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We theoretically investigate the motional excitation of a single ion caused by spring-constant and position
fluctuations of a harmonic trap during trap shuttling processes. A detailed study of the sensitivity on noise
for several transport protocols and noise spectra is provided. The effect of slow spring-constant drifts is
also analyzed. Trap trajectories that minimize the excitation are designed combining invariant-based inverse

engineering, perturbation theory, and optimal control.
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I. INTRODUCTION

A quantum information processing architecture based on
shuttling individual or small groups of ions among different
storing or processing sites requires fast transporting techniques
that avoid decoherence and excitations at the arrival zone [1-3].
A promising research and technological avenue [4,5] has
been opened by recent experiments [2,6,7] that demonstrate
the feasibility of a transport-based architecture, even beyond
(faster than) the adiabatic regime [8,9]. Such experiments
on transport and fast splitting of ion crystals have been
performed with optimized time-dependent control voltages
and the outcome is analyzed with spectroscopy precise at the
level of single motional quanta [8,9]. One major limitation is
given by the fact that only finite voltages can be switched in
finite time. However, if smaller traps are employed, smaller
voltages are needed. Then, noise levels increase due to closer
proximity to surfaces. Thus, one can consider the presence of
noise to be the ultimate limitation, as both the attainable trap
sizes and the switchable voltages are technical limitations.
Electric field noise in Paul traps has been characterized
experimentally in Ref. [10] by monitoring the heating out of
the motional ground state. It was found that the corresponding
noise level exceeds the limit given by Johnson noise by several
orders of magnitude, an effect that has been termed anomalous
heating. In aresting trap, it has been shown [11] that the heating
rate is determined by the noise power spectral density at the
trap frequency. This does not necessarily hold for shuttling
operations, where a broader part of the noise spectrum and
slow drifts of the trap parameters can compromise the shuttling
result producing undesired excitation.

On many ion trap experiments, the frequency dependence
of the electric field noise spectral density S(€2) has been inves-
tigated by measuring heating rates for varying trap frequencies,
and commonly a polynomial scaling S(€2) o< 27# is observed.
While a wide range of exponents u between —1 and 6 have
been reported [12], in many cases a behavior consistent with
flicker noise i & 1 is observed. This indicates that a variety of
noise spectra can occur and that resonances of technical origin
can play a role. Fast shuttling operations ultimately require
rapidly changing voltage wave forms [13,14], which strongly
restricts the possibility of mitigating noise by filtering. This
leads us to the conclusion that it is worthwhile to investigate the
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sensitivity of shuttling protocols for colored noise, and their
optimization. We also consider drifts of trap parameters, which
are slow on the time scales of the trap period and the durations
of shuttling operations. These drifts can be characterized by
monitoring the trap frequency over time. On a trap similar
to the design used in [9], we find long-time variations of the
trap frequency of up to 5%. These variations can be caused by
drift of the trap voltages, thermal expansion of the trap, and
charging of the trap itself.

In Sec. II we review how faster than adiabatic trap trajecto-
ries without final excitation (shortcut to adiabaticity) may be
designed using invariant-based inverse engineering [15-19].
In Sec. III, we shall consider two basic types of noise that
affect a moving harmonic trap: spring-constant fluctuations
and position fluctuations around the ideal trajectory (trap
shaking). We provide general results for the final excitation
energy for different noise power spectra by using a perturbative
master-equation approach.

In Sec. IV, trajectories are found that minimize the effect
of a systematic (constant, not random) spring constant error.
Finally, we discuss how our theoretical results may be
implemented experimentally.

II. INVARIANT-BASED INVERSE ENGINEERING
METHOD

The invariant-based inverse engineering method has been
successfully applied to various quantum control problems.
While it has been used to design protocols for fast ion shuttling
[15-19], it has also been employed in the field of internal-state
control to find protocols which are resilient to noise [20,21].
In this section, we provide a brief review of this method for
the ion-shuttling scenario.

The harmonic transport of one ion is described here by the
effective 1D Hamiltonian,

N ” o, )
Ho(t) = — + —mo[§ — x(1)], ey
2m 2
where ¢ and p are the position and momentum operators,
w/(2m) is the frequency of the trap, and x(z) its center.
The corresponding quadratic-in-momentum Lewis-Riesenfeld
invariant [22-24] is given in this case (up to an arbitrary

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.89.063414

XIAO-JING LU et al.

multiplicative constant) by [15]

1 1
[(0) = 5—(p =iy + Zme?(g —xF, ()
where the function x.(¢) must satisfy the auxiliary equation,
i+ @' (xe —x) =0, 3)

to guarantee the invariant condition,
ol (1)

di(t)

= o + - [I(I) Hy(1)] = 0. “4)
The expectation value of (1) remains constant for solutions
of the time-dependent Schrodinger equation %0, W (q,t) =
Flo(t)\l'(q,t). They can be expressed in terms of independent
“transport modes” ®(q,t;n) = e?Mep(g,t;n) as W(g,t) =
> c(m)®(g.t;n), where n = 0,1,... (n will be used hereafter
to denote the mode); c(n) are time-independent coefficients;
and ¢(q,t; n) are the orthonormal eigenvectors of the invariant
i) satisfying f(t)¢(q,t;n) = Mn)o(q,t; n), with real time-
independent A(n). The Lewis-Riesenfeld phase is

1 [ a A
O(t;n) = ﬁ/o (¢>(t/;n)|iﬁ§ — Ho()lp(t"sm))dt’.  (5)

For the harmonic trap considered here [15],

b(g.1:m) = exp (iw>¢<°><q —xan). (6
where ¢©(g;n) are the eigenstates of Eq. (1) for x(1) =0
Note that x. is the center of mass of the transport modes
obeying the classical Newton equation (3).

Suppose that the harmonic trap is displaced from x(0) = 0
to x(T) = d in a shuttling time 7. The trajectory x(¢) of the
trap can be inverse engineered by designing first an appropriate
classical trajectory x.(¢). To guarantee the commutativity
of I(r) and Hy(t) at t =0 and ¢ = T, which implies the
mapping between initial and final trap eigenstates without final
excitation, we set the conditions [15]:

x(0) =x.(0)=0, x(0)=0
x(T)=x/T)=d, x(T)=0. @
The additional conditions,
%(0)=0, x(T)=0, ®)

may be imposed to avoid sudden jumps in the trap position.
However, discontinuities of X.(¢) may in general be allowed:
They correspond to ideal instantaneous trap displacements
inducing a sudden finite jump of the acceleration, whereas
the velocity x.(¢) and the trajectory x.(¢) remain continuous.
In the following, we consider for simplicity the transport of the
single mode n in the noiseless limit (» = 0 in the numerical
examples), and examine the excitation energy of the system
energy due to noise or errors, as well as ways to suppress or
minimize it.

III. NOISE

To study the effect of the noise we follow the master
equation treatment in [25-27]. The Hamiltonian is assumed

PHYSICAL REVIEW A 89, 063414 (2014)

to be of the form,

maw?[§ — x(O* + @)L, 9)

where w is constant, L is a system operator coupling to the
environment, and £(¢) is a fluctuating variable that satisfies

E[EM] =0, EEMEEN] = a(t — 1), (10)

where «a(t — t') is the correlation function of the noise and
&[...] the statistical expectation. The correlation function and
the spectral power density are related by the Wiener-Khinchin
theorem,

S(Q) = % /OO a(t)cos(Q2t)d, (11D
a(t) = /OO S(2) cos(RT)d2. (12)

By expanding in the ratio between environmental correlation
time and the typical time scale of the system [28], a closed
master equation can be derived retaining first-order corrections
to the Markovian limit,

s o Nanpl+ MEp00 - LiEL owp (%)
a7 TR e n
where
O(t)——g(t)L——f(t)[Ho,L]—Q[LT LIL, (14
and
g(t):/ a(t —thdt', (15)
0
f(t):/ alt —tH(t —thdr, (16)
0

h(t)=/ / at —tha(t' —u)t —tydudt’. (17)
0 JO

We insist that the master equation (13) is valid on the condition
that the noise correlation time is small compared to the typical
system time scales, so that f and /4 terms must be corrections
to the dominant g term.

A. Spring constant noise

We consider now a fluctuating spring constant w?(1 + £(¢)),
where w is fixed and £(¢) is a fluctuating function that satisfies
Eq. (10). According to Egs. (9) and (10) we set L= %mwz((i —
x)? so that

—1mw2[l +EMIG — x(t 2 18
) g —x@®1, (13)
2

O(t) = %g(r)(q 0P+ —f(t) [px - —(ﬁ ciﬁ)]

063414-2



FAST SHUTTLING OF A TRAPPED ION IN THE ...

and the master equation (13) becomes

L5 = Lt p1 - L g0l — 02, G - 275)
7P =3 Ho.pl = 5 gOl(G — x)7 [(§ — )P

~om f(t)[(q —x), [px - —(ﬁé? C?ﬁ),ﬁ]]-

(20)

Using time-dependent perturbation theory for the master
equation we may write the density operator as (for an
alternative nonperturbative approach see Appendix A)

20)4

PT) = po(T) +

T
/g(l)Uo(TJ)h(l)ﬁo(t)dt
0

th / FOUNT 1) ]o(t)polt)d, 2y

where po(T) = |©(T;n))(P(T;n)| is the state for noiseless
unitary dynamics in the transport mode n, and Uy(7,t) is the
noiseless evolution superoperator, i.e.,

po(t) = Uo(t,t)po(t") = Oot,1)potH Ol 1), (22)

Uo(t,t’) is the noiseless evolution operator, and fl (t) and fz(t)
are superoperators,

Jpo®) = =[G =[G — )% 1], (23)
~ . . (pGg+4qp)
Jo(t)po(r) = —[(61 - X)z,[px— ——— P | (24)
A detailed calculation gives the final energy corresponding to
an initial state in the ny, mode,

(H(T)) = tr[Hy(T)H(T)] 2= (D(T; n)| Ho(T)|d(T; n))
2,4 T - .
+4—,§Z fo g(@t; ) 1) H (1) (25 n))dt
2h2 f FO(D(t; )| T() A (1) ©(1; n))dr
1 T
= E(n) + ho’ <n + —> / g(t)dt,
2) Jo
T
+m / [g(D)2(1) + & f (D)X (D]dE,  (25)
0
where E(n) = (n + 1/2)hw,

1 N
(A (1) = —[ x = 5(Pg+qp).lG - X)Z,H/(t)]],

and H'(t) = U (T.0)Ho(T)Uo(T 1).

The following subsections deal with different noise types
according to their spectrum. We pay much attention to white
noise because our method is perturbative, so understanding this
reference case in depth is fundamental. In addition, white noise
is amenable to analytical treatment and explicit optimization
of trap trajectories.

1. White noise

The correlation function when & (¢) represents a white noise
fluctuation is «(r) = y48(r), and the corresponding power
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FIG. 1. (Color online) Comparison of trap trajectories x between
the initial and final trap positions (yellow solid segments). Polynom-
inal protocol (red dotted line); bounded optimal [black solid line,
only in (a)]; unbounded optimal [blue dashed line, the jump at the
boundary times is 6d /(w?>T?)]; bang-bang (dot-dashed purple line).
In (a) T =T,/2 (T, is the oscillation period); in (b) T = 97,/2.
8 = 0.5 d, mass of **Cat, initial state inn = 0, w = 27 x 1.4 MHz,
d =280 pm.

spectrum is constant, S(€2) = % Here y scales the noise and

gt)y=y/2,f(t)=0. (26)

The instantaneous energy in Eq. (25) for an initial state in the
ng mode can be written as

(H(T)) = E(m) + yG(T;n), (27)

T 3

m . hw 1

— tdt+ —\n+ - |T 28
2/0 K 2 <n 2) 28)

is the “sensitivity” to noise. The excitation energy is E, =
yG(T;n). The first term of G(T;n) contains an integral of
X.(t) and the mass of the ion; it reflects the fact that larger
displacements from the trap center [see Eq. (3)] increase the
effect of spring constant fluctuations. The second term depends
on the trap frequency and the final time, and it is independent
of the trajectory, so it can only be reduced by speeding up
the transport. For fixed T, however, it is possible to design
the trajectory x.(¢) to make G(T';n) as small as possible and
minimize the integral. We shall now consider four different
protocols. Examples of the corresponding trap trajectories x(#)
are provided in Fig. 1(a).

Polynomial protocol. A simple choice satisfying all bound-
ary conditions and trap position continuity is a polynomial
ansatz x.(t) = Zi:o B.t". The B, can be solved from the
boundary conditions (7) and (8) to give

xe(t) = d(10s® — 155* + 65°), (29)

where

G(T;n)=
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FIG. 2. (Color online) G(T;0) versus final time. Polynomial
ansatz (red dotted line), unbounded optimal (blue dashed line),
bounded optimal [black solid line; the vertical dashed lines delimitate
the time window in Eq. (34)], and bang-bang (purple dot, T = T,,/2;
see the magnification in the inset). (a) § = 0.5d; (b) § = 0.02 d; other
parameters are the same as in Fig. 1.

where s =t/ T, and the corresponding trap trajectory x(¢) is
obtained from Eq. (3) (see Fig. 1). G(T'; n) becomes

2 3

60md n (2n + Dhw T
T3 4

which is depicted in Fig. 2 (red dotted line) for n = 0. Short

times are dominated by an inverse-cubic-in-time, frequency-

independent term, and long times by a linear-in-time, d-

independent term that accumulates the effect of noise. A

s : _ . __ 4 _720md? Ee
minimum exists at 7 = Tin = 7 eTERNTER For the realistic
parameters of the figures, T, = 73.2 T,,, where T, = 27 /w

is the oscillation period. This Ty, is quite a large time (not
shown in Fig. 2) well into the adiabatic regime."

Optimal control. To minimize G(T;n) for a given mode
n and fixed transport time 7', we may apply optimal control
theory with the cost function,

G(T;n) = , (30)

T T
Je =/ Xf(t)dt:/ w*|x.(t) — x(1)dt, (31)
0 0

subjected to the conditions (7), and a constrained (bounded)
displacement |x.(f) — x(#)| < §. This optimal-control problem
was worked out in [17] to minimize the time average of

A general bound for the time average of the potential energy Ep
is [15] Ep > 6md*/(T*»?). Thus Ep ~ how, for the parameters of
Fig. 1, requires transport times 7 > 36 T,,,.
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the potential energy. Incidentally, this also minimizes the
small effects of fast ion shuttling on the internal states due
to the dc Stark shift [29] and adverse effects arising from
anharmonicities of the trap potentials [18]. The optimal x.()
(x(z) follows from Eq. (3) (see Fig. 1) [17]:

0, t <0
%wztza’ 0<t<n
xeM={—-i0*a it = LY  +vt+a, n<t<n+n
d—1a?(t — T)%, fh+th<t<T
d, t>T
(32)
wherea; = TE‘;[l ,Vg = %wZB(T +2t),ar, = %(d —voT), and
t=201-3,/1- 4. G(T;n) becomes
G(T:;n) = hw3[@ (25%1 + ﬁ) + MT]. (33)
2h 12 4

These equations hold for the time window:

4 < | (34)
@8 0 T Vw2

For smaller times there is no solution to the “bounded control”
optimization problem. For larger times, the solution coincides
with the one for “unbounded control,”

xe = d(3s* — 2s°). (35)

“Unbounded control” here means that the displacement is
allowed to take any value, and this “unbounded” solution
may be applied to an arbitrarily short time 7" [15,17,29]. The
corresponding G(T'; n) is

6md? n @2n + Hho?
T3 4
similar in behavior to the polynomial ansatz [see Fig. 2 (blue

dashed line)]. The minimum occursat T = ¥ %. For the

parameters of the numerical examples, T, = 66.9 T, again
well into the adiabatic regime. The solid lines in Fig. 2 depict
G(T;n)in Eq. (33) for two values of the constraint.

Bang-bang protocol. Finally let us examine the simple
bang-bang protocol [30]:

G(T;n) = T, (36)

0, t <0,
x(t)=13d/2, O0<t<T, (37)
d, t>T.
From Eq. (3), we can solve x.(¢) as
) = d d ‘4 d(1 +coswT) . ; (38)
Xe =3 2cosa) S snaT sin wt.

To make x.(¢) satisfy the boundary conditions (7), the final
time must be an odd multiple of a semiperiod, wT = (2k +
D, k =0,1,2.... Now,

mao*d? n B’ (2n + I)T

16 4
increases linearly with time without a short-time inverse-cubic
term characteristic of the previous protocols. For realistic

parameters mwd? /(4h) > 1 so the increase of G(T;n) with
T is much faster than in the other protocols due to the

G(T;n) =

(39)
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first term in Eq. (39). For the minimal time, T = T, /2, the
G(T;n) for a bang-bang approach is just slightly above that
for the unbounded optimal protocol [see the inset in Fig. 2(a)].
Bang-bang G(T';n) values for the next valid times (37,/2,
5T,/2...) are very high and out of scale in the figure. The
unbounded optimal trajectory is quite close to the bang-bang
one for T = T,/2 but differs significantly from it for larger
times [compare Figs. 1(a) and 1(b).

In specific quantum-information applications, the depen-
dence of the noise sensitivity (28) with the shuttling time
T and the noise intensity will play an important role to
choose T and the transport protocol among the range of values
attainable within the state-of-the-art technology. In particular,
the minimal shuttling times accessible might be incompatible
with high fidelity operations because of the increase of
noise-induced excitation at short times in the optimal protocol.
The usefulness of the bang-bang protocol is constrained, apart
from the challenge to implement sharp jumps, by the fact that
its minimal sensitivity occurs at half oscillation period. For
such short shuttling times, all protocols, including the optimal,
lead to relatively large noise sensitivities. However, optimal
or smooth polynomial protocols decrease their sensitivity
significantly for a range of larger times whereas the sensitivity
for a bang-bang approach increases rapidly. In the perturbative
regime considered here, these conclusions hold for colored
noise as discussed in the next two subsections.

2. Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck (OU) noise is a natural gener-
alization of the Markovian, white noise limit, with a finite
correlation time t and a power spectrum of Lorentzian form,

S(Q) = (40)

2r(1 + Q272)°
where D is the noise intensity. It still provides analytical
results. When t — 0, it reduces to white noise, and is also
instrumental in generating flicker noise (see the following
subsection) by superposing a range of correlation times. The
correlation function corresponding to Eq. (40) is

()= e @
aqW=s57¢
so that
D —1/T
gar=30—e/), (42)
Dt _ r _
[0 = —<1 —e'T— —e ’/f). (43)
2 T

The energy in Eq. (25) will be
(A(T)) = E(n) + DG(T;n),

where the excitation energy is E.(T) = DG(T;n) and

haw? _T
G(T;n) = T(2n + (T —t+ 1 T/7)

T 2t
+%fo [(1 — e M) — L;—Te’/rfcf(t)}dt.

PHYSICAL REVIEW A 89, 063414 (2014)

0.15¢
W e
5 0.10
3 TS
60.05* =
O
0.00 ‘ ‘
0.00 005 010 0.15 020

FIG. 3. (Color online) G(T;0) for Ornstein-Uhlenbeck noise
versus correlation time. Polynomial ansatz (red dotted line), un-
bounded optimal (blue dashed line), and bounded optimal (black
solid line). § = 0.005d, T = 5T, and other parameters are the same
as in Fig. 1.

In the small 7 limit, integrating by parts and retaining only
linear terms,

haw? 1

m T
+ —[ / ¥2(t)dt — w‘c’f(O)] (44)
2 0 ’

The two correcting terms proportional to T are negative so
that the noise effect is reduced with respect to white noise.
In Fig. 3 we plot G(T';0) versus correlation time using the
polynomial protocol and the protocols (32) and (35) optimized
for white noise.

3. Flicker noise

Flicker noise, with ~ 1/ spectrum in a range 2, < Q <
2, may be modeled by summing over Lorentzian (Ohrnstein-
Uhlenbeck) noises [31,32] with proper statistical weights.
Specifically we consider [31]

c =1,
N=——— [ —e'lar, 45
) In(z2/71) /n 7 i )

where C = E£[x?(1)] = «(0). Using Eq. (11), the correspond-
ing power spectrum takes the form,

C 2 dt
5 = 2.2
wln(ra/t1) Jo, 1+ Q%7
(m—1)C
7 Tncra/7)” 2 K,
= 21n(r2/t])é’ Q2 € QK Q, (46)
(m—1)C 1 Q> Q,

7w ln(ry /7)) 111292

where Q5 = (2m)/1; 2. The spectrum is white if the fre-
quency is below €2, and decays as 1/Q? above Q;. Equation
(45) leads to

= [ ()] @
g = ln(rz/-[l) T Te l T y s

063414-5



XIAO-JING LU et al.

C
T = S ateym)

1)
X [rz(l—e’/’)—tre’/’—tin (—tﬂ . (48)
T /1,
Here Ei(—x) = f:;(e’/t)dt with x > 0, which behaves as
Ei(—x) ~ —e™ /x for x — 00, and Ei(—x) =~ yg + Inx for
x — 0, where yg is Euler’s constant. The energy (25) takes
the form,

N 2(y — 11)C
AT = B+ 22— G, @)
In(z2/71)
where the excitation energy is E.(T) = 21(;(2;/21)5 G(T;n) and

orim = —2 (e Ner@—e
(ﬂ)—m(n §>T( e ''")

T\
+7e T 1) — T2Ei<— —)}
T

13!

b fT {jéz(t)[t—re_’/’—tEi<— L)jr
2An—-t)Jo L€ T/ e

w*t ., ot
+—x(OEi|— -
2 T

12
}dt. (50)
T

For 1,/ T « 1 and x.(0) = 0, we find, integrating by parts,
the approximation

3
G(T:n) ~ h%(n + %) <T - %)
T
+ ﬁ[/ ¥2(t)dt — ntu )'53(0)], (51)
21 ) 2

with a small correction to the white noise case similar to the
one found for OU noise. Figure 4 depicts G(T';0) versus 1,
for the polynomial protocol and the protocols optimized in the
Markovian limit.

For OU or flicker noise in the perturbative domain con-
sidered the conclusions found for white noise are largely
applicable. The trap trajectory may be chosen to minimize
the integral that appears in the sensitivity G(7T'; 0) regardless

025
3
E 02
=
S
60.15—
O

0.1 ‘ ‘ ‘

005 0.1 0.15 02
TZ/Tw

FIG. 4. (Color online) G(T';0) for flicker noise versus upper limit
of the interval of correlation times 7,. Polynomial ansatz (red dotted
line), unbounded optimal (blue dashed line), and bounded optimal
(black solid line). § = 0.5d, 1y =1 x 1071% s, T = 5T,,, and other
parameters are the same as in Fig. 1.
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of the noise type. Apart from trap trajectories with sudden,
finite position jumps (optimal trap trajectories unconstrained
or constrained by a maximum ion displacement with respect
to the center of the trap, and simple bang-bang trajectories),
polynomial trajectories avoid the technical challenge of imple-
menting sudden trap jumps. For very short shuttling times (half
an oscillation period) optimal control and bang-bang solutions
display a similar (relatively high) noise sensitivity. At moderate
times and beyond (five oscillations or more) the bang-bang
approach produces too much excitation and the polynomial
behaves similarly to the optimal trajectory.

B. Position noise
Suppose that the trap position fluctuates around the ideal
trajectory x(¢) as x(t) — K&(t)/(mw?), where £(¢) is a random
noise satisfying Eq. (10) and K is a constant. This corresponds
tousing L = (§ — x)K in Egs. (9) and (13),

R H2 1
H(@t) = f—m + =mo*[§ — x(OF + EOK[G — x(D)]. (52)

2
The master equation (13) takes the form,
d i~ . K? . . .
7P =— 7Ho.pl = 7780lg = x.[g — x.pll
KZ
+ — fOl§ —x.[p.p]], (53)
mh

where g(¢f) and f(t) have been defined in Eq. (15) and
depend on the specific noise. Using the same time-dependent
perturbation theory approach as in the previous section, the
density operator is

K2 T - -
A(T) = po(T) + ﬁ/ 8 Uo(T 1) J2(2) po(t)dt
0

KZ T -
+ —2/ FOUT,0)IG,[p,po()]Ndt,
mh 0

where the system energy is

(H(T)) = t[Hy(T)A(T)] = (D(T;n)| Hy(T)|D(T5 n))
2 pT

+ 7 (@13 )| To(t) A (1)| (23 n))d1

K* (T .
+ —2/ FO(@E:m)|[p.[g, H (DN D(t;n))dt
mh 0

KZ T
=E(n)+ — / g()dr, (54)
m Jo

when the ion starts in mode n. The excitation energy at the
final time is independent of the trap trajectory and n, and
depends only on the transport time and noise type. The only
strategy left to minimize the effect of position fluctuations is
to speed up the transport making 7" as small as possible. The
independence on the trajectory may be understood already at
a classical level from the solution of Eq. (3), x.(t) = x(¢) —
fot dt’'x(t") cos[w(t — t')]. Note that a deviation from x.(¢) due
to a modified trajectory x(¢) + 8x(¢) depends only on 8x(¢)
and its time derivative, not on x(¢) itself. As a consequence,
studies of excitation or heating rates for nonshuttling traps are
directly applicable [11,33-35].

063414-6



FAST SHUTTLING OF A TRAPPED ION IN THE ...

Even in the case that position noise is dominant, the
trajectories that minimize the effect of spring-constant noise
are useful, since these trajectories minimize as well the time
average of the potential energy [15,17], thus adverse effects of
anharmonicity [18,36] are suppressed.

IV. SYSTEMATIC SPRING CONSTANT ERROR

Assume that the trap trajectory is designed for a given spring
constant w?, but the actual one is different, w*(1 + A). A
may change from run to run but remain constant throughout
the transport time. This is quite common as a consequence
of experimental drifts and imperfect calibration. In current
experiments it is likely to dominate other imperfections. Our
objective here is to determine the induced excitation and to
find trap trajectories that minimize the excitation in a range of
A around 0. The system Hamiltonian is

R H2 1
A = ;’—m +3mo’ (1 + MG —xOF. (55)

where A is the relative error in the spring constant. For the
actual frequency, the auxiliary equation is

Ee1 (1) + 0] (xe1 —x) =0, (56)

with a)f = w?(1 + A). We define x.(¢) = x.(¢) + F(¢). Com-
bining Eqs. (3) and (56), F'(¢) satisfies

F(t) + 0P F(1) = Aic(2), (57)
which is solved by

A t
F(t) = — sin(wlt)/ Xe(t) cos(wt))dt’
w1 0

A t
— —cos(a)lt)/ Xt sin(w;t)dt’. (58)
(] 0

For the new frequency w; and trajectory x.;, the exact energy
of the system takes the form,

(H(T)) = (n + %)hwl + E(T), (59)

where E, is the excitation energy,

2

mA2 T
E(T)= - [/ X(1) COS(a)lt)dti|
0

mA

2 T 2
+_[ f )'c'c(t)sin(a)lt)dt] : (60)
2 0

To suppress the excitation energy, the trajectory x.(¢) has to
satisfy the conditions,

T T

/ X.(t) cos(wt)dt = 0, / X.(t) sin(w)dt = 0. (61)
0 0

We approximate cos(w;t) >~ cos(wt) and sin(w;t) =~

sin(wt) to keep only quadratic terms in A in Eq. (60), and
assume for x, a seventh-order polynomial,

;
X(t) =" byt", (62)
n=0
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FIG. 5. (Color online) (a) x.(¢) versus t; (b) excitation energy
versus A. Dashed red line, quintic polynomial (29); solid blue
line, seventh order polynomial in Eq. (62). T = 6.5T, and other
parameters are the same as in Fig. 1.

to satisfy the six conditions in Egs. (7) and (8) and

T T
/ X.(t) cos(wt)dt = 0, [ X (t)sin(wt)dt = 0. (63)
0 0

Doing the integrals formally, we end up with a system of
eight equations with eight unknowns (the b,), which can
be solved, but the expressions for the b, are too lengthy to
be displayed here. The corresponding x(¢) is obtained from
Eq. (3). In Fig. 5 we have plotted the seventh order x. in
Eq. (62) and the simplest quintic polynomial ansatz (29), as
well as the corresponding excitation energies. The protocol
based on Eq. (62) is more robust, i.e., it leads to smaller
excitations when the actual trap frequency does not have
the expected value. Alternative robustification schemes are
possibly adapted to specific needs, for example, imposing zero
or minimal excitation at a discrete number of values of A ina
given interval (see, e.g., [37] for a similar approach applied to
maximize the absorption of complex potentials).

Time-scaling errors are shown to be equivalent to spring-
constant systematic errors in Appendix B, so the same
strategies used here may be used in that case.

V. DISCUSSION

In this paper we have examined the excitation energy due
to spring-constant noise or error and position noise in ions
transported by a moving harmonic trap. We consider families
of trajectories without final excitation in the noiseless limit and
select optimal trap trajectories that minimize heating when the
noise applies. For fixed shuttling time 7', this selection is only

063414-7



XIAO-JING LU et al.

possible for spring-constant noise or error, since for position
noise the final energy increases linearly with 7 but does not
depend on any other feature of the trap trajectory.

Advances in the fabrication of microstructured ion traps and
fast control electronics have allowed one to experimentally
reach the limits of adiabacity, thus the proposed protocols
may be tested and the respective noise sensitivity verified.
Envisaged experiments at shuttle times of the order of an
oscillation period [30] require changes of the trapping potential
on time scales much shorter than the period corresponding
to the trap frequency. At such fast temporal changes of
the control voltages, the cutoff frequency for noise filtering
elements must be very high, and thus we expect that it
might be increasingly difficult to reach a low noise level.
As additionally the noise sensitivity of the shuttling results
is increasing at fast time scales, the importance of noise
suppression by trajectory design becomes obvious. In the
well-controlled setting of an ion trap, one may experimentally
investigate the schemes with artificial injected designed noise
[38,39]. It is within experimental reach to design the spectral
properties of a noise source and verify the predicted effects.
Besides the possibility of artificially injecting noise, the
noise spectrum might depend on trap materials, electronic
circuitry, and other elements amenable to being influenced by
the experimentalist. The accuracy of sideband spectroscopy
to determine the excess energy has reached a subphonon
level, such that even small optimization effects would be
visible.
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APPENDIX A: CLOSED EQUATIONS FOR THE MOMENTS

The quadratic and linear operators involving position and
momentum form a dynamical Lie algebra (the Hamiltonian is
a member of this algebra) for the Hamiltonians that describe
spring-constant noise and position noise. This leads to closed
equations for the corresponding moments [35], which is
interesting numerically, as the results are not perturbative
in noise intensity. In addition, physical consequences follow
without even solving the system as we shall see.

For spring constant noise, the expectation values of position
and momentum operators and their quadratic combinations
satisfy, using Eq. (20),

@ (G*) 5 0 5
(p?) (p?) 817x(t)*g(1)
d Kgp+pa)| _ (qp+ pq) 8 (02 £ (1)
al @ =@ |7 0 ’ (AD
(p) (p) m2x(t) — Lx(6) f (1)
where
0 o L 0 0
8h2g(r) 0 —mo —16h2x(1)g(r) 2ma*x(r)
e | —2me? + 165 p(y 2 0 2max(t) — Lx) (1) 0
5T 0 0 0 0 L
0 0 0 —ma? + 2 (1) 0
(A2)
For position noise, Eq. (53), the expectation values satisfy
(G°) @ 0
p (P*) (p*) Zf 2g(1)
a1Ggp+pg) | _ (@p+ pq) 2K f@)/m
al @ |7 @ [t o | (A9
(p) (p) ma?x(t)

063414-8



FAST SHUTTLING OF A TRAPPED ION IN THE ...

where
0 0 1/m
0 0
—2mw? 2/m
Mr=1 "9 0
0 0

For colored or white position noise, the average position and
momenta are not affected by the noise.

APPENDIX B: TIME SCALING

We analyze here a systematic error in the clock used
to design the trap trajectory so that instead of x(¢), the
implemented trajectory is x(et). The Hamiltonian is

ma?[§ — x(et)]%, (B1)

PHYSICAL REVIEW A 89, 063414 (2014)

0 0
2 0 2maw*x(t)
2mw*x(t) 0
0 1/m (Ad)
—mw? 0

and the Schrodinger equation ihdW(¢)/0t = H()W(t) can be
rewritten as

in 22D o, (B2)
at
where T = €, x(t) = W(¢), and
. o1
H(t) = 2— + ~m'@?[§ — x(D)]%, (B3)
2m’ 2

with m’ = em, and o' = w/e. Since x(7) is designed for
w, time-scaling errors reduce formally to systematic spring-
constant errors, and their effect can be suppressed or mitigated
in the same manner.
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