pump pulse) and its manifestation in the photoemission
(probe pulse). Provided that the probe-pulse frequency can
be tuned over a moderate energy range, the relative forward
emission rate contains even more information and allows
for reconstructing the NWP dynamics. Our proof-of-principle
calculations demonstrate the feasibility of such an approach
provided scattering cross sections can be precisely computed
and measured.
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