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The time-dependent restricted-active-space self-consistent-field (TD-RASSCF) method is formulated based
on the TD variational principle. The SCF based TD orbitals contributing to the expansion of the wave function are
classified into three groups, between which orbital excitations are considered with the RAS scheme. In analogy
with the configuration-interaction singles (CIS), singles-and-doubles (CISD), and singles-doubles-and-triples
(CISDT) methods in quantum chemistry, the TD-RASSCF-S, -SD, and -SDT methods are introduced as extensions
of the TD-RASSCF-doubles (-D) method [Phys. Rev. A 87, 062511 (2013)]. Based on an analysis of the numerical
cost and test calculations for one-dimensional (1D) models of atomic helium, beryllium, and carbon, it is shown
that the TD-RASSCF-S and -D methods are computationally feasible for systems with many electrons and more
accurate than the TD Hartree-Fock (TDHF) and TDCIS methods. In addition to the discussion of methodology,
an analysis of electron dynamics in the high-order harmonic generation (HHG) process is presented. For the 1D
beryllium atom, a state-resolved analysis of the HHG spectrum based on the time-independent HF orbitals shows
that while only single-orbital excitations are needed in the region below the cutoff, single- and double-orbital
excitations are essential beyond, where accordingly the single-active-electron (SAE) approximation and the
TDCIS method break down. On the other hand, the TD-RASSCF-S and -D methods accurately describe the
multiorbital excitation processes throughout the entire region of the HHG spectrum. For the 1D carbon atom, our
calculations show that multiorbital excitations are essential in the HHG process even below the cutoff. Hence,
in this test system a very accurate treatment of electron correlation is required. The TD-RASSCF-S and -D
approaches meet this demand, while the SAE approximation and the TDCIS method are inadequate.
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I. INTRODUCTION

In strong-field and attosecond physics, combinations of
femto- and attosecond pulses are used to retrieve time-resolved
information about electronic and nuclear motion [1,2]. Simple
physical pictures based on a reduction of the complex
many-body dynamics of an atom or molecule under a
short pulse to the consideration of a single-active-electron
(SAE) have been instrumental in developing the methods
of the research field [3–6]. Meanwhile, experimental and
theoretical investigations are shifting toward more detailed
and fundamental analyses of dynamics requiring an account
of electron correlation for their complete understanding. For
example, attosecond absorption spectroscopy was used to
observe and control electronic dynamics [7–9], the attosecond
streak camera was used to determine the intrinsic time delay
of photoionization from different orbitals [10–12], and the
mechanism of quantum tunneling was elucidated by the
attoclock technique [13,14] and by high-order harmonic
generation (HHG) spectroscopy [15–17]. These elaborate
experiments call for reliable ab initio time-dependent (TD)
many-electron theories to analyze the results in minute detail
without neglecting electron correlation.

Among recent developments of many-electron theories, the
TD configuration-interaction singles (TDCIS) method [18–28]
is the simplest framework beyond the SAE approximation. The
TDCIS expansion relative to the Hartree-Fock (HF) ground
state provides a set of working equations which are numerically
tractable even for large atoms. Another strategy for dealing
with the many-electron dynamics is the TD Hartree-Fock
(TDHF) method [29–32] or its generalization, i.e., the mu-
ticonfigurational TDHF (MCTDHF) method [33–36] where

the wave function is expressed by a full-CI expansion with TD
orbitals. The key idea in the MCTDHF approach is to optimize
the orbitals at each time step by the self-consistent-field
(SCF) ansatz, which allows the use of a relatively small
number of orbitals for constructing the wave function. While
in the perturbative regime for the matter-light interaction, the
MCTDHF method can be applied to relatively large systems as
illustrated by the computation of inner-shell photoionization
cross sections for molecular hydrogen fluoride [37], in general,
due to the full-CI expansion, the number of configurations in
the MCTDHF method exponentially increases with respect
to the number of electrons, which thus makes the method
infeasible for systems having more than a few electrons
interacting with intense light fields [38–49]. As a way to cure
the undesirable scaling property of the MCTDHF method, the
TD complete-active-space SCF (TD-CASSCF) method was
presented [50]. In this method the number of configurations
is reduced by introducing core orbitals, which, however,
eventually will compromise the accurate description of core
excitation processes.

Meanwhile, quite a few methodologies have been devel-
oped in quantum chemistry to circumvent the expensive full-CI
expansion for describing ground-state wave functions of atoms
and molecules (see, e.g., the textbook [51]). The most primitive
way is a simple truncation of the CI expansion at a certain
excitation level: CI singles (CIS), singles-and-doubles (CISD),
singles-doubles-and-triples (CISDT), and so forth. A more
advanced concept is the restricted-active-space (RAS) scheme,
where the orbitals are classified into three groups, so-called
active spaces, between which excitations are allowed with
certain restrictions [51,52]. In our recent paper [53], as a
generalization of the MCTDHF and TD-CASSCF methods, we
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presented a general formulation of the TD-RASSCF method
with special emphasis on the TD-RASSCF-doubles (D) ansatz.
In the TD-RASSCF-D method, only double-orbital excitations
are allowed between the active spaces, and this restriction
reduces the algorithmic complexity associated with solving
the working equations of the theory, as will be revisited in this
paper. A related method is the orbital adaptive time-dependent
coupled-cluster-doubles approach [54]. Although the orbitals
are self-consistently optimized at each time step, due to the
lack of the explicit treatment of single-orbital excitations,
the numerical accuracy of the doubles-only approaches could
be questioned in terms of how reliably the method describes
single-electron dynamics which is, e.g., always a key process
in strong-field ionization.

We have two aims with this paper. The first is to present
extensions of the TD-RASSCF-D method and to study their
numerical performance and accuracy. By including the single-,
double-, and triple-orbital excitations, in analogy to the CIS,
CISD, and CISDT methods, the TD-RASSCF-S [55], -SD, and
-SDT methods are formulated based on the Dirac-Frenkel-
McLachlan TD variational principle [56–59]. As pointed
out in Ref. [55], the TD-RASSCF-S method has a special
convergence property: The fully converged wave function
can be obtained using a small number of orbitals (typically
smaller than the number of electrons), and the converged
TD-RASSCF-S wave function can be more accurate than
the TDCIS wave function in the sense of the TD variational
principle. Furthermore, in this paper, TD-RASSCF-D is shown
to be more accurate than TD-RASSCF-S in practice, and the
TD-RASSCF-S and -D methods are equally feasible for large
systems. The more accurate methods, TD-RASSCF-SD and
-SDT, are computationally more expensive but successfully
describe phenomena which require a more accurate treatment
of the electron correlation. The flexible tunability of the
accuracy and cost is a particular advantageous feature of
the TD-RASSCF method. The second aim of this paper is
to analyze the laser-induced dynamics involved in HHG. By
carrying out computations of excitation probabilities and state-
resolved analysis of HHG spectra based on field-free time-
independent HF orbitals, contributions to the spectra from mul-
tiorbital excitations are clarified. These contributions cause the
breakdown of the SAE approximation and the TDCIS method.
On the other hand, both the TD-RASSCF-S and -D methods
succeed in describing the multiorbital excitations accurately.
Another noticeable advantage of the TD-RASSCF method is
the gauge independence, i.e., the laser-induced dynamics can
be computed without concern about the possible influence of
the choice of either length, velocity, or acceleration gauge.

The paper is organized as follows. The general formulation
of the TD-RASSCF method is presented in Sec. II. Based
on the general concept of the RAS scheme, i.e., assuming
no specific restriction for orbital excitations, the equations
of motion are derived. Section III is then devoted to carefully
tailoring the equations to each specific RAS scheme, especially
focusing on the TD-RASSCF-S, -SD, and -SDT methods. In
Sec. IV the numerical performances of these methods are
examined. To consider the applicability to large systems, the
numerical costs are analyzed in Sec. IV A and detailed in
Appendix A. For one-dimensional (1D) models of atomic
helium, beryllium, and carbon, numerical tests are carried

out: computations of the ground-state energies in Sec. IV B
and calculations of the HHG spectra induced by a laser pulse
in Sec. IV C. The calculations of laser-induced excitation
probabilities and the state-resolved analysis of the HHG
spectra are carried out based on time-independent HF orbitals
as detailed in Appendix B. The HHG spectra are also computed
within the SAE approximation based on the formulation in
Appendix C as well as with the TDCIS method and compared
to the results of the other methods. Based on the TD variational
principle, relations among the various TD-RASSCF methods
and the TDCIS method are discussed in Sec. IV D. The
gauge independence of TD-RASSCF and gauge dependence
of TDCIS are shown in Appendix D. Section V concludes.
Atomic units are used throughout unless otherwise stated.

II. GENERAL FORMULATION

We start by summarizing the general formulation of the
TD-RASSCF theory (see Ref. [53]). Reviewing the basics
provides the necessary background for considering the specific
RAS schemes discussed in Sec. III.

A. Formal derivation of the equations of motion

Based on the spin-restricted ansatz, consider the dynam-
ics of an Ne-electron wave function governed by a TD
Hamiltonian H (t). Using a set of M(�Ne/2) spatial orbitals
{|φi(t)〉}Mi=1, the TD-RASSCF wave function is expanded in
terms of normalized Slater determinants composed of TD spin-
orbitals |φi(t)〉 ⊗ |σ 〉 (i = 1, . . . ,M , and σ = ↑,↓ denoting
the spin states),

|�(t)〉 =
∑
I∈V

CI (t)|�I (t)〉, (1)

where the multi-index I represents the electronic configura-
tions, and V is the Fock space spanned by the configurations
specified in the considered RAS scheme. The multi-index I is
decomposed into α- and β-spin strings I = I↑ ⊗ I↓, where
Iσ = (i1,i2, . . . ,iNσ

) satisfies 1 � i1 < i2 < · · · < iNσ
� M

and N↑ + N↓ = Ne (see, e.g., Ref. [60]). Following Ref. [53],
let P denote the space at time t spanned by {|φi(t)〉}Mi=1
and Q the rest of the instantaneous single-particle Hilbert
space as illustrated in Fig. 1. The indices p,q,r,s . . . denote
orbitals belonging to either space, while the P-space orbitals
are labeled by i,j,k,l, . . . , and the Q-space virtual orbitals
by a,b,c,d, . . . . The RAS scheme is defined by dividing
the P space into three subspaces: the inactive-core space
P0, and the two active spaces P1 and P2, between which
orbital excitations are allowed subject to the restrictions
specified by the RAS scheme. If the core electrons do not
influence the dynamics, the frozen-core approximation, i.e.,
the use of the time-independent HF orbitals as the P0-space
orbitals would be a viable route to reduce the computational
complexity [50]. The numbers of spatial orbitals in P0, P1,
and P2 are denoted by M0, M1, and M2, respectively (hence,
M = M0 + M1 + M2). The case with one active space and
a core, i.e., the TD-CASSCF method, corresponds in our
formalism to M2 = 0 and M0 + M1 = M . The case with just
one active space and no core, i.e., the MCTDHF method,
corresponds to M0 = M2 = 0 and M1 = M .
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(P = P0 ⊕P1 ⊕ P2)
M = M0 + M1 + M2:

# of spatial orbitals in P

M0: # of spatial orbitals in P0

Orbital excitation

a, b, c, d, · · ·
p, q, r, s, · · ·

i, j, k, l, · · ·

M1: # of spatial orbitals in P1

P2 space
M2: # of spatial orbitals in P2

Q space
(P ⊕ Q) space

P space

active orbitals

inactive-

active orbitals

(frozen-)core orbitals

P1 space

P0 space

FIG. 1. Illustration of the division of the single-particle Hilbert
space in the TD-RASSCF theory. The wave function is composed of
the spin orbitals |φi(t)〉 ⊗ |σ 〉 (i = 1, . . . ,M , and σ = ↑,↓). The P
space spanned by the spatial orbitals consists of three subspaces: an
inactive-core space P0, and two active spaces P1 and P2, between
which orbital transitions are allowed with certain restrictions as
specified by the RAS scheme. The rest of the single-particle Hilbert
space spanned by the virtual orbitals is referred to as Q space. The
orbitals in either P or Q space are labeled p,q,r,s, . . . , while the
P-space orbitals are labeled i,j,k,l, . . . , and the Q-space orbitals
a,b,c,d, . . . . The numbers of spatial orbitals in the P0, P1, and
P2 spaces are expressed by M0, M1, and M2, respectively, and the
total number by M = M0 + M1 + M2. The case M2 = 0 corresponds
to having only one active space, i.e., to the TD-CASSCF method,
which is further reduced to the MCTDHF method when M0 = 0
(see Sec. III A). In this illustration (M0,M1,M2) = (1,3,4).

The set of equations obeyed by the CI-expansion coeffi-
cients and the orbitals in Eq. (1) are derived based on the Dirac-
Frenkel-McLachlan TD variational principle [56–59]. For
brevity, henceforth, explicit time dependence of parameters
and operators is dropped as long as it causes no confusion. We
define an action functional

S
[{CI },{φi},

{
εi
j

}]

=
∫ T

0

⎡
⎣〈�|

(
i

∂

∂t
− H

)
|�〉+

∑
ij

εi
j

(〈φi |φj 〉− δi
j

)⎤⎦dt, (2)

where εi
j is a Lagrange multiplier which ensures orthonormal-

ity among the P-space orbitals during the time interval [0,T ].
The stationary conditions δS/δC∗

I = 0 and δS/〈δφi | = 0,
respectively, result in the amplitude equations

iĊI + 〈�I |(iD − H )|�〉 = 0, (3)

and the orbital equations

∑
q

|φq〉
〈
�

q

i

∣∣ [i
∑
I∈V

ĊI |�I 〉 + (iD − H )|�〉
]

+
∑

j

|φj 〉εi
j = 0, (4)

where 〈�q

i | ≡ 〈�|Eq

i is the one-particle-one-hole state, and
E

q

i is the spin-free excitation operator defined by

Eq
p =

∑
σ=↑,↓

c†pσ cqσ , (5)

with cpσ (c†pσ ) being the annihilation (creation) operator of an
electron in the spin orbital |φp(t)〉 ⊗ |σ 〉. Both Eqs. (3) and (4)
contain the orbital-time-derivative operator

D =
∑
pq

ηp
q Eq

p, (6)

with η
p
q [= − (ηq

p)∗] = 〈φp|φ̇q〉. The orbital equations (4)
consist of two parts: the Q-space orbital equations〈

�a
i

∣∣(iD − H )|�〉 = 0, (7)

and the P-space orbital equations

〈�|(iD − H )
∣∣�i ′

j ′′
〉 − 〈

�
j ′′
i ′
∣∣(iD − H )|�〉 = iρ̇

j ′′
i ′ , (8)

with the time derivative of the density matrix

ρ̇
j ′′
i ′ =

∑
I∈V

(
Ċ∗

I

〈
�I

∣∣�i ′
j ′′
〉 + 〈

�
j ′′
i ′
∣∣�I

〉
ĊI

)
. (9)

In Eqs. (8) and (9) the orbitals labeled by single and double
primed index i ′ and j ′′ belong to different subspaces, otherwise
expression (8) gives an identity, not an equation (see Sec. III).

Before closing this section, it should be noted that, whereas
the Q-space orbital equations (7) are coupled only within each
other, the amplitude and the P-space orbital equations, i.e.,
Eqs. (3) and (8), compose a set of coupled equations linked
together via ρ̇

j ′′
i ′ . As discussed in Sec. III, it is anything but

trivial to eliminate this latter coupling except in a few specific
RAS schemes.

B. Explicit formula

For practical implementation of the method, we need
explicit expressions for the equations of motion. For com-
pleteness, these are given below. The details of the derivation
are given in Ref. [53]. We consider a specific Hamiltonian
composed by one- and two-body operators expressed in second
quantization as

H (t) =
∑
pq

hp
q (t)Eq

p + 1

2

∑
pqrs

vpr
qs (t)Eqs

pr , (10)

where the spin-free excitation operators are defined by Eqs. (5)
and (11):

Eqs
pr =

∑
σ=↑,↓

∑
τ=↑,↓

c†pσ c†rτ csτ cqσ . (11)

The matrix elements in Eq. (10) are given by
h

p
q (t) = ∫

φ∗
p(r,t)h(r,t)φq(r,t)d r and v

pr
qs (t) = ∫∫

φ∗
p(r1,t)

φ∗
r (r2,t)v(r1,r2)φq(r1,t)φs(r2,t)d r1d r2.

Substituting Eqs. (6) and (10) into Eq. (3), we obtain the
explicit expression for the amplitude equations:

iĊI =
∑
ij

(
hi

j − iηi
j

)〈�I |Ej

i |�〉 + 1

2

∑
ijkl

vik
j l 〈�I |Ejl

ik |�〉.

(12)
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Likewise, by using Eqs. (6) and (10), and defining the
projection operator Q = 1 − ∑

i |φi〉〈φi |, the Q-space orbital
equations (7) lead to

i
∑

j

Q|φ̇j 〉ρj

i =
∑

j

Qh(t)|φj 〉ρj

i +
∑
jkl

QWk
l |φj 〉ρjl

ik , (13)

with the density matrices ρ
j

i ≡ 〈�|Ej

i |�〉 and ρ
jl

ik ≡
〈�|Ejl

ik |�〉, and the mean-field operator Wk
l (r,t) =∫

φ∗
k (r ′,t)v(r,r ′)φl(r ′,t)d r ′. Finally, we express the P-space

orbital equations (8) as∑
k′′l′

(
hk′′

l′ − iηk′′
l′
)
A

l′j ′′
k′′i ′ +

∑
klm

(
v

j ′′m
kl ρkl

i ′m − vkl
i ′mρ

j ′′m
kl

) = iρ̇
j ′′
i ′ ,

(14)

with A
l′j ′′
k′′i ′ = 〈�|[Ej ′′

i ′ ,El′
k′′]|�〉 = δ

j ′′
k′′ ρ

l′
i ′ − δl′

i ′ρ
j ′′
k′′ . After solv-

ing the Q- and P-space orbital equations [Eqs. (13) and (14)],
the time derivatives of the P-space orbitals are obtained as

|φ̇i〉 = (P + Q)|φ̇i〉 =
∑

j

|φj 〉ηj

i + Q|φ̇i〉. (15)

III. SPECIFIC RAS SCHEMES

As discussed in Sec. II, the presence of ρ̇
j ′′
i ′ couples the

amplitude and theP-space orbital equations [see either Eqs. (3)
and (8) or Eqs. (12) and (14)], which requires elaborate implicit
integration schemes. The difficultly can be resolved if the
coupling can be removed. Substituting Eq. (9) into Eq. (8),
and using Eq. (3), we arrive at the expression

〈�|(iD − H )(1 − �)
∣∣�i ′

j ′′
〉− 〈

�
j ′′
i ′
∣∣(1 − �)(iD − H )|�〉= 0,

(16)

with the projection operator � defined by

� =
∑
I∈V

|�I 〉〈�I |. (17)

Note that Eq. (16) becomes an identity if |φi ′ 〉 and |φj ′′ 〉 belong
to the same subspace. Equation (16) is formally free from the
coupling except for the presence of �, whose operation is
specifically defined in each considered RAS scheme. We will
see that, in particular RAS schemes, Eq. (16) can be rewritten in
explicit forms which are appropriate for numerical treatments.

A. TD-CASSCF and MCTDHF methods

Both the TD-CASSCF method and MTDHF approaches
are obtained as special cases of the TD-RASSCF method. The
TD-CASSCF method is obtained by setting M0 + M1 = M

and M2 = 0 (see Fig. 1). Because there is no orbital transitions
between P0 and P1 spaces, ρj ′′

i ′ and ρ̇
j ′′
i ′ are absent [50,53], and

the P-space orbital equations (14) simplify to∑
k′′l′

(
hk′′

l′ − iηk′′
l′
)
A

l′j ′′
k′′i ′ +

∑
klm

(
v

j ′′m
kl ρkl

i ′m − vkl
i ′mρ

j ′′m
kl

)= 0. (18)

If there is no core, i.e., in the MCTDHF method with M1 = M

and M0 = M2 = 0, Eqs. (8), (14), and (16) become identities.

The P-space orbital equations hence disappear, and the values
of η

j

i are thus often chosen as zeros [34,36]. In summary, the
TD-CASSCF method is expressed by a set of equations of
motion, Eqs. (12), (13), and (18), and the MCTDHF method
by Eqs. (12) and (13).

B. TD-RASSCF-D method

The TD-RASSCF-D method [53] takes into account all
possible double-orbital excitations from P1 to P2. Because the
occupation number in the P2 space is zero or two, the matrix
elements ρ

j ′′
i ′ and ρ̇

j ′′
i ′ disappear, which results in the P-space

orbital equations exactly of the form expressed by Eq. (18).
The TD-RASSCF-D method thus requires one to solve the set
of equations of motion given by Eqs. (12), (13), and (18).

C. TD-RASSCF-S, -SD, and -SDT methods

Consider a series of methods, TD-RASSCF(N ) (N =
1,2, . . . , min{M1,M2}), defined by prohibiting K-fold-orbital
excitations (K > N ). In analogy to the CIS, CISD, and CISDT
methods (see, e.g., Ref. [51]), the cases of N = 1, 2, and
3 are specifically denoted TD-RASSCF-S, -SD, and -SDT
methods, respectively. In the presence of a core (M0 �= 0),
the P-space orbital equations result in Eq. (18) for the set
of indices (i ′,j ′′) with either |φi ′(t)〉 or |φj ′′ (t)〉 belonging to
P0. When neither |φi ′(t)〉 nor |φj ′′(t)〉 belongs to P0, special
treatments are needed in the TD-RASSCF(N ) method. In this
case, the Fock space V is decomposed into a direct sum of
N + 1 subspaces (see Fig. 2):

V = V0 ⊕ V1 ⊕ · · · ⊕ VN, (19)

where Vn (n = 0,1, . . . ,N ) denotes a subspace spanned by all
possible configurations with n-fold-orbital excitations from
P1 to P2. In Eq. (16), for |φi ′(t)〉 ∈ P1 ∧ |φj ′′(t)〉 ∈ P2, 〈�j ′′

i ′ |
contains (N + 1)-fold-orbital excited configurations compos-
ing VN+1( �⊂ V), but |�i ′

j ′′ 〉 does not, hence 〈�j ′′
i ′ |(1 − �) �= 0

and (1 − �)|�i ′
j ′′ 〉 = 0. Equation (16) therefore simplifies to

〈
�

j ′′
i ′
∣∣(1 − �)(iD − H )|�〉 = 0, (20)

with 〈
�

j ′′
i ′
∣∣(1 − �) =

∑
I∈VN

C∗
I 〈�I |Ej ′′

i ′ , (21)

where the summation in Eq. (21) runs within the N -fold-orbital
excited configurations. Substituting Eqs. (6) and (10) into
Eq. (20), we obtain the explicit form

∑
k′′l′

(
iηk′′

l′ − hk′′
l′
)
ζ

l′j ′′
k′′i ′ = 1

2

∑
klmn

vkm
ln ζ

lnj ′′
kmi ′ , (22)

with the fourth- and sixth-order tensors defined by

ζ
l′j ′′
k′′i ′ = 〈

�
j ′′
i ′
∣∣(1 − �)El′

k′′ |�〉, (23)

ζ
lnj ′′
kmi ′ = 〈

�
j ′′
i ′
∣∣(1 − �)Eln

km|�〉. (24)

In Eq. (24) Eln
km should excite one or two orbitals in the

ket-vector |�〉 from P1 to P2, because ζ
lnj ′′
kmi ′ is zero otherwise.
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· · ·

V1 V2⊕

· · ·

V0V = ⊕

P0

P1

P2

FIG. 2. Decomposition of the Fock space. This example shows the case of the TD-RASSCF-SD method, i.e., the TD-RASSCF(N = 2)
method, with (M0,M1,M2) = (1,2,5) for a six-electron system. The Fock space is expressed by a direct sum V = V0 ⊕ V1 ⊕ V2, where Vn

(n = 0, 1, and 2) means a subspace consisting of all possible n-fold-orbital excited configurations.

Exploiting this fact and also the antisymmetry property for ex-
changing indices, the right-hand side of Eq. (22) is rewritten as

1

2

∑
klmn

vkm
ln ζ

lnj ′′
kmi ′ =

∑
k′m′′

l′ < n′

(
vk′m′′

l′n′ − vk′m′′
n′l′

)
ζ

l′n′j ′′
k′m′′i ′

+
∑

k′′ < m′′
l′n′′

(
vk′′m′′

l′n′′ − vk′′m′′
n′′l′

)
ζ

l′n′′j ′′
k′′m′′i ′ . (25)

Instead of directly preparing all values of ζ
lnj ′′
kmi ′ and then

computing the right-hand side of Eq. (22), one should use
Eq. (25) to reduce the numerical cost.

IV. NUMERICAL PERFORMANCE

A. Analysis of computational cost

Before starting numerical implementations of the
TD-RASSCF methods, it is important to know which part
of the equations is the most time consuming to evaluate
and to estimate how the computational cost depends on the
considered RAS scheme. For the analysis, we consider a 1D
model of an Ne-electron atom, and each orbital is expanded
in a discrete-variable-representation (DVR) basis set [61]
with NDVR quadrature points. To obtain converged results
for laser-induced dynamics, typically NDVR = O(103) and
the number of spatial orbitals will be at least M = Ne or
more. For simplicity, we suppose closed-shell systems (Ne is
even). We consider a simple partitioning with (M0,M1,M2) =
(0,Ne/2,M − Ne/2) for the TD-RASSCF-S, -D, -SD,
-SDT, . . . , and (M0,M1,M2) = (0,M,0) for the MCTDHF
method.

To solve the equations of motion in the TD-RASSCF-D and
MCTDHF methods, the number of operations at each time step
is estimated as follows (see Appendix A): Preparation of the
values of vik

jl and then solving the amplitude equations (12)
require M4N2

DVR and M4 dimV operations, respectively. Sim-
ilarly, the preparation of the values of ρ

jl

ik and the integration
of the Q-space orbital equations (13) need M4 dimV and
M4N2

DVR operations, respectively. The cost for integrating

the P-space orbital equations (18) is negligible compared to
the operations above. In both methods, the total overhead is
therefore approximately 2M4(N2

DVR + dimV). In the MCT-
DHF method, with increasing Ne, the number of configurations
increases exponentially, dimV = O(MNe ), which makes the
application difficult to large systems. The TD-RASSCF-D
method cures this undesirable scaling property and gives
dimV = O(N2

e M2). In the TDHF method, since there is no
amplitude equation, the total number of operations is about
(Ne/2)4N2

DVR for integrating the Q-space orbital equations.
In the TD-RASSCF-S, -SD, and -SDT methods, updating

the values of the sixth-order tensors ζ
lnj ′′
kmi ′ [Eq. (24)] requires

about M6 dimVN operations (N = 1, 2, and 3 for the TD-
RASSCF-S, -SD, and -SDT methods, respectively). Noting
that dimVN = O(NN

e MN ), it is seen that the computation of

ζ
lnj ′′
kmi ′ is the most demanding step. That is, although the total

number of the single-orbital excitations is small, dimV1 =
O(NeM), their inclusion generates a large computational cost
due to the emergence of the sixth-order tensor.

The numbers of operations required at each time step are
summarized in Appendix A for every method [Eqs. (A9)–
(A14)] and plotted in Fig. 3 as a function of the number of
electrons with NDVR = 2048. The number of orbitals is Ne/2
in the TDHF method and is set to M = Ne in the other methods.
Note that, for closed-shell systems, the TD-RASSCF-S wave
function is fully converged with M = Ne as shown in Ref. [55]
and as will be revisited in Sec. IV B. Although a closed
shell can be realized for every even Ne in the 1D model,
it can be formed only in rare gas atoms in the realistic 3D
cases. Hence the data points in Fig. 3 are shown only for
Ne = 10, 18, 36, and 54. The TDHF method has already been
successfully used for computing strong-field ionization of CO
molecules (Ne = 14) [32], and the scaling in Fig. 3 might
indicate the potential applicability of the TD-RASSCF-S and
-D methods to such or even larger realistic 3D systems. The
TD-RASSCF-SD method can possibly be applied as well.
Remember that, except in the TD-RASSCF-S method, the
use of more orbitals (M > Ne) gives more accurate results
but is computationally more expensive, so that the use of
inactive-core or frozen-core orbitals will be indispensable in
such computations for very large systems.
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FIG. 3. (Color online) The number of operations at each time
step for solving the equations of motion as a function of the number
of electrons [Eqs. (A9)–(A14)] for the 1D realizations of the methods
considered in this work. To produce the plot, NDVR = 2048 is fixed.
The number of orbitals is set to be Ne/2 for the TDHF method
and M = Ne for the other methods. In the TD-RASSCF-S, -D,
-SD, -SDT methods, the P space was partitioned as (M0,M1,M2) =
(0,Ne/2,Ne/2). Data points are shown only for rare gas atoms
(Ne = 10, 18, 36, and 54).

To expand the orbitals, it is possible to use any kind of basis
set. A change of basis will change the numerical cost. Consider
the evaluation of vik

jl . The use of the DVR basis functions
associated with the Legendre polynomials, for instance,
requires N2

DVR operations to evaluate the value because the
DVR is diagonal in the position representation [61]. On the
other hand, the use of the Legendre polynomials as a basis set
requires N4

DVR operations. To expand the orbitals in a large box,
the best choice will thus be the DVR or the more sophisticate
finite-element DVR basis functions [46,47]. Finally note
that, in computations for realistic 3D Coulomb systems, two
additional degrees of freedom need to be taken into account in
each orbital. For example, in terms of the angular momentum
representation. In this case, therefore, the computations of

Wk
l (r) and vik

jl will be another bottleneck. Instead of carrying
out direct integration, one should, in this case, consider the
Poisson equation �Wk

l (r) = −4πφ∗
k (r)φl(r), which gives

simple expressions to Wk
l (r) and vik

jl in the DVR [62].

B. Ground-state energy

To illustrate the numerical properties of the TD-RASSCF
method, we investigate 1D model atoms defined by the one-
body operator

h(x,t) = −1

2

d2

dx2
+ V (x), (26)

where V (x) = −Z/
√

x2 + 1, with Z = Ne = 2, 4, and
6 for mimicking atomic helium [55,63–65], beryllium
[53,55,66,67], and carbon [55], respectively. For every atom,
the two-body operator

v(x1,x2) = 1√
(x1 − x2)2 + 1

(27)

is used to describe the electron-electron repulsion. The ground-
state wave function was calculated by imaginary-time relax-
ation [68] as in Ref. [53]; a [−25,25] box was discretized by
NDVR = 256 quadrature points associated with Fourier basis
functions, and the Q- and P-space orbital equations were reg-
ularized with a small constant ε = 10−10 (see, e.g., Ref. [34]).
Tables I and II list the ground-state energies of the 1D beryl-
lium and carbon atoms, respectively. The tables also include
the number of configurations used to obtain the energies.

We first focus on the results of the 1D beryllium atom in
Table I. Starting from the HF ground-state energy −6.739 450,
each method obviously provides smaller energy with increas-
ing M (except TD-RASSCF-S as addressed below). For a given
value of M , on the other hand, the energy becomes smaller
when the number of configurations increases. The MCTDHF
method always gives the largest number of configurations and
accordingly provides the best energy, which is then followed by
the TD-RASSCF-SDT, -SD, -D, and -S methods in this order.

TABLE I. Ground-state energy (in atomic units) of the 1D beryllium atom (Z = Ne = 4). The integers in parentheses below each
energy show the number of configurations. In the TD-RASSCF-S, -D, -SD, and -SDT calculations, the partition is set to be (M0,M1,M2) =
(0,2(=Ne/2),M − 2). When M = 2, the methods reduce to the TDHF method, which gives the HF ground-state energy −6.739 450. The
TD-RASSCF-S method gives a converged result for M2 � M1 as indicated by the underlined energies. When M = Ne/2 + 1 = 3, note
the following facts: (i) TD-RASSCF-SD and MCTDHF are the same method, (ii) TD-RASSCF-D and MCTDHF (TD-RASSCF-SD) are
different methods but theoretically equivalent (see Ref. [53]) and hence give the same energy value as indicated by symbols � (see text), and
(iii) TD-RASSCF-SDT cannot be defined (where the table thus remains blank).

M

Method (M0,M1,M2) 3 4 8 12 16 20

TD-RASSCF-S (0,2,M − 2) −6.771 254 −6.773 288 −6.773 288 −6.773 288 −6.773 288 −6.773 288
(5) (9) (25) (41) (57) (73)

-D (0,2,M − 2) −6.771 296� −6.779 805 −6.784 501 −6.784 533 −6.784 534 −6.784 534
(5) (19) (175) (491) (967) (1603)

-SD (0,2,M − 2) −6.771 296� −6.780 026 −6.784 667 −6.784 697 −6.784 698 −6.784 698
(9) (27) (199) (531) (1023) (1675)

-SDT (0,2,M − 2) −6.780 026 −6.785 038 −6.785 074 −6.785 074 −6.785 075
(35) (559) (2331) (6119) (126 91)

MCTDHF (0,M,0) −6.771 296� −6.780 026 −6.785 041 −6.785 077 −6.785 078 −6.785 078
(9) (36) (784) (4356) (144 00) (361 00)
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TABLE II. Ground-state energy (in atomic units) of the 1D carbon atom (Z = Ne = 6). The integers in parentheses below each energy
show the number of configurations. In the TD-RASSCF-S, -D, -SD, and -SDT calculations, the partition (M0,M1,M2) satisfies a condition
M0 + M1 = Ne/2 = 3. The upper and lower parts consist of the results for M0 = 0 and 1, respectively. When M = 3, the methods reduce to
the TDHF theory, which gives the HF ground-state energy −13.231 17. The TD-RASSCF-S method gives a converged result for M2 � M1 as
indicated by the underlined energies. When M = Ne/2 + 1 = 4, note the following facts: (i) TD-RASSCF-SD and MCTDHF are the same
method, (ii) TD-RASSCF-D and MCTDHF (TD-RASSCF-SD) are different methods but theoretically equivalent (see Ref. [53]) and hence
give the same energy value as indicated by symbols �, (iii) TD-RASSCF-SDT cannot be defined (where the table thus remains blank), and
(iv) TD-RASSCF-S gives the same energy value as marked by symbols � irrespective of the value of M0(<Ne/2). The TD-RASSCF-STD
calculation with (M0,M1,M2) = (0,3,2) is not stable numerically. Hence the energy value −13.311 24 was computed with regularization
constant ε = 10−6, while all the other results were obtained with ε = 10−10.

M

Method (M0,M1,M2) 4 5 6 8 10 12 14

w/o core (M0 = 0)

TD-RASSCF-S (0,3,M − 3) −13.298 57� −13.300 37 −13.300 39 −13.300 39 −13.300 39 −13.300 39 −13.300 39
(7) (13) (19) (31) (43) (55) (64)

-D (0,3,M − 3) −13.298 60� −13.309 92 −13.317 49 −13.326 18 −13.327 17 −13.327 30 −13.327 32
(10) (43) (100) (286) (568) (946) (1420)

-SD (0,3,M − 3) −13.298 60� −13.311 16 −13.318 37 −13.326 82 −13.327 42 −13.327 51 −13.327 53
(16) (55) (118) (316) (610) (1000) (1486)

-SDT (0,3,M − 3) −13.311 24 −13.320 14 −13.329 99 −13.331 17 −13.331 33 −13.331 36
(91) (282) (1236) (3326) (7000) (127 06)

MCTDHF (0,M,0) −13.298 60� −13.311 27 −13.320 16 −13.330 09 −13.331 33 −13.331 51 −13.331 54
(16) (100) (400) (3136) (144 00) (484 00) (132 496)

w/core (M0 = 1)

TD-RASSCF-S (1,2,M − 3) −13.298 57� −13.300 37 −13.300 37 −13.300 37 −13.300 37 −13.300 37 −13.300 37
(5) (9) (13) (21) (29) (37) (45)

-D (1,2,M − 3) −13.298 60� −13.309 67 −13.316 39 −13.323 83 −13.324 31 −13.324 39 −13.324 40
(5) (19) (43) (121) (239) (397) (595)

-SD (1,2,M − 3) −13.298 60� −13.310 89 −13.317 41 −13.325 20 −13.325 46 −13.325 50 −13.325 51
(9) (27) (55) (141) (267) (433) (639)

-SDT (1,2,M − 3) −13.310 94 −13.318 48 −13.327 19 −13.327 81 −13.327 89 −13.327 91
(35) (91) (341) (855) (1729) (3059)

TD-CASSCF (1,M − 1,0) −13.298 60� −13.310 94 −13.318 48 −13.327 22 −13.327 86 −13.327 95 −13.327 96
(9) (36) (100) (441) (1296) (3025) (6084)

In the TD-RASSCF calculations, the P space was partitioned
as (M0,M1,M2) = (0,Ne/2,M − Ne/2). When M = 3, it can
be shown by carrying out orbital rotations that the TD-
RASSCF-D and MCTDHF methods are equivalent, so that
both methods give the same energy value −6.771 296 as
marked by the symbols � (see Ref. [53] for a more detailed
discussion). Note that the accuracy of the TD-RASSCF-D and
-SD methods is comparable. The lack of the single-orbital
excitations in the TD-RASSCF-D method seems to be well
made up by the orbital optimization.

Most importantly, the TD-RASSCF-S method, quite differ-
ently from the others, shows a peculiar behavior as indicated by
the energies underlined in Table I. That is, the TD-RASSCF-S
result is converged at M = 4 to the value −6.773 288. The
special convergence property is stated as a theorem:

Theorem. For closed-shell systems, the TD-RASSCF-S
method satisfying M0 + M1 = Ne/2 and M1 � M2 gives a
wave function which is invariant with respect to the value
of M2.

The proof is given in Ref. [55]. The theorem ensures that
the TD-RASSCF-S wave function can be fully converged
with only Ne/2 + 1 � M � Ne spatial orbitals. Thus without

concerns about the convergence with respect to M , the TD-
RASSCF-S method gives reasonably accurate results for large
systems with manageable computational cost.

The same convergence trend can be observed in the results
of the 1D helium atom (not shown) and carbon atom in Table II.
We briefly consider the results of the 1D carbon atom. In
the TD-RASSCF calculations, the P space was partitioned
as (M0,M1,M2) = (M0,Ne/2 − M0,M − Ne/2). The special
convergence property of the TD-RASSCF-S method clearly
appears in this example as well. When M = 4, there are
some equivalences among the methods for the 1D carbon
atom as marked by the symbols � and � in Table II. The
equivalences can be proven by carrying out orbital rotations
as discussed above for the 1D beryllium atom (see Ref. [53]).
The realization of the equivalences by numerical calculations
assures the reliability of the numerical results. Finally it should
be noticed that, compared to the 1D helium and beryllium
atoms, the 1D carbon atom shows more clearly the unfavorable
scaling property of the MCTDHF method and emphasizes the
efficient reduction of the number of configurations inherent
in the other TD-RASSCF methods, especially in the TD-
RASSCF-S approach. In Table II one can also see the efficiency
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obtained by introducing a core M0 = 1 in terms of reduction in
the number of configurations. The use of a core or frozen core
will be indispensable for the application of the TD-RASSCF
method to very large systems.

C. Laser-induced dynamics

We now turn to the discussion of laser-induced dynamics.
For the three model atoms introduced above, the real-time
propagation was carried out in a large box, [−300,300],
discretized by NDVR = 2048 quadrature points. The electric
field is defined as F (t) ≡ −dA(t)/dt , where the vector
potential is (see, e.g., Ref. [69])

A(t) = F0

ω
sin2

(
πt

T

)
sin ωt (0 � t � T ), (28)

with electric field strength F0 = 0.0755 (2.0 × 1014 W cm−2),
angular frequency ω = 0.0570 (800 nm), and pulse duration
T = 331 (three cycles). Within the dipole approximation, the
laser-electron interaction was taken into account in the length
gauge xF (t). However, because of the gauge invariance of the
SCF based method (see Appendix D), the use of the velocity
or acceleration gauge causes no change to the dynamics. The
other numerical conditions and the definition of the complex
absorbing potential (CAP) function [70] are the same as those
in Refs. [53,55].

We first focus on the 1D beryllium atom and come
back to the other two atoms later. In the TD-RASSCF
calculations for the 1D beryllium atom, the partitions are fixed
as (M0,M1,M2) = (0,Ne/2,M − Ne/2) as in the computations
of the ground-state energy. The left column of Fig. 4 displays
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FIG. 4. (Color online) Left column (a1)–(e1): HHG spectra of the 1D beryllium atom obtained from different methods (see text). Each
panel includes the list of methods, and if necessary, also the number of spatial orbitals M and the partitioning (M0,M1,M2). Right column
(a2)–(e2): Probabilities to find the system in the HF ground state 〈P0〉(t), single-orbital excited HF states 〈P1〉(t), and double-orbital excited
HF states 〈P2〉(t) (shortly denoted by 0, 1, and 2, respectively). Left and right panels correspond to each other, and, for comparison,
every panel includes the same dashed (red) lines representing the result of the MCTDHF calculation with M = 20 spatial orbitals. All the
calculations were carried out for the laser pulse specified in Eq. (28), and the profile is depicted in (a2) by the thick (pink) line. For this
laser field, the cutoff energy in the HHG spectrum is estimated to be 29.9ω (see text) as shown by the vertical dotted lines in the left
column.
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the HHG spectra S(�) of the 1D beryllium atom computed
as the absolute squared of the Fourier transformation of the
dipole acceleration (see, e.g., Ref. [71]) 〈�(t)|D|�(t)〉, where
D ≡ ∑Ne

κ=1 d(xκ ), with d(xκ ) = −dV (xκ )/dxκ and V (x) =
−Z/

√
x2 + 1. Based on the classical model for HHG [3–5],

the cutoff energy in the HHG spectrum is estimated to be
3.17Up + Ip = 29.9ω and indicated by a vertical dotted line.
Here Up = F 2

0 /(4ω2) = 0.439 is the ponderomotive energy,
i.e., the time-averaged energy of a classical free electron
quivering in the laser field, and Ip = 0.313 is the first ionization
potential based on Koopmans’ theorem [51]. To clarify the
excitation dynamics during the interaction with the laser,
the right column of Fig. 4 shows the probabilities to find
the system in the HF ground state, single- and double-orbital
excited states 〈Pκ〉(t) ≡ 〈�(t)|Pκ |�(t)〉 (κ = 0, 1, and 2) [see
Eqs. (B7)–(B9) in Appendix B], computed by using the
projection operators:

P0 = |HF〉〈HF|, (29)

P1 =
∑
ia

∑
σ

∣∣HFaσ
iσ

〉〈
HFaσ

iσ

∣∣, (30)

P2 = 1

4

∑
ijab

∑
στ

[∣∣HFaσ,bτ
iσ,jτ

〉〈
HFaσ,bτ

iσ,jτ

∣∣
+ (

1 − δτ
σ

)∣∣HFaτ,bσ
iσ,jτ

〉〈
HFaτ,bσ

iσ,jτ

∣∣], (31)

where |HF〉 is the HF ground state, |HFaσ
iσ 〉 = cHF

aσ

†
cHF
iσ |HF〉

and |HFaσ,bτ
iσ,jτ 〉 = cHF

aσ

†
cHF
bτ

†
cHF
jτ cHF

iσ |HF〉 are defined with the

annihilation (creation) operator cHF
iσ (cHF

aσ

†
) for the HF occupied

(virtual) spin orbitals. The probabilities are plotted after having
been divided by the norm squared of the total wave function
which is smaller than one due to the CAP.

The convergence test of the MCTDHF method is demon-
strated in Figs. 4(a1) and 4(a2). In terms of both the HHG
spectrum and the probabilities, one can see the convergence
as M increases. Although the complete convergence of the
HHG spectrum above the cutoff may require more orbitals,
the result with M = 20 is the most accurate and thus included
in the other panels as a reference. Before evaluating the
performances of the other methods, we consider Fig. 5, where
the state-resolved analysis is carried out for the MCTDHF ref-
erence spectrum. Figure 5(a) displays the spectrum computed
from 〈�(t)|(P0 + P1)D(P0 + P1)|�(t)〉 and 〈�(t)|(P0 +
P1 + P2)D(P0 + P1 + P2)|�(t)〉. The insertions of these pro-
jection operators select specific electronic processes in terms
of field-free time-independent HF orbitals. The detail of the
computation is presented in Appendix B. When P0 + P1 + P2

is inserted in the evaluation of the expectation value of D,
the original reference spectrum is precisely reproduced over
the whole region. One can thus conclude that the triple- and
quadruple-orbital excitations in terms of time-independent HF
orbitals are not involved in the dynamics governing HHG in
the 1D beryllium atom. When P0 + P1 is inserted, on the other
hand, the original spectrum is reasonably reproduced below
the cutoff, but clearly underestimated beyond. This indicates
the important contributions from the double-orbital excitations
above the cutoff. Next, to estimate the contribution from the
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FIG. 5. (Color online) State-resolved analysis of the HHG spec-
trum of the 1D beryllium atom. For the wave function |�(t)〉
obtained from the MCTDHF calculation with M = 20, the state-
resolved spectra are computed as follows: (a) The absolute squared
of the Fourier transformation of 〈�(t)|(P0 + P1)D(P0 + P1)|�(t)〉
and 〈�(t)|(P0 + P1 + P2)D(P0 + P1 + P2)|�(t)〉, and (b) the same
for 〈�(t)|P1DP1|�(t)〉 and 〈�(t)|(P1 + P2)D(P1 + P2)|�(t)〉. The
reference spectrum of the MCTDHF calculation is shown by dashed
(red) line in both panels.

HF ground state, Fig. 5(b) shows the analysis using P1 and
P1 + P2. For P1 + P2, the original spectrum is reproduced only
above the cutoff. The use of P1 underestimates the spectrum on
the whole region. From these observations, one can therefore
explain the physics behind the HHG spectrum based on
time-independent HF orbitals as follows: Below the cutoff, the
recombination processes between the HF ground state and the
single-orbital excited states determines the overall shape, and
the double-orbital excitations account for the detailed struc-
ture. In the region above the cutoff, recombinations among the
single- and double-orbital excited states are essential and the
contribution from the HF ground state can be negligible.

Keeping in mind the physical picture revealed by the
state-resolved analysis, we proceed with the assessment of
the accuracy of each method. Figures 4(b1) and 4(b2) show
the results of the SAE approximation and the TDCIS method.
Note that our SAE approximation as formulated in Appendix C
is a special case of the TDHF or TDCIS method; the
nonlocal-exchange interaction between the active electron and
the rest of the inactive electrons is taken into account. The
SAE approximation reasonably reproduces the HHG spectrum
below the cutoff but does not do so above. This is expected from
the state-resolved analysis, because the SAE approximation
describes only the single-electron recombination process to
the HF ground state. The probabilities 〈P0〉(t) and 〈P1〉(t)
obtained from the SAE calculation also clearly differ from the
reference ones. On the other hand, the TDCIS method gives
improvement to the HHG spectrum above the cutoff and also
to 〈P0〉(t) and 〈P1〉(t) by taking into account some multiorbital
effect: coherent contributions from each orbital [72], and
interchannel interactions among the single-orbital excited
states [28]. Due to the lack of multiorbital excitations, however,
the TDCIS method still underestimates the HHG intensity
above the cutoff where double-orbital excitations contribute
significantly.
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Figures 4(c1) and 4(c2) then show the comparison be-
tween the TDHF and TD-RASSCF-S methods. The SCF
based methods implicitly take into account any kind of the
multiorbital excitations in terms of time-independent HF
orbitals. The TDHF method, however, gives very wrong
excitation probabilities and, accordingly, results in an even
poorer HHG spectrum than the TDCIS result. On the other
hand, the TD-RASSCF-S method shows large improvements.
For the computation of the HHG spectrum especially above
the cutoff, the TD-RASSCF-S method is obviously more
accurate than the TDHF and TDCIS methods. By the explicit
inclusion of the single-orbital excitations in terms of the TD
orbitals, the TD-RASSCF-S method succeeds in describing
the double-orbital excitations in terms of time-independent
HF orbitals. Note that, by the theorem stated in Sec. IV B and
Ref. [55], the TD-RASSCF-S result is fully converged with
M = Ne. As shown in Ref. [55], the converged TD-RASSCF-S
wave function with M = Ne is more accurate than the TDCIS
wave function in the sense of the TD variational principle.
The numerical results in Fig. 4 reflect this property of the
theory. Also note that, whereas the TDCIS method is gauge
dependent, the SCF based method is gauge independent as

shown in Appendix D. This is another advantage of the
TD-RASSCF method compared to the TDCIS approach or
the TDCI methods with truncation in the excitation level.

Next Figs. 4(d1) and 4(d2) compare the performances of
the TD-RASSCF-D and -SD methods for M = 4. Despite the
lack of explicit inclusion of single-orbital excitations in the
TD-RASSCF-D method, the accuracy of the TD-RASSCF-D
and -SD methods is almost comparable and they are slightly
more accurate than the TD-RASSCF-S method. The same
computations were carried out with M = 20 and the results in
Figs. 4(e1) and 4(e2) show the expected variational improve-
ments. The HHG spectra and the excitation probabilities are in
excellent agreement with the MCTDHF reference values. The
TD-RASSCF-D computation with M = 20 is more expensive
than the TD-RASSCF-S and -D computations with M = 4 but
more economical than the MCTDHF approach with M = 20.

To assess the accuracy of the TD-RASSCF methods in
more detail, we next consider the results for the 1D helium
and carbon atoms. The MCTDHF, TDHF, TD-RASSCF-S,
and TDCIS methods and the SAE approximation were used
for the 1D helium atom to compute the HHG spectra and
excitation probabilities, and the results were compared with
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FIG. 6. (Color online) Same as Fig. 4 but for the 1D carbon atom. The cutoff energy in the HHG spectrum is estimated to be 26.0ω.
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FIG. 7. (Color online) Same as Fig. 5 but for the 1D carbon atom.
The analysis was carried out for the HHG reference spectrum obtained
from the MCTDHF calculation with M = 14.

the exact solution to the TD Schrödinger equation (TDSE).
Due to the large ionization potential Ip = 0.750, and small
polarizability of the 1D helium atom, many-electron effects are
of minor importance, and the HHG spectra and the excitation
probabilities obtained from all the methods are in reasonable
agreement (see Ref. [55] where the acceleration dipoles and
HHG spectra obtained from the MCTDHF, TD-RASSCF-S,
TDCIS methods are shown). On the contrary, due to the small
ionization potential Ip = 0.093, and large polarizability, the
1D carbon atom requires a more accurate treatment of the
many-electron effects and serves as a critical test case to assess
the accuracy of the methods. Figure 6 displays the HHG spectra
and excitation probabilities computed for the 1D carbon atom
(see also Ref. [55]). The most accurate result obtained from
the MCTDHF method with M = 14 is used as a reference.
As shown in Fig. 6, the failure of the SAE approximation
and the TDCIS and TDHF methods is apparent even in the
region below the cutoff 3.17Up + Ip = 26.0ω. On the other
hand, the accurate performance of the TD-RASSCF-S, -D, and
-SD methods is emphasized. The TD-CASSCF method with
M0 = 1 also performs accurately as shown in Figs. 6(d1)–
6(e2). To unveil the dynamics governing the HHG process
a state-resolved analysis was carried out for the MCTDHF
reference HHG spectrum in the same manner as for the 1D
beryllium atom discussed above. Figure 7(a) shows that the
reference spectrum is roughly reproduced when P0 + P1 + P2

is used as the projector but not when P0 + P1 is used. Thus over
the whole region, double- and higher-order orbital excitations
play an essential role. Figure 7(b) shows the state-resolved
analysis with P1 and P1 + P2. The absence of large changes
between Figs. 7(a) and 7(b) indicates the negligible role of
the HF ground state in the HHG process even below the
cutoff. This fact is understandable from the rapid depletion
of 〈P0〉(t) and the accompanying rises of 〈P1〉(t) and 〈P2〉(t)
in Fig. 6(a2). Since the SAE approximation and the TDCIS
method dismiss the effect of multiorbital excitations and
overestimate the contributions from the HF ground state and
the single-orbital excited states, their breakdown is therefore
natural. The TD-RASSCF-S, -D, and -SD methods and the
TD-CASSCF method still succeed in taking into account
multiorbital excitations accurately.

D. Relations among the methods based on the time-dependent
variational principle

To finalize this section, we specify what “accurate” means
in connection to the relation among the methods considered
in this paper. Based on the TD variational principle, the more
variational parameters a method includes, the more accurate
the method is. We define the wording accurate in this context.
This is a way (if not the only) to give meaning to the word
accurate in TD problems. Hence, for example, TD-RASSCF-S
is more accurate than TDHF. For a given number of spatial
orbitals M and fixed partitions (M0,M1,M2) TD-RASSCF-SD
is more accurate than TD-RASSCF-S, TD-RASSCF-SDT
is more accurate than TD-RASSCF-SD, and so forth, and
ultimately TD-CASSCF, or MCTDHF (when M0 = 0), is
the most accurate among the series. It is also true that
TD-RASSCF-SD is more accurate than TD-RASSCF-D. The
relation between TD-RASSCF-S and TDCIS is nontrivial at
first glance. For closed shell systems, however, the converged
TD-RASSCF-S wave function with M = Ne is more accurate
than the TDCIS wave function as theoretically demonstrated
in Ref. [55]. Meanwhile the relation between TDHF and
TDCIS remains unclear. While the HHG spectra of the 1D
beryllium atom in Figs. 4(b1) and 4(c1) indicate that TDCIS
is more accurate than TDHF, the HHG spectra of the 1D
carbon atom in Figs. 6(b1) and 6(c1) may give an opposite
impression. Their relative accuracy could change for different
target systems or for different laser parameters. The relation
between TD-RASSCF-S and -D is likewise unclear. Based
on the computation of the ground-state energy in Sec. IV B
and the laser-induced dynamics in Sec. IV C, TD-RASSCF-D
is, however, practically more accurate than TD-RASSCF-S.
In view of the favorable scaling properties, we therefore
concluded that the TD-RASSCF-S and -D methods will be
efficient tools for studying the TD many-electron problem
with an accuracy higher than the TDHF and TDCIS methods.

V. CONCLUSIONS

As a generalization of the MCTDHF and TD-CASSCF
methods, we have developed the TD-RASSCF method. The
key idea is the use of both RAS and SCF schemes, by which
the number of the CI-expansion coefficients and orbitals can
be reduced, and large systems which are impossible to study
by the MCTDHF method can be addressed. Following the
formulation of the TD-RASSCF-D method in Ref. [53], we
presented a more generalized framework, i.e., a series of
methods, TD-RASSCF-S, -SD, and -SDT. The numerical cost
analysis and test calculations for the 1D helium, beryllium,
and carbon atoms showed the TD-RASSCF-S and -D methods
were computationally feasible for large systems and more
accurate than the TDHF and TDCIS approaches.

In addition to the methodological progress, we reported
a state-resolved analysis of the HHG spectrum for the 1D
beryllium atom based on the field-free time-independent HF
orbitals. For the accurate MCTDHF calculation with M = 20,
the analysis clarified the significant contribution from the
recombination processes between the HF ground state and
single-orbital excited states in the region below the cutoff, but
among the single- and double-orbital excited states beyond.
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This observation rationalized why the SAE approximation
and the TDCIS method failed in the computation of the
HHG spectrum in the region above the cutoff but succeeded
below. On the other hand, the TD-RASSCF-S and -D methods
succeeded in describing the multiorbital excitations accurately.
The state-resolved analysis was carried out also for the 1D
carbon atom, and it was shown that multiorbital excitations
were more essential for the HHG processes even below the
cutoff in this model than for 1D beryllium. The breakdown
of the SAE approximation and the TDCIS method was
thus emphasized while the TD-RASSCF-S and -D methods
remained accurate.

In summary, the TD-RASSCF-S and -D methods will
be useful numerical tools for analyzing the nonperturbative
many-electron dynamics. In particular, for investigating the
laser-induced dynamics, the gauge independence is another
advantage. The TD-RASSCF-S and -D methods could open a
new perspective in intense laser research fields by elucidating
the role of electron correlation in large atoms and molecules.
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APPENDIX A: SCALING PROPERTY

In this Appendix the number of operations at each time
step for solving the equations of motion of the TD-RASSCF
approach is estimated. Consider an Ne-electron system (Ne is
even). In the MCTDHF method, the dimension of the Fock
space is expressed as a function of Ne with a parameter
M(�Ne/2), denoting the number of P-space orbitals. Since
in the MCTDHF method there is no restriction on the orbital
excitations, the dimension is given as the number of all possible
ways to distribute the electrons among the orbitals,

MCTDHF: dimVMHF(Ne; M) =
(

M

Ne/2

)2

. (A1)

In the TD-RASSCF method with partitions (M0,M1,M2) =
(0,Ne/2,M − Ne/2), the dimension of the Fock space is
expressed as follows:

TD-RASSCF-S:

dimVS(Ne; M) = 1 + dimV1(Ne; M), (A2)

TD-RASSCF-D:

dimVD(Ne; M) = 1 + dimV2(Ne; M), (A3)
TD-RASSCF-SD:

dimVSD(Ne; M) = 1 + dimV1(Ne; M)

+ dimV2(Ne; M), (A4)

TD-RASSCF-SDT:

dimVSDT(Ne; M) = 1 + dimV1(Ne; M)

+ dimV2(Ne; M) + dimV3(Ne; M).

(A5)
For clarity, the notation of the Fock space V used in the main
text is replaced by the method specific notation. Based on
Eq. (19), the dimension of each subspaceVn(Ne; M) (n = 1, 2,

and 3) is calculated as

dimV1(Ne; M) = 2(Ne/2)(M − Ne/2), (A6)

dimV2(Ne; M) = [(Ne/2)(M − Ne/2)]2

+ 2

(
Ne/2

2

)(
M − Ne/2

2

)
, (A7)

dimV3(Ne; M) = 2

(
Ne/2

3

)(
M − Ne/2

3

)
+ 2(Ne/2)(M − Ne/2)

×
(

Ne/2

2

)(
M − Ne/2

2

)
. (A8)

Using the expressions defined above, for 1D model systems
like the ones discussed in Sec. IV, the number of operations at
each time step for solving the equations of motion is roughly
estimated as follows (see the discussion in Sec. IV A):

TDHF: fHF(Ne; NDVR) = (Ne/2)4N2
DVR, (A9)

TD-RASSCF-S: fS(Ne; M,NDVR) = 2M4
[
N2

DVR + dimVS(Ne; M)
] + M6 dimV1(Ne; M), (A10)

-D: fD(Ne; M,NDVR) = 2M4
[
N2

DVR + dimVD(Ne; M)
]
, (A11)

-SD: fSD(Ne; M,NDVR) = 2M4[N2
DVR + dimVSD(Ne; M)

] + M6 dimV2(Ne; M), (A12)

-SDT: fSDT(Ne; M,NDVR) = 2M4
[
N2

DVR + dimVSDT(Ne; M)
] + M6 dimV3(Ne; M), (A13)

MCTDHF: fMHF(Ne; M,NDVR) = 2M4
[
N2

DVR + dimVMHF(Ne; M)
]
. (A14)

In Sec. IV A, Fig. 3 displays the behaviors of the func-
tions (A9)–(A14). In the plot, the parameters are set to
be NDVR = 2048 and M = Ne. Note that, for closed-shell
systems, the TD-RASSCF-S wave function is fully converged
with M = Ne (see the theorem in Sec. IV B and Ref. [55]).

APPENDIX B: STATE-RESOLVED ANALYSIS

In this Appendix some details are shown for the state-
resolved analysis based on field-free time-independent HF or-
bitals. When the wave function is multiplied by the projection
operator P0 + P1 [Eqs. (29) and (30)], the expectation value
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of the acceleration dipole reads (see also Ref. [19])

〈�(t)|(P0 + P1)D(P0 + P1)|�(t)〉

= 2
Ne/2∑
i=1

⎧⎨
⎩2Re

[〈HF|�(t)〉〈χi(t)|d
∣∣φHF

i

〉]

−
Ne/2∑
j=1

d
j

i 〈χi(t)|χj (t)〉 + 〈χi(t)|d|χi(t)〉
⎫⎬
⎭ , (B1)

where d
j

i = 〈φHF
j |d|φHF

i 〉 with the HF occupied orbitals
|φHF

i 〉 (i = 1, . . . ,Ne/2). The one-electron wave packet is
introduced as

χi(x,t) ≡
M∑

n=1

φ̃n(x,t)〈HF|cHF
iσ

†
cnσ |�(t)〉 (σ = ↑ or ↓),

(B2)

where cHF
iσ

†
is an electron creation operator in the spin orbital

|φHF
i 〉 ⊗ |σ 〉, and φ̃n(x,t) is the P-space orbital defined by

orthogonalization to occupied HF orbitals as

|φ̃n(t)〉 ≡
(

1 −
Ne/2∑
i=1

∣∣φHF
i

〉〈
φHF

i

∣∣) |φn(t)〉. (B3)

The one-electron integrals in Eq. (B1) should be performed
for the spatial coordinate x.

When the wave function is multiplied by P0 + P1 + P2

[Eqs. (29)–(31)], the expectation value of the acceleration
dipole reads

〈�(t)|(P0 + P1 + P2)D(P0 + P1 + P2)|�(t)〉
= 〈�(t)|(P0 + P1)D(P0 + P1)|�(t)〉

+
Ne/2∑
i,j=1

∑
σ,τ=↑,↓

⎧⎨
⎩2Re

[〈
λiσ,jτ

∣∣D∣∣φHF
iσ χjτ (t)

〉]

− 2
Ne/2∑
k=1

dk
j 〈λiσ,jτ (t)|λiσ,kτ (t)〉+ 〈λiσ,jτ (t)|D|λiσ,jτ (t)〉

}
,

(B4)

where the two-electron wave packets, |λiσ,jτ (t)〉 and
|φHF

iσ χjτ (t)〉, are introduced such that the spin-spatial repre-
sentations are defined by

〈z1 z2|λiσ,jτ (t)〉

≡ 1

2

M∑
n,m=1

∑
σ ′,τ ′=↑,↓

‖φ̃n(x1,t)σ
′(s1) φ̃m(x2,t)τ

′(s2)‖

× 〈
HF

∣∣cHF
iσ

†
cHF
jτ

†
cmτ ′cnσ ′

∣∣�(t)
〉
, (B5)〈

z1 z2

∣∣φHF
iσ χjτ (t)

〉 ≡ ∥∥φHF
i (x1)σ (s1) χj (x2,t)τ (s2)

∥∥, (B6)

with ‖ · · · ‖ being the normalized Slater determinant, and
z1 ≡ (x1,s1) and z2 ≡ (x2,s2) being the spin-spatial coordi-
nates for which the two-electron integrals in Eq. (B4) are
performed. Finally note that the values of 〈�(t)|P1DP1|�(t)〉
and 〈�(t)|(P1 + P2)D(P1 + P2)|�(t)〉 for computing the
spectra in Figs. 5(b) and 7(b) are obtained from

frozen orbitals

active electron

|φHF
1

|φHF
2

⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

virtual
orbitals

|φ(t)
described by

HF

occupied
orbitals

HF

⎫

FIG. 8. Illustration of the SAE approximation considered in
this paper. The HF occupied orbitals {|φHF

i 〉}Ne/2
i=1 are numbered

in ascending order from the lowest energy. There is one active
electron described by a wave packet |φ(t)〉 whose initial condition is
|φ(0)〉 = |φHF

Ne/2〉. The rest of the electrons always occupy the frozen
orbitals in the shaded area. This illustration shows an example for a
four-electron system.

Eqs. (B1) and (B4), respectively, by removing the term
4Re[〈HF|�(t)〉∑i〈χi(t)|d|φHF

i 〉].
The one- and two-electron wave packets defined by

Eqs. (B2) and (B5), respectively, are important not only for
the state-resolved analysis of HHG but also for computing
the probabilities to find the system in the HF ground state, or
single- or double-orbital excited HF states. These probabilities
are given as follows:

〈�(t)|P0|�(t)〉 = |〈HF|�(t)〉|2, (B7)

〈�(t)|P1|�(t)〉 = 2
Ne/2∑
i=1

〈χi(t)|χi(t)〉, (B8)

〈�(t)|P2|�(t)〉 = 1

2

Ne/2∑
i,j=1

∑
σ,τ=↑,↓

〈λiσ,jτ (t)|λiσ,jτ (t)〉. (B9)

APPENDIX C: SINGLE-ACTIVE-ELECTRON
APPROXIMATION BASED ON THE HF APPROXIMATION

The SAE approximation in this paper is a special case of
the TDHF or TDCIS method. The solution of the HF equations
gives a set of HF occupied orbitals, which is denoted by
{|φHF

i 〉}Ne/2
i=1 . By freezing all the occupied spin orbitals except

one of the highest-energy spin orbitals |φHF
Ne/2〉 ⊗ |σ 〉 (σ =↑

or ↓), we consider the time evolution of a one-electron wave
packet |φ(t)〉 with the initial condition |φ(t = 0)〉 ≡ |φHF

Ne/2〉 as
illustrated in Fig. 8. The equation of motion is derived from
the TD variational principle and given as

iQ|φ̇(t)〉 = Qh(t)|φ(t)〉 + Q[J (t) − K(t)]|φ(t)〉, (C1)

where Q = 1 − ∑Ne/2−1
i=1 |φHF

i 〉〈φHF
i | − |φ(t)〉〈φ(t)|, and the

Coulomb and exchange potential operators, respectively, are
defined by

J (t) = 2
Ne/2−1∑

i=1

〈
φHF

i

∣∣v∣∣φHF
i

〉 + 〈
φHF

Ne/2

∣∣v∣∣φHF
Ne/2

〉
, (C2)

K(t)|φ(t)〉 =
Ne/2−1∑

i=1

〈
φHF

i

∣∣v∣∣φ(t)
〉∣∣φHF

i

〉
. (C3)
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In the SAE approximation usually a time-independent and
local effective potential function is designed using fitting
parameters such that the ground-state one-electron wave
function formed in the potential imitates the property of the
highest-energy occupied orbital of the target system (see, e.g.,
Ref. [73]). However, the present SAE approximation uses the
TD nonlocal potential operators J (t) − K(t), and no fitting
parameter is included (see Ref. [52] for a related SAE approx-
imation). Note that the exchange potential operator K(t) takes
into account the interaction between the laser-driven active
electron and the rest of the electrons in the frozen orbitals.

APPENDIX D: GAUGE INDEPENDENCE
OF THE TD-RASSCF METHOD

The TD-RASSCF method is gauge independent. To
show this important feature, consider an Ne-electron system
interacting with light fields. The TDSE reads i∂t |�G(t)〉 =
H G(t)|�G(t)〉 (G = L, V, and A), where L, V, and A, re-
spectively, mean the length, velocity, and acceleration gauges
within the dipole approximation. The exact solution to the
TDSE is gauge independent, i.e., the solutions in different
gauges are related by unitary transformations. Between the
velocity and length gauges, for instance, the wave functions
are related by |�V(t)〉 = U (t)|�L(t)〉, where

U (t) = exp

[
−i

Ne∑
κ=1

A(t) · rκ + iNe

2

∫ t

A2(t ′)dt ′
]

. (D1)

This is not always the case when the wave function is expressed
approximately.

Next consider the TD-RASSCF wave function,

∣∣�G
SCF(t)

〉 =
∑
I∈V

CG
I (t)

∣∣�G
I (t)

〉
, (D2)

where each Slater determinant |�G
I (t)〉 is composed of spin

orbitals |φG
i (t)〉 ⊗ |σ 〉 (i = 1, . . . ,M). The sets of the CI-

expansion coefficients {CG
I (t)}I∈V and the spatial orbitals

{|φG
i (t)〉}Mi=1, respectively, obey the amplitude and orbital

equations for the gauge G. Since Eq. (D2) is not the exact
solution to the TDSE, it is a priori unclear whether the
TD-RASSCF wave functions in different gauges are exactly
unitarily related. To see their relations, we consider as an
example the velocity and length gauges. In this case, the set
of equations of motion [Eqs. (12)–(14)] are given for the
one-body Hamiltonians, hV(t) = − 1

2∇2 + V (r) − i A(t) · ∇
and hL(t) = − 1

2∇2 + V (r) + F(t) · r . It can easily be checked

that, by defining CV
I (t) = CL

I (t) and

∣∣φV
i (t)

〉 ≡ exp

[
−i A(t) · r + i

2

∫ t

A2(t ′)dt ′
] ∣∣φL

i (t)
〉

(i = 1, . . . ,M), (D3)

the sets of equations of motion in both gauges are unitarily
transformed into each other. It follows immediately from
Eq. (D3) that |�V

I (t)〉 = U (t)|�L
I (t)〉, thus∣∣�V

SCF(t)
〉 =

∑
I∈V

CV
I (t)

∣∣�V
I (t)

〉
=

∑
I∈V

CV
I (t)U (t)

∣∣�L
I (t)

〉 = U (t)
∣∣�L

SCF(t)
〉
. (D4)

The unitary relations between the other pairs of gauges are also
obviously true. The TD-RASSCF method is therefore gauge
independent. It should be emphasized that this is concluded
for every TD-RASSCF method, i.e., TDHF, MCTDHF, TD-
CASSCF, and TD-RASSCF-S, -D, -SD, -SDT, . . . . It is not
essential for the discussion but, if an arbitrary phase factor
comes into Eq. (D3), it should be compensated by including
the inverse phase factor in the definition of the CI-expansion
coefficients. This is another degree of freedom inherent in the
TD-RASSCF method as discussed in Refs. [53,59].

Note that the TDCIS method is, on the other hand, gauge
dependent due to the use of time-independent HF orbitals as
basis functions. This unfavorable fact can be seen as follows.
First define the TDCIS wave function in the length gauge as∣∣�L

CIS(t)
〉 = α0(t)|HF〉 +

∑
ia

αa
i (t)

∣∣HFa
i

〉
. (D5)

The TDCIS wave function in the velocity gauge |�V
CIS(t)〉 is

expressed in the same TDCIS ansatz, but they are not related
by a unitary transformation. In fact, U (t)|�L

CIS(t)〉 is expressed
by the full-CI expansion, not the CIS;

U (t)
∣∣�L

CIS(t)
〉 = U (t)

[
α0(t)|HF〉 +

∑
ia

αa
i (t)

∣∣HFa
i

〉]

= TD full-CI ansatz �= TDCIS ansatz, (D6)

because each HF orbital is transformed as

exp

[
−i A(t) · r + i

2

∫ t

A2(t ′)dt ′
] ∣∣φHF

q

〉 =
∑

p

upq(t)
∣∣φHF

p

〉
,

(D7)

where upq(t) = 〈φHF
p | exp[−i A(t) · r + i

2

∫ t A2(t ′)dt ′]|φHF
q 〉.

Hence the TDCIS wave function depends on the choice of the
gauge. More generally, except for the TD full-CI expansion
method, the use of time-independent basis functions leads to
gauge dependent results.
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