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Trapping ions from a fast beam in a radio-frequency ion trap:
The relaxation of the ion cloud and its resulting column density
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The relaxation of trapped Cl2
− ions and their resulting column density in a multipole radio-frequency (RF)

ion trap have been investigated after loading the trap from an initial fast-moving beam exploiting a mechanism
described recently [A. Svendsen et al., Phys. Rev. A 87, 043410 (2013)] where the injection is mediated through
the exchange of energy between ions and the oscillating RF field. The temporal relaxation of the energy distribution
of the trapped ion cloud was probed by observing the evolution of the resulting time-of-flight distribution of ions
after extraction and fragment mass analysis in a quadrupole mass filter. The ion energy distribution was found to
be essentially stationary after ∼20 ms. The resulting column density of trapped ions after relaxation was probed
by two-dimensional position-resolved photodissociation of the trapped Cl2

− ions. A detailed statistical analysis
of the ion column density in the ring-electrode trap is given, and by comparison to the experimental data, a value
of the maximum adiabaticity parameter of ηmax � 0.28 is inferred. It is further demonstrated how the present
experimental system allows for time-resolved mass spectrometry by probing explicitly the populations of both
parent (Cl2

−) and daughter (Cl−) ions as a function of time after closing the trap and after laser irradiation. Finally,
it is discussed how the setup can be used to obtain absolute photodissociation cross sections via a tomographic
method without assumptions on the decay law for the trapped ions.
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I. INTRODUCTION

Since the first demonstration [1] of confinement of charged
particles between electrodes with potentials oscillating at
radio frequencies (RF), the application of RF-based trapping,
guiding, and mass selecting devices have proven extremely
important in wide areas of physics and chemistry (see, for
instance, Refs. [2,3]). In particular within molecular physics
where cooling of both external and internal degrees of freedom
of molecular ions is needed, multipole traps [2] are heavily
used. With these traps, the part of the ion motion oscillating
with the frequency of the RF field, the so-called micromotion,
can be suppressed which in turn allows for efficient cooling
by collisions of the trapped ions with a thermalized buffer gas
(typically He) [4]. The deceleration of ions by collisions with
a buffer gas is furthermore often used to facilitate the initial
injection of ions into the RF trap.

The use of buffer gas becomes problematic, however,
when ions are to be extracted from the RF trap, since
cooled ions may heat up in collisions during the extraction
process. Additionally, if the trapped ions are subject to ionizing
radiation (e.g., high-energy photons), a significant (dominant)
ionization of the dense buffer gas also occurs which may lead
to unwanted effects.

In a previous paper [5], we described the injection of ions
into a ring-electrode (multipole) RF trap [2] without the use of
a buffer gas for deceleration by exploring explicitly the energy
exchange between the incoming ions and the longitudinal
component of the oscillating RF field in analogy to charged-
particle motion in a linear accelerator [6]. Consequently, the
resulting ensemble of trapped ions emerges with an energy
distribution that is evidently nonthermal, i.e., can not be
described by a Boltzmann distribution, but rather reflects the
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overall effect of the detailed acceleration or deceleration. In
general, the energy distributions expected from the newly
described mechanism [5] of injection are wider and flatter
as compared to a Boltzmann distribution at or below room
temperature. In the limit of low ion density in the trap,
Coulomb repulsion between the ions can be neglected, and
the behavior of an ensemble of trapped ions is then entirely
determined by the energy distribution. In this situation, the
stored ions only interact with the trapping electric field which
is in contrast to trapped ions cooled by a buffer gas which
influences the properties of the ion cloud.

In this paper, we investigate in more detail the properties
of a trapped ensemble of Cl2− ions after injection with
the mechanism described in Ref. [5]. Thus, we observe
the relaxation of the trapped ions as a function of time
after injection, and probe the column density of ions after
relaxation by photodissociation (Cl2− + 532 nm → Cl− +
Cl0) throughout the transverse plane of the trap.

The present realization of the ring-electrode trap, the
description of trapped ion motion [2], as well as the injection
mechanism were reviewed and presented in detail in Ref. [5].
Central to a simple description of ion motion in a RF trap
is the adiabatic approximation, where the fast oscillating
micromotion of an ion in the RF field is separated from
the drift motion which can be described through an effective
potential Ueff . For the cylindrically symmetric ring-electrode
trap, the ion position inside the trap volume is described
by reduced coordinates in the longitudinal ẑ = z/z0 and
transverse r̂ = r/z0 directions, where 2πz0 = 4 mm is the
distance between neighboring ring electrodes of the same RF
phase [see Fig. 1(a)]. The effective potential can be written
explicitly as

Ueff(r̂ ,ẑ) = (qe)2V 2
0

4mω2
ueff(r̂ ,ẑ), (1)
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FIG. 1. (Color online) Trapping of ions in the ring-electrode trap.
(a) Schematic of the ring-electrode trap showing the geometrical
quantities characteristic for the ring-electrode trap, r0 = 5 mm and
2πz0 = 4 mm. (b) The effective potential across the transverse plane
of the RF trap (thick blue line) at a high RF amplitude of V0 = 750 V.
The trap depth Utrap [5] for various assumptions on the maximum
adiabaticity parameter ηmax is indicated with the dashed lines, and
the maximum radius rmax of the ion cloud for ηmax = 0.3 is indicated
with the arrow to the horizontal axis. The gray scaled solid lines show
single-ion densities for total mechanical energies of E1 = 10−3 eV,
E2 = 10−2 eV, and E3 = 10−1 eV. (c) Radius of the the adiabatic
region in the RF trap as a function of the RF amplitude [5] for
two different assumptions on the maximum value of the adiabaticity
paramter ηmax. The arrows pointing to the horizontal scale indicate
values of the RF amplitude explored in this work.

where m and qe are the ion mass and charge, ω = 4π× 4 MHz,
and V0 are the angular frequency and amplitude of the RF
potential, and the detailed form of the function ueff(r̂ ,ẑ) can be
found in [5] [its Eq. (7)]. The range of validity of the adiabatic
approximation is quantified through the limit on the so-called
adiabaticity parameter, i.e., η < ηmax. For the ring-electrode
trap, the adiabaticity parameter is

η(r̂ ,ẑ) = 2|qe|V0

mω2
η̂(r̂ ,ẑ), (2)

where also the detailed form of the function η̂(r̂ ,ẑ) can be
found in Ref. [5] [its Eq. (8)].

Figure 1(b) displays the effective potential (solid blue line)
for a high value of the RF amplitude, at x = 0 and ẑ = 2π .
For a particular limiting value of η, ions can be trapped up
to a certain radius rmax below which the ion motion can
be considered adiabatic. This consequently gives rise to an
effective trap depth Utrap of the effective potential for a given
value of ηmax, as indicated on the right side of Fig. 1(b).
This maximum radius is shown in Fig. 1(c) for two choices
of ηmax. At low values of the RF amplitude, the maximum
radius coincides with the inner radius r0 = 5 mm of the ring
electrodes. The gray scaled curves in Fig. 1(b) illustrate the
one-dimensional spatial distribution of single ions at different
energies in RF trap. From the measurements of column
densities in this study, we obtain information on the maximum
value of the adiabaticity parameter for the present RF trap.

The present experimental results demonstrate that the dy-
namics of the trapped ions is indeed strongly influenced by the
initial energy distribution imposed by the injection mechanism.
Thus, the loss of ions from the trap is described by a power-law
time dependence characteristic of an inhomogeneous decay
mechanism as expected for nonthermalized ions. The trapped
ensemble of ions relaxes strongly for ca. 18–20 ms, after which
the resulting column densities are consistent with distributions
expected for a maximum adiabaticity parameter of ∼0.28.

II. EXPERIMENT

Cl2− ions were produced in a Aarhus Negative Ion Source
(ANIS) [7] (a sputter ion source) using a hollow Cu-cathode
filled with a pressed powder of a 1:1 mixture of AgCl and
Cu. The source was operated with a 1-mm-diameter tungsten
filament heated by a dc current of 38–40 A leading to an overall
temperature of the water-cooled source of ∼400 K. The ANIS
was operated with a transverse magnetic field of ∼80 mT, and
with a sputter cathode potential of VS = −2 kV. The ion source
was located on a high-voltage platform kept at a potential
of VHV = −1 kV, and by extraction to ground potential, a
fast beam of negative ions of kinetic energy K0 = qe (VHV +
VS) = 3 keV was formed, where q = −1. This monoenergetic
ion beam was deflected 90◦ by passage through a magnetic
field which separates ions according to their mass-to-charge
ratio. The result of the mass selection was a beam of Cl2− of
∼0.3 nA which was further steered and focused towards the
entrance of the RF trap. For comparison, a current of ∼130 nA
was obtained of atomic Cl− from the ion source.

The experimental system around the RF trap, where ions
and laser pulses are brought to interact, is shown schematically
in Fig. 2. During the reported measurements, the residual gas
pressure in the ion trap chamber was kept at ∼1.0×10−8 mbar
corresponding to a residual gas density of ∼2.4×108 cm−3.

The RF-trap assembly has been described in detail pre-
viously [5], and consists of a ring-electrode trap [2] with a
specially adapted end-cap electrode geometry which includes
electrodes for focusing of the incoming fast ion beam and for
facilitating ion extraction from the trap. Compared to the setup
described in Ref. [5], the present experimental setup has been
expanded with the addition of a quadrupole mass spectrometer
(QMS) and further adaptive ion optics on the exit side of the
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FIG. 2. (Color online) Illustration of the central part of the
experimental setup with the RF trap and the adjacent quadrupole mass
spectrometer (QMS) and channeltron detector. Ions are injected into
the RF trap by the method described in Ref. [5]. The ion current can
be measured continuously between injections, and the laser intensity
is measured behind the channeltron.

ion trap. Single ions ejected from the trap pass through the
mass spectrometer and are electrically bent into a channeltron
detector. Their time-of-flight (TOF) relative to the extraction
trigger is registered with the data acquisition system. The entire
setup comprising the trap, QMS, and channeltron detector is
kept at a high potential Vtrap relative to ground as the fast ions
must be decelerated in order to be confined in the somewhat
shallow trapping potential (trap depth is of the order of a few
eV). In the absence of energy exchange between ions and the
trapping RF field, the kinetic energy of an ion arriving at the
trap center would be Kstat = K0 − qVtrap.

The combined system of the RF trap and the QMS allows for
ion trapping followed by mass analysis of the stored ensemble
of ions after a variable trapping time by extracting the stored
ions through the QMS. An example of the mass spectrum
obtained after a trapping time of 20 ms is shown in Fig. 3.
These data illustrate explicitly the presence of both parent ions
(Cl2−) and daughter ions (Cl−) resulting from dissociation of
parent ions.

For the photodissociation experiments reported here, the
stored Cl2− ions were irradiated along the trap axis (the z axis)
by a laser pulse at a time tL = 18.2 ms after closing the trap.
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FIG. 3. Mass spectrum of trapped ions obtained with the
quadrupole mass spectrometer after a trapping time of 20 ms, showing
the presence of primarily parent ions (Cl2

−) and also spontaneously
formed daughter ions (Cl−) (see also Fig. 6).

The laser pulses were derived as the second harmonic of a
commercial Nd:YAG laser system and had a width of wL ∼ 3
ns, were horizontally polarized, and had a photon energy of
Eλ = 2.33 eV (532 nm). Typical total laser pulse energies
were Ep = 4–8 mJ/pulse. In this regime, the laser-induced
ion signal was measured to be proportional to the laser pulse
energy which is consistent with single-photon absorption.

The laser light was guided and slightly focused into the ion
trap using several prisms and lenses. In particular, as illustrated
in Fig. 2, the last optical stage before entering the vacuum
system was a periscope where both the horizontal (xL) and
vertical (yL) output positions of the light were adjustable in
a region of ±12.5 mm from the trap center axis. Moreover, a
telescope for adjusting the focus of the laser light inside the RF
trap was fixed directly to the last prism of the periscope. In this
way, the direction and focusing of the light were kept separate
and the transverse intensity profile of the light pulses reaching
the interaction region was independent of the setting of the
periscope. With the adapted distances, where the last optical
element was located ∼1 m from the trap center, the focusing
was such that the transverse profiles of the light pulses were
essentially constant over the longitudinal extent (<50 mm)
of the ion cloud in the RF trap. Behind the channeltron detector,
the laser beam was dumped into a power meter which recorded
the average laser intensity.

The actual horizontal and vertical profiles of the laser pulses
in the trap region were determined by scanning the laser pulses
across the edge of the end-cap electrode (see Fig. 2) on the
entrance side of the RF trap while observing the laser intensity
I (xL,yL) behind the trap. Assuming the horizontal and vertical
laser intensity profiles to be independent, the spatial laser in-
tensity distribution can be factorized as g(x,y) = gx(x)gy(y),
and the total (unblocked) laser intensity can be expressed as

I0 =
∫ ∞

−∞

∫ ∞

−∞
gx(x)gy(y)dx dy. (3)

The laser position is now scanned vertically across the center
(xL = 0) of the end-cap electrode, the boundary of which is
located at y = ±ycap(= ±3 mm). Since the inner diameter of
the end-cap electrode (6 mm) is much larger than the actual
extent of the laser profile (diameter ∼0.7 mm), the measured
laser intensity I at position uL = yL + ycap [see Fig. 4(a)] is
then given by

I (uL) =
∫ ∞

−∞
gx(x − xL)dx

∫ ycap

−ycap

gy(y − yL)dy

=
∫ 2ycap

0
gy(u − uL)du. (4)

The corresponding measured laser intensity is displayed in
Fig. 4(b). The transverse intensity profile gy(y) can now be
obtained directly from this measurement as the derivative, i.e.,

d

duL
I (uL) = −

∫ 2ycap

0

dgy(u − uL)

du
du

= gy(uL) − gy(uL − 2ycap)

= gy(uL) for |uL − 2ycap| � σy, (5)

where the last expression is valid when the laser is positioned
close to the lower edge of end-cap electrode (uL close to zero).
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FIG. 4. (Color online) Measurement of the vertical laser profile
by scanning the laser across the edge of the end-cap electrode.
(a) Schematic illustration of the position of the laser [green (gray)
dot] inside the opening of the end-cap electrode. (b) Laser intensity
measured behind the RF trap and QMS (see also Fig. 2) obtained with
the laser horizontally fixed at xL = 0 mm while scanning the laser
vertical position yL. (c) Differentiated intensity being proportional to
the vertical laser profile [Eq. (6)]. The dashed line shows a Gaussian
fit to the intensity profile. Similar measurements were done to obtain
the horizontal profile.

The resulting experimentally determined vertical laser pulse
profile is shown in Fig. 4(c), which also shows a Gaussian fit
with spread of σy = 0.35 ± 0.01 mm. Similarly, the horizontal
laser profile was found to be well represented by a Gaussian
distribution with spread of σx = 0.32 ± 0.01 mm.

To measure the relative column density of ions in the
RF trap, the transverse position (xL, yL) of the laser pulses
was systematically scanned across the accessible region
of the RF-trap volume while simultaneously recording the
photofragmentation yield of Cl− ions by extraction and mass
analysis in the QMS.

The experimental system was operated at a total rate of
20 Hz with four alternating cases (5 Hz each) of (1) both
ions and laser pulse present in the trap (giving Nu

IL counts
after extraction), (2) ions only (Nu

I ), (3) laser only (Nu
L ),

and (4) neither ions nor laser, i.e., dark counts (Nu
D). For a

given measurement, the QMS setting determines what ion
species is detected, either Cl− or Cl2−, and the detected
ion species is indicated by the superscript u. By combining

these measurements, the background-corrected laser-induced
ion yield of species u, Nu

S , is expressed as

Nu
S = Nu

IL − Nu
I − Nu

L + Nu
D. (6)

This quantity was then measured as a function of the laser
position. The dominating background originates from the ions-
only case (Nu

I ), while only minor background counts on the
channeltron were observed under the cases of laser only and
dark counts.

In order to suppress possible short-term fluctuations in laser
pulse energy and the number of trapped ions, each point in
a measurement series was typically averaged over 100 trap
loadings (implying that each of the four cycles described above
were repeated 100 times). Long-term variations were averaged
out by repeating each measurement series several times. For
example, the two-dimensional profiles presented in Fig. 7 have
been measured several times, and each point represents an
average of approximately 500 trap loadings.

III. RESULTS

A. Spontaneous evolution of trapped ions

The evolution of the number of trapped parent ions (Cl2−)
as a function of time after closing the trap is displayed in
Fig. 5(a). The observed decay with only ions present in the
RF trap [red dots in Fig. 5(a)] shows a strong decrease within
the first 1 ms after which the decay curve can be very well
represented by a power law of the form

N
Cl2−
I (t) = A0(t/t0)−1/n. (7)

Here, t0 = 1 ms to make A0 dimensionless, and the best fit
to the experimental decay curve yields n = 11.7 ± 0.2 and
A0 = 106.5 ± 0.4. This type of decay law is characteristic of
an inhomogeneous ensemble of trapped particles where in this
case the trapped ions have different probabilities for escaping
the trap depending on their individual properties.

The injection mechanism applied in this experiment [5]
indeed gives rise to a wide energy distribution of the trapped
ions, which naturally results in an inhomogeneous loss
mechanism, for instance, represented by an energy-dependent
escape rate kE . Formulated explicitly, the evolution of the
total number of trapped parent ions N

Cl2−
I in the absence of a

laser pulse (ions-only case) can be modeled by a differential
equation of the form

d

dt
N

Cl2−
I =

∑
E,s

(−kE − kDE
s − kDI

s − kDE
g − kDI

g

)
N

Cl2−
E,s ,

(8)

where the decay rates k
DE/DI
s and k

DE/DI
g parametrically

describe additionally possible losses of parent ions due to
spontaneous decay from excited states s and due to residual
gas collisions (g) leading to detachment (DE) or dissociation
(DI), respectively.

The significance of an inhomogeneous loss mechanism can
be illustrated for instance by assuming a simple analytical
power dependence of the associated decay rate as kE ∝ En.
In this case, it is easily shown that the number of parent ions
decay as the power law depicted in Eq. (7), i.e., NCl2−

I ∝ t−1/n.
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FIG. 5. (Color online) Trapping, laser-induced dissociation, and
extraction of Cl2

− (parent) with the combined RF trap and quadrupole
mass spectrometer. (a) Total intensity of trapped Cl2

− ions as a
function of trapping time obtained by variation of the time of
extraction of ions through the QMS. The red (dark) dots show the
intensity obtained with only ions present in the RF trap, while the
gray dots show the result when firing a laser pulse at tL = 18.2 ms.
(b) Time-of-flight distributions of Cl2

− ions relative to the time of
extraction from the RF trap. (c) Relaxation of the trapped ions as
a function of trapping time illustrated by the convergence of the
TOF distribution. The distributions are compared using the �2(t)
parameter defined in Eq. (9).

The evolution of the ensemble of trapped parent ions after
injection was experimentally further explored by considering
the time-of-flight distribution after extraction through the
QMS. Examples of these distributions are shown in Fig. 5(b)
for three different times of extraction. It is clearly seen that
the TOF distributions evolve and peak at later times with
increasing extraction time. Since more energetic (higher-E)
ions travel faster through the QMS, this tendency can indeed
be understood as evidence that the energy distribution of the
trapped ions similarly evolves through primarily loss of the
more energetic ions.

To quantify in more detail the evolution of the ob-
served TOF distributions [Fig. 5(b)], we introduce the
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FIG. 6. (Color online) Trapping and laser-induced photodissoci-
ation of Cl2

− ions to form Cl− (daughter) ions. The intensity of
daughter ions both without (red dots) and with (gray dots) the presence
of a laser pulse at tL = 18.3 ms is shown as a function of trapping
time.

parameter

�2(t) =
∑

i[I (t,i) − I (tr,i)]2∑
i σ

2(t,i) + σ 2(tr,i)
, (9)

where I (t,i) and I (tr,i) are the number of counts in the ith time
bin of the TOF distribution recorded at extraction time t and
at a selected reference extraction time tr, respectively. σ (t,i)
and σ (tr,i) are the statistical uncertainties for the ith time
bin of these two TOF distributions, respectively. Clearly, the
two distributions I (t,i) and I (tr,i) become indistinguishable
when �2(t) � 1. Figure 5(c) displays the parameter �2(t)
evaluated for each point of the decay curve shown in Fig. 5(c),
where I (tr,i) has been particularly selected to be the latest
measured distribution at tr = 39.2 ms. As seen, the value of
�2(t) decreases strongly until t ∼ 18–20 ms after which time
it is essentially constant with a value near unity. We interpret
this finding as evidence that the translational properties of
the sample of trapped ions evolve for ∼20 ms after injection
whereafter they can be considered stationary.

The red dots in Fig. 6 show the observed spontaneous
evolution of the amount of daugther ions (Cl−) observed
as a function of trapping time. Using the model of Eq. (8),
the evolution of the amount of trapped daughter ions can be
explicitly written as

d

dt
NCl−

I =
∑

s

(
kDI
s + kDI

g

)
NCl2−

s −
∑
E

kd
ENCl−

E , (10)

where kd
E now describes the loss rate of Cl− due to their final

energy after dissociation, and a model for the signal shown in
Fig. 6 is hence obtained as

NCl−
I =

∫ t

0

d

dt
NCl−

I dt, (11)

where t = 0 is defined as the time when the trap is closed. As
seen in Fig. 6, the intensity of trapped Cl− ions increases during
the first ca. 20 ms after which time it is essentially constant.
The functional form of the measured curve is well represented
by NCl−

I ∝ (1 − e−t/τCl− ), with τCl− = 5.8 ± 0.6 ms.

063410-5



SVENDSEN, NIELSEN, AND PEDERSEN PHYSICAL REVIEW A 89, 063410 (2014)

The absolute amount of spontaneously produced daughter
ions is significantly less than the amount of Cl2− ions lost
from the trap as can be inferred by comparison to the Cl2−
decay curve presented in Fig. 5(a). Hence, it seems likely
that the loss of the parent beam by spontaneous dissociation
(kDI

s ) or collisional-induced dissociation (kDI
g ) are only minor

contributors to the total loss of Cl2− from the trap. It should be
noted that the typical energy available in a binary collision
of Cl2− and a rest gas molecule (say N2) of mass mg,
i.e., Ec = Emg/(mCl2 + mg) ∼ 0.3 eV, which is significantly
less than (however, of the same order of magnitude as) the
dissociation energy of ground state Cl2− of D0 = 1.36 eV
[8]. We refrain from a further analysis of the origin of the
spontaneous Cl− in this paper, however, we wish to address
similar spontaneous decays in a forthcoming paper. However,
the fact that Cl− is indeed produced spontaneously provides
a very useful normalization of the laser-induced signal [see
discussion leading to Eq. (18)].

B. Laser-induced dissociation

At a photon energy of 2.33 eV (532 nm), Cl2− ions in
their electronic ground state can absorb directly to repulsive
(dissociative) potential energy surfaces via the dipole-allowed
2	+

u → 2
g or 2	+
u → 2	+

g transitions, while detachment to
the ground state of Cl02 (1	+

g ) is only energetically possible for
very highly excited vibrational states of Cl2− (2	+

u ). Detailed
potential energy curves for Cl2− can be found in Refs. [8,9].

The gray points in Fig. 5(a) show the evolution of trapped
parent ions corresponding to the case of both ions and a
laser pulse (NCl2−

IL ) occurring at time tL = 18.2 ms during
the trapping cycle. Evidently, when a laser pulse is present
during the trapping cycle, a small but significant depletion
of the parent ions is easily identified as the shift of the gray
dots (NCl2−

IL ) relative to the red dots (NCl2−
I ) for t � tL. For

the data shown in Fig. 5(a), the difference signal �NCl2− =
N

Cl2−
IL − N

Cl2−
I amounts to −2.2 ± 0.1 counts per injection

when averaged over all times larger than tL.
The pulse width of the laser (wL ∼ 3 ns) is evidently much

smaller than the time �t needed for the spontaneous decay to
cause a similar change of N

Cl2−
I , i.e., using Eq. (7)

�t ≈ �N
Cl2−
I

dN
Cl2

−
I
dt

= �N
Cl2−
I

−A0
1
n

(tL/t0)−1/nt−1
L

= 5.6 ms. (12)

Hence, the effect of the laser pulse can be well represented as
an abrupt change of the number of stored ions, and modeled
with the differential equation [expansion of Eq. (8)]

d

dt
N

Cl2−
IL =

∑
E,s

(−kE − kDE
s − kDI

s − kDE
g − kDI

g

)
N

Cl2−
E,s

+�NCl2−
δ(t − tL), (13)

where �NCl2−
is explicitly given by

�NCl2− = −σLN
Cl2−
I (tL)

∫
nph(x,y,z)ρ(x,y,z)dx dy dz.

(14)

Here, σL is the cross section for photodissociation, nph(x,y,z)
is the photon number density, ρ(x,y,z) is the normalized
spatial density of trapped ions, and the integration extends over
the total volume of the trap. It should be noted that Eq. (14)
is stated under the assumption that the photodissociation cross
section is the same for all trapped ions, but in general it depends
on the initial state of the ion.

The gray dots in Fig. 6 display the corresponding time
dependence of the number of Cl− daughter ions when a laser
pulse is present during storage. By analogy with Eq. (13), the
evolution of the number of daughter ions can be written as
[expanding Eq. (10)]

d

dt
NCl−

IL =
∑

s

(
kDI
s + kDI

g

)
NCl2−

s −
∑
E

kd
ENCl−

E

−�NCl2−
δ(t − tL), (15)

while Eq. (11) still accounts for the observed integral signal.
The enhanced daughter ion signal induced by the laser clearly
decays within the first ∼5 ms after exposure of the parent ions
to laser light. This can be expected since the Cl− fragments are
released with a distribution of kinetic energies, and the most
energetic fragment ions may then be able to escape the RF
trap. Moreover, the trap depth for Cl− is reduced as compared
to Cl2− [Eq. (15) in [5]], and these two loss mechanisms are
described by kd

E , where E represents the total energy of the
released fragment.

It should be noted that the absolute gain observed just after
laser exposure corresponds quite well to the observed depletion
of the parent ions. For the data shown in Fig. 6, the gain
�NCl− is 1.8 ± 0.1 while the corresponding depletion shown
in Fig. 5(a) is �NCl2− = −2.2 ± 0.1 ≈ −�NCl− .

C. Ion column density

To measure the column density of the trapped ions, a proper
focusing of the laser beam is important. In the present setup,
the laser beam is focused into the RF trap from a distance of
∼1 m which is much larger than the longitudinal extent (along
the z axis) of the trap (∼50 mm). To a good approximation,
the z dependence of the photon-number density can therefore
be neglected across the trap, i.e., nph(x,y,z) = nph(x,y).
Moreover, the actual transverse width of the laser beam
(diameter ∼0.7 mm [see Fig. 4(c)] is relatively small compared
to the length scale over which the ion density varies, and hence
the ion density ρ can be assumed constant over the laser profile.
With these assumptions, Eq. (14) can be simplified to

�NCl2− =−σLN
Cl2−
I (tL)

∫
ρ(xL,yL,z)

∫∫
nph(x,y)dx dy dz

=−σLN
Cl2−
I (tL)Nph

∫
ρ(xL,yL,z)dz, (16)

where Nph = Ep/Eλ is the number of photons. The integral in
Eq. (16) represents the normalized column density ρz(xL,yL)
of ions in the RF trap, which can hence be expressed directly
as

ρz(xL,yL) = −�NCl2−

σLN
Cl2−
I (tL)Nph

. (17)
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Thus, assuming the same cross section for all ions, the
column density of the trapped ions can be obtained from
a measurement of the laser-induced depletion. Similarly, it
can be obtained with a more favorable signal-to-background
ratio from the enhanced daughter ion signal (see Fig. 6)
since �NCl− = −�NCl2−

. In this case, however, the signal
must be monitored promptly after laser exposure to avoid the
aforementioned loss of fragment ions. Having demonstrated
the feasibility of both these approaches [see Figs. 5(a) and 6],
we decided in this work to investigate the column density of
the trapped ions by measuring the laser-induced daughter ion
signal just after exposure of the parent ions to laser light.

To obtain the ion column density, it is evident from Eq. (17)
that the gain in daughter ion signal �NCl− must be normalized
to the number of parent ions present in the trap N

Cl2−
I (tL) at the

time of laser exposure. This would entail switching the QMS
between transmission of daughter ions and parent ions thereby
making data acquisition more intricate and slow. However, as
already mentioned, Cl− is produced spontaneously which is
reflected in NCl−

I being nonzero. The number of spontaneously
produced fragment ions is directly proportional to number of
injected Cl2− parent ions, that is NCl−

I (tL) ∝ N
Cl2−
I (tL), and,

consequently, if only the relative density is sought, there is
no need to measure the number of parent ions. Thus, the final
experimental quantity, proportional to the ion column density,
is explicitly obtained as

ρz(xL,yL) ∝ �NCl−(tL)

NCl−
I (tL)Nph

, (18)

which is measured as a function of the laser position (xL,yL). It
must be noted that the quantities NCl−

I (tL) and NCl−
IL (tL) used in

this expression to determine the laser-induced gain �NCl− (tL)
and for parent normalization are naturally not obtained for the
same trap loading, but for alternating loadings as described in
the experimental section. However, the short-term variation in
the number of trapped ions is indeed low and is suppressed
when the data are averaged over several trap loadings.

Figures 7(a)–7(c) show two-dimensional plots of the
column density obtained with a moderate step size of �xL =
�yL = 0.33 mm, i.e., about equal to the spatial spread of
the laser light in the trap region. The step size in these
two-dimensional spectra are chosen relatively large in order
to reveal major features while measuring at an affordable total
number of different positions (here a grid of 25 × 25 = 625).
Finer scans were done in single dimensions only. The column
densities shown in Fig. 7 reveal clearly that the transverse
distribution of ions in the RF trap is rather smooth and
homogeneous, however, with an apparent (<10%) vertical
asymmetry. Much stronger asymmetries have been observed
in other multipole traps, i.e., a 22-pole trap [10], and have been
explained [11] by minor mechanical misalignment of the RF
poles.

The densities shown in Fig. 7 demonstrate moreover the
effect of increasing the RF amplitude on the effective available
trapping volume of the RF trap. At V0 = 300 V [Figs. 7(a) and
7(d)] the trapped ion cloud seems to extend beyond the area
accessible for the laser light, as defined by the rim of the
end-cap electrode [black circles in Figs. 7(a)–7(c)], while at
V0 = 700 V [Figs. 7(c) and 7(f)] the ion cloud is fully confined

FIG. 7. (Color online) Ion densities for three different values of
the RF amplitude, namely, (a), (d) V0 = 300 V, (b), (e) V0 = 550 V,
and (b), (f) V0 = 700 V. (a)–(c) Two-dimensional measurements of
the ion column density. The black circles show the dimension of
the end-cap electrode (6 mm diameter). The white ring shows the
approximate extent of the laser profile (Fig. 4). (d)–(f) Fine scans
of the column density in the vertical direction in steps much smaller
than the width of the laser profile.

inside the region accessible by the laser. In all three cases, the
ion column density is rather homogeneous and does not exhibit
sharp structures.

A more quantitative view of the column densities recorded
at the three different values of the RF amplitude is displayed
in Figs. 7(d)–7(f). The one-dimensional scans of the densities
along the central vertical axis were recorded with a step size
of 0.092 mm which is much smaller than the width of the laser
profile. These scans of finer resolution shown in Figs. 7(d)–7(f)
in detail confirm the smoothness of the ion column density
inferred from the two-dimensional scans.

IV. MODELING THE PARTICLE DISTRIBUTION

In the following, we seek to model the spatial distribution of
ions in the trap by statistical mechanics methods. Initially, we
establish a connection between the phase-space distribution
and the energy distribution of an ensemble of particles
moving in some general confining potential. To illustrate the
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consequences of the derived relationship, a one-dimensional
case study is presented, and finally the derived equations are
employed to model the spatial ion distribution in the trap used
in this experimental study.

A. Particle distribution in a Hamiltonian system

We consider a collection of a large number of identical
and noninteracting particles moving in some general potential
U (
r). In this case, the phase-space trajectory of a single particle
is described by a Hamiltonian which has the same functional
for all particles, namely,

H (
r, 
p) = p2

2m
+ U (
r) = E, (19)

where 
p and m are the momentum and mass, respectively, and
E the mechanical energy of the particle. As the particles are
noninteracting, the energy of a single particle is a conserved
quantity, and the ensemble of particles is therefore a micro-
canonical ensemble since there is no energy exchange. The set
of possible microstates for this ensemble can be represented by
a set of points in phase space, and the probability distribution
in phase space f (
r, 
p) then describes how the particles are
distributed over the possible microstates. For an ensemble in
equilibrium, f must be stationary. Liouville’s theorem states
that the phase-space distribution is stationary if the Poisson
bracket of f and the Hamiltonian vanishes [12]. This is
fulfilled if f is some function of the mechanical energy E.
The probability to find a particle in a state with position and
momentum coordinates in the intervals


r,
r + d
r, 
p, 
p + d 
p (20)

is therefore written as

f (
r, 
p) d
r d 
p = 1

Z
F (E(
r, 
p))d
r d 
p. (21)

Here, F is some function, and Z is the partition function found
by normalizing the probability density, that is,

Z =
∫∫

F (E(
r, 
p))d
r d 
p. (22)

To connect the phase-space weight function F (E) to the energy
distribution P (E) of the ensemble, we first determine the
phase-space volume 
 of a microstate with a certain energy ε.
This quantity is expressed as


(ε) =
∫∫

δ[E(
r, 
p) − ε
]
d
r d 
p

= 2π (2m)3/2
∫ √

ε − U (
r) d
r, (23)

where Eq. (19) was used to change the integration from
momentum to energy coordinates. Next, we transform the
phase-space distribution from (
r, 
p) space to (
r,E) space.
From Eq. (19), it is noted that f only depends on the
magnitude of the momentum and not the individual momentum
components, and therefore, we first transform the Cartesian
momentum coordinates into spherical momentum coordinates
which yields

f (
r,p) = 4πp2

Z
F (E(
r,p)). (24)

The momentum coordinate is then transformed into energy
through Eq. (19), and by conservation of probability

f (
r,E)d
r dE = f (
r,p(E))d
r dp

dE
dE

= 2π (2m)3/2

Z

√
E − U (
r) F (E) d
r dE. (25)

The energy distribution is obtained by integration over the
spatial coordinates

P (E) =
∫

f (
r,E) d
r

= 1

Z
F (E) 2π (2m)3/2

∫ √
E − U (
r) d
r

= 
(E)

Z
F (E). (26)

If the energy distribution P (E) is known, the corresponding
weight function in phase space is consequently given as

F (E) = Z P (E)


(E)
(27)

leading to a phase-space density of

f (
r, 
p) = 1

Z

Z P (E(
r, 
p))

(E(
r, 
p))

= P (E(
r, 
p))

(E(
r, 
p))

. (28)

If, instead, the ensemble is in contact and in thermal equi-
librium with a heat bath of temperature T , the phase-space
density is equal to the familiar canonical phase space density
given by

fc(
r, 
p) = exp[−E(
r, 
p)/kT ]

Z
. (29)

It is therefore noted that the phase-space density of a canonical
ensemble is identical to that of a microcanonical ensemble ex-
hibiting an energy distribution of P (E) ∝ 
(E) exp[−E/kT ]
despite the fact that the physical situations for the two
ensembles are quite different.

Having established the phase-space density of an ensemble
of a given energy distribution, the spatial distribution of the
ensemble can now be determined by inserting Eq. (27) into
(25) and integrating over all energies

ρ(
r) =
∫

f (
r,E) dE

= 2π (2m)2/3
∫ √

E − U (
r)
P (E)


(E)
dE. (30)

Finally, the column density is calculated by integrating out the
z dependence of the spatial density

ρz(x,y) =
∫

ρ(
r)dz. (31)

B. One-dimensional case study

In order to make more clear the equations derived in
the previous section and to highlight the major differences
between a canonical ensemble and a microcanonical ensemble
exhibiting a flat energy distribution, we here present phase-
space and spatial distributions of such ensembles for a one-
dimensional case study. It is assumed that particles of mass
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m = 70 amu corresponding to Cl2− move in a one-dimensional
potential U 1D

eff (x) given by

U 1D
eff (x) ≡ Ueff(|x|/z0,0), (32)

where Ueff is defined in Eq. (1). The fact that ion motion in
this potential is only stable for η � 0.3 imposes the constraint
that x � xmax where xmax is defined through the equation
η(xmax/z0,0) = 0.3. In turn, this requires that the mechanical
energy E of a confined particle must be limited to

p2

2m
+ U 1D

eff (x) = E(x,p) � U 1D
trap ≡ U 1D

eff (xmax). (33)

The effective potential and the quantities xmax and U 1D
trap are

displayed in Figs. 8(a) and 8(b).
The microcanonical ensemble is now considered to exhibit

a flat energy distribution implying that

Pm(E) =
{

0, E > U 1D
trap

1
U 1D

trap
, E � U 1D

trap.
(34)

According to Eq. (28), the distribution in phase space for E �
U 1D

trap is written as

fm(x,p) = Pm(E(x,p))

1D(E(x,p))

= 1

U 1D
trap 
1D(E(x,p))

. (35)

Here, 
1D is the one-dimensional equivalent of Eq. (23), that
is,


1D(ε) =
∫∫

δ[E(x,p) − ε] dx dp

=
√

2m

∫ xm(ε)

−xm(ε)

dx√
ε − U 1D

eff (x)
, (36)

where xm(ε) is the maximum range of a particle with
mechanical energy ε, that is, ε = U 1D

eff (xm(ε)) [see Fig. 8(b)]. In
Fig. 8(g), the phase-space volume given by Eq. (36) is plotted
as a function of the mechanical energy when the RF amplitude
is set to V0 = 750 V, and the phase-space density for this
microcanonical ensemble [Eq. (35)] is depicted in Fig. 8(d).
As seen, the density is highest in the regions of high energy.
This is due to the presence of the phase-space volume 
1D

in the denominator of Eq. (35), a factor which decreases with
energy.

For the canonical ensemble in contact with a heat bath of
temperature T , the phase-space density for E � U 1D

trap is given
by

fc(x,p) = exp[−E(x,p)/kT ]

Z
, (37)

where the partition function Z is expressed as

Z =
∫∫

exp[−E/kT ]dx dp

=
∫ U 1D

trap

0

1D(E) exp[−E/kT ]dE. (38)

The canonical phase-space distribution at a temperature of T =
3000 K is shown in Fig. 8(c). In contrast to the microcanonical
density, the canonical density is high in phase-space regions
where the energy is low.

The spatial distribution for the two ensembles is determined
by integrating out the momentum dependence of the phase-
space density, yielding

ρ(x) =
∫ pmax(x)

−pmax(x)
fμ(x,p)dp

=
√

2m

∫ U 1D
trap

0

fμ(x,p(E))√[
E − U 1D

eff (x)
]dE, (39)

where μ = m or c and pmax(x) =
√

2m[U 1D
trap − U 1D

eff (x)] [see
Figs. 8(a) and 8(c)]. The spatial distributions are shown in
Figs. 8(e) and 8(f) for the canonical and the microcanonical
ensembles, respectively. As seen, the spatial distributions are
quite different: the canonical distribution peaks in the central
region, whereas the microcanonical distribution is highest in
the outer regions due to the larger contribution from energetic
particles.

C. Ion distribution in the RF trap

In the following, the equations derived in Sec. IV A are
applied to the case of an ensemble of ions trapped in a ring-
electrode RF trap in order to model the spatial ion distribution.
The adiabatic approximation for the motion of the trapped ions
is assumed to be strictly valid, and if the effect of the static
end-cap potential is neglected, the Hamiltonian describing the
motion of a single ion is given by

H (x,y,z, 
p) = p2

2m
+ Ueff

(
r

z0
,
z

z0

)
, (40)

where r =
√

x2 + y2 and Ueff is the potential given by Eq. (1).
When neglecting the end-cap potential, the trap is considered
as being infinitely long, and since the electrode geometry is
periodic in z with a period of 2πz0, z can be restricted to
the interval [0,2πz0]. As already mentioned, the adiabatic
approximation is only valid when the adiabaticity parameter η

is below ηmax which in turn gives rise to an effective trap depth
Utrap. In this study, the trap depth is defined as the minimum
of the effective potential in the nonadiabatic region, that is,

U eff
trap = min{Ueff(r̂ ,ẑ) | η(r̂ ,ẑ) � ηmax} (41)

in accordance with model 1 of Ref. [5].
When the static end-cap potential is taken into considera-

tion, the single-ion Hamiltonian is instead expressed as

Htot(x,y,z, 
p) = p2

2m
+ Ueff

(
r

z0
,
z

z0

)
+ Ustat(r,z)

= p2

2m
+ Utot(r,z), (42)

where Ustat is the static end-cap potential which is cylindrically
symmetric and therefore only depends on r and z. In this case,
not only the effective potential, but also the static potential
contributes to the trap depth, and the total trap depth is therefore
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FIG. 8. (Color online) Characteristics of two ensembles: one (canonical) in contact with a heat bath of temperature T = 3000 K [(a), (c),
(e)] and one (microcanonical) with a flat energy distribution [(b), (d), (f)]. (a), (b) The black curve displays the effective potential at V0 = 750 V
[Eq. (1)], and the hatched areas represent the regions where η > 0.36 [Eq. (2)] while color shadings represent the energy distribution of an
ensemble (a) in contact with a heat bath P (E) ∝ 
(E) exp(−E/kT ), or (b) exhibiting a flat energy distribution P (E) constant. In (b), two
occupied energy levels E1 (blue line) and E2 (green line) are indicated. (c), (d) The color shading represents the phase-space density of an
ensemble (c) in contact with a heat bath or (d) exhibiting a flat energy distribution. The dashed lines mark the trajectory of the phase space
orbit with the highest allowed energy, that is, E = U 1D

trap. In (c), the black line indicates the momentum region to integrate over when the spatial
density at x ′ is to be determined, and in (d) the blue and green lines show the phase-space trajectory of a particle with energy E1 or E2,
respectively, corresponding to the energy levels shown in (b). (e), (f) The spatial distribution of an ensemble (e) in contact with a heat bath or (f)
exhibiting a flat energy distribution. In (f), the blue and green lines display the spatial density of a particle with energy E1 or E2, respectively,
corresponding to the energy levels shown in (b). (g) The phase-space volume 
1D [Eq. (36)] as a function of the mechanical energy.

expressed as

U tot
trap = min

{
Utot(r,z)

∣∣∣∣ η
(

r

z0
,
z

z0

)
� ηmax

}
. (43)

The first step in modeling the spatial ion distribution is
to consider the distribution in phase space f in Eq. (21). In
the present experimental study, the ions are isolated (not in
contact with a buffer gas) and the ion ensemble can therefore
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be considered as a microcanonical ensemble. Thus, the phase-
space distribution is determined from the mechanical energy
distribution of the ensemble as done in Eq. (28).

The actual mechanical energy within the adiabatic approx-
imation is given by Eq. (42) when including the static end-cap
potential. The mechanical energy distribution has not been
determined experimentally, but simulations of the injection
mechanism exploited here have provided information on the ki-
netic energy distribution [5]. These simulations which included
the full time dependence of the trapping potentials revealed that
when the ions first reach the trap center, their kinetic energy
distribution at high RF amplitudes is approximately uniform
with some low-energy cutoff, E0.1 To calculate the spatial
distribution according to Eq. (30), the simulated kinetic energy
distribution of the time-dependent problem must be related
to the mechanical energy distribution within the adiabatic
approximation. In the expression [Eq. (42)] for the mechanical
energy, the first term represents the kinetic energy stored in
the smooth drift motion while the second term Ueff actually
represents the kinetic energy stored in the micromotion (see
[2]). Thus, the first two terms in Eq. (42) merely represent the
total kinetic energy of the stored ion within the time-dependent
picture. As the static potential is negligible at the trap center,
the aforementioned uniform kinetic energy distribution does in
fact reflect the mechanical energy distribution of the trapped
ions, which is therefore assumed to be

P (E) =
{

1
U

μ
trap−E0

, E0 � E � U
μ
trap

0, otherwise.
(44)

Here, E0 is the low-energy cutoff of the uniform distribution,
and μ = tot or eff depending on whether or not the static end-
cap potential is taken into consideration. The spatial density is
then calculated according to Eq. (30), yielding

ρ(
r) = 2π (2m)2/3
∫ U

μ
trap

E0

√
E − Uμ(
r)[

U
μ
trap − E0

]

(E)

dE. (45)

Here, the density of states 
(E) is calculated from Eq. (23)
where U is substituted by Uμ. Finally, the ion column density
is determined by integrating out the z dependence of the spatial
distribution according to Eq. (31).

Figures 9(a) and 9(b) display the spatial three-dimensional
ion density in the (y,z) plane and the ion column density of
Cl2− ions trapped at a RF amplitude of V0 = 550 V. In both
cases, ηmax = 0.36 while E0 = 20 meV and the potentials of
the left and right end caps were set to −27 and −228 V,
respectively. As seen, the maximum of the density in the (y,z)
plane is pushed towards the left as the potential applied to the
left end cap is less repulsive than that applied to the right end
cap. Furthermore, the periodic ring-electrode array is imaged
into the spatial density that shows a spatial distance between
successive local maxima or minima equal to the minimum
spatial separation of neighboring electrodes irrespective of

1The low-energy cutoff arises since an ion must be traveling on
the trap central axis and entering the trap at a very specific point in
time in order to arrive at the trap center with exactly zero energy.
Consequently, the probability for trapping ions with very low energy
is small.

their RF phase. Since microstates of almost any energy up
to the trap depth are populated, the spatial density is seen to
extend all the way out to the nonadiabatic region, the boundary
of which is indicated by white solid lines. The column density
shown in Fig. 9(b) is very smooth, rather flat in the central
regions, and extends all the way out to the nonadiabatic region.
For comparison, the thermal spatial and column densities are
shown in Figs. 9(c) and 9(d) at the same trapping parameters
as those used in Figs. 9(a) and 9(b) and at a temperature of
T = 300 K. In this case, the ions are more confined in space, as
the more energetic microstates are suppressed due to U tot

trap =
1.8 eV being much larger than kT = 26 meV.

Figure 10 shows in detail the model column density profiles
along the x or y axis for three RF amplitudes. As seen, the ion
cloud compresses as the RF amplitude is increased due to the
fact that the region of adiabatic motion shrinks with increasing
amplitudes. For all three amplitudes, the ion density is almost
constant in a large central region.

To verify that the above model provides a good description
of the ion spatial density, we also performed numerical
simulations of ion trajectories during trapping. For a given
trajectory to come close to every point in its accessible phase
space, the trajectory must be propagated for a sufficiently
long-time interval in accordance with the ergodic hypothesis.
As traditional integration methods such as the fourth-order
Runge-Kutta methods accumulate error in energy which
can be quite severe when integrating over long times [13]
we developed a code for propagating the trajectories using
an eighth-order symplectic integrator suitable for long-time
integration [14]. This integrator is suited for Hamiltonian
systems and therefore the Hamiltonian of Eq. (42) was
employed to describe ion motion inside the trap, implying that
the effect of the RF trapping field was described in terms of
the time-independent analytical effective potential of Eq. (1).
The end-cap electrode potential was derived by use of the
SIMION 8.0 software [15]. The trajectories of numerous ions
with randomized initial conditions were integrated for a time
span of 240 μs, and during the integration of each orbit, the
ion position and energy were stored at random times. The
Monte Carlo ensemble resulting from this procedure does
not represent the actual stored ion ensemble as the energy
distributions of the two ensembles are not the same. Sets
of position and energy coordinates from the Monte Carlo
ensemble were then removed randomly to create an ensemble
with an energy distribution matching that of Eq. (44). The
resulting column densities from these simulations are shown
in Fig. 10 together with the column densities obtained from
statistical mechanical principles. As seen, the two model
densities agree to a high degree, thereby validating our
statistical approach to describing the ion spatial distribution
in the adiabatic approximation.

V. DISCUSSION

1. Properties of the trapped ions

To gain insight on the properties of ions trapped in the RF
trap when using the newly described mechanism of injection
[5], the experimental evidence collected in the recorded time
evolution of the parent ions (Fig. 5) and the detailed scans of
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FIG. 9. (Color online) Spatial ion densities of Cl2
− ions trapped at a RF amplitude of V0 = 550 V and ηmax = 0.36. The static potentials

applied to the left and right end caps are −27 and −228 V, respectively. The low-energy cutoff is set to E0 = 20 meV. All densities are depicted
relative to their respective maximum. (a) Ion density in the (y,z) [or (x,z)] plane for a microcanonical ensemble with the energy distribution
given by Eq. (44) and (b) the column density as a function of x and y for the same ensemble. (c) Ion density in the (y,z) [or (x,z)] plane for a
canonical ensemble of temperature T = 300 K and (d) the column density as a function of x and y for the same ensemble. In all graphs, the
white line shows the boundary between the adiabatic and nonadiabatic regions.

the column density [Eq. (18)] shown in Figs. 7(d)–7(f) can be
discussed under different assumptions of ion dynamics in the
RF trap after the short (∼100 μs) period of injection.

The newly described mechanism of injection of ions into
the ring-electrode RF trap [5] is mediated by the acceleration
or deceleration of the approaching ions by the longitudinal
component (along the trap central axis) of the electric field
generated by the oscillating RF trapping potentials. The
consequence is that the energy distribution of the trapped
ions is a function of both the RF amplitude V0 and the offset
(nominal energy) Kstat = K0 − qVtrap (∼3 eV for the setting
applied here) of the RF-trap platform potential Vtrap relative
to initial kinetic energy K0 of the approaching ions. The
expected resulting initial ion energy distributions [5] for the
setting applied in this work is broad (∼0–5 eV) and essentially
uniform [5].

It should be emphasized that contrary to previously de-
scribed multipole RF traps where buffer gas (typically He)

at a certain temperature T is used to decelerate and ther-
malize ions inside the trap, i.e., the phase-space distribution
follows a Boltzmann distribution [see Eq. (29)], the expected
distribution of energies in the present situation is obviously
not expected to be thermal. However, the well-established
results for thermalized ensembles of ions in multipole RF traps
provide an interesting comparison to the results observed here.

2. Loss of parent ions

In 22-pole traps using He buffer gas for thermalization,
the number of trapped parent ions has been found to decay
exponentially with time [16] and the decay mechanism has
been described as evaporation of ions from the trap [16]. In
detail, at low RF amplitudes (<20 V in Refs. [16,17]) ion
evaporation occurs because the ions in the high-energy tail of
the Boltzmann distribution are too energetic to be confined by
the effective potential (η < 0.36 [16]) and hence escape the
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FIG. 10. (Color online) Ion column densities at three different
RF amplitudes: (a) V0 = 300 V, (b) V0 = 550 V, and (c) V0 = 750 V.
The dashed blue lines and solid red lines represent the column density
modeled by statistical mechanics excluding and including the static
end-cap potential, respectively. The black circles represent the column
density according to numerical simulations of ion motion in the time-
independent potential Utot. In all cases, ηmax was set to 0.36.

trap. At higher RF amplitudes, spatial regions in which the
adiabatic approximation breaks down start to emerge and ions
entering these regions are able to exchange energy with the RF
field which leads to ion loss [16,17].

The exponential decay observed for this thermalized en-
semble implies that the ion decay is homogeneous in the sense
that all ions on average have the same decay rate. This situation
arises as the individual properties of the ions are constantly
changed (reset) by collisions with the buffer gas, and this
constant randomization of the ion energy happens at a rate of
105 s−1 [16] in the aforementioned experiments.

The case described with the present setup is entirely
different since the trapped ions have essentially negligible
collision rates and momentum exchange with the residual gas
as well as among themselves (ion density ∼40cm−3), and thus
the trapped ions interact mainly with the applied electric fields.
Therefore, in terms of the loss of parent ions, the individual
properties [in particular, the mechanical energy E given by
Eq. (42)] of the trapped ion are expected to determine its
decay rate, and consistently a decay following a power law
[Eq. (7)] is observed for the parent ions.

The energy-dependent mechanism of ion loss seems likely
to originate from energy exchange with the oscillating RF field:
hence, the more energetic ions come closer to the boundaries of
the trap where the adiabatic approximation breaks down, and
in these regions the ions may experience energy gain leading
to escape from the trap or energy loss leading to stabilization
in the trap. When injecting ions into the trap with a broad
energy distribution as done here, it is consequently expected
that the high-energy part of the distribution is depleted faster,
thereby cooling the ensemble. As seen in Fig. 5(b), the
peak of the TOF distribution of the extracted ions moves
towards later arrival times during trapping, and Fig. 5(c)
shows that the TOF distribution mainly evolves during the
first ∼20 ms for Cl2− of trapping. These findings are indeed
consistent with depletion of the high-energy part of the energy
distribution.

3. Spatial distribution of trapped ions

When considering the spatial distribution of a thermalized
ensemble of ions in RF traps, the significance of the mutual
ion-ion Coulomb repulsion (space charge) is often quantified
through the value of the the so-called coupling parameter � =
q2/(4πE0akBT ), where the distance a is defined from the
ion density as a = (3n/4π )1/3 [18]. The coupling parameter
thus measures the ratio of the average Coulomb repulsion to
average kinetic energy, and for � � 1 evidently the effects of
space charge can be ignored. Since the present experiments do
not concern thermalized ensembles of ions, a strict evaluation
of � is not meaningful, however, with ion densities of typically
n ∼ 40 cm−3 and mechanical energies of the trapped ion range
up to a few eV, space-charge effects can safely neglected for
the present experiments.

The particle distribution in RF traps has been described and
investigated for thermalized ensembles of ions both for cases
with small coupling parameter (i.e., low ion densities or high
temperature) [11] and for higher coupling parameter (high
densities or low temperature) [18,19]. In particular for multi-
pole traps, spatial profiles (tomography) were first measured
in an octupole trap [20,21] using a laser-induced flourescence
signal from trapped Ba+ ions. Later measurements have
exploited depletion of negative ions by photodetachment
[11,22] and laser-induced dissociation [19,23], similar to this
study.

In the low-density limit, relevant for the comparison to
the present results, recent experiments performed with a
22-pole trap [11] have shown that strong spikelike variations
of the longitudinal ion column density can occur due to
imperfections in the mechanical construction. As seen in Fig. 7,
the distributions observed with the present ring-electrode
trap are essentially homogeneous with only a small vertical
asymmetry. This asymmetry may indeed also result from a
minor misalignment of the two opposing electrodes that forms
the ring structure seen by the ions (see Fig. 11 of Ref. [5] for
a detailed illustration).

The measured column densities are now compared to the
model column density derived from Eq. (45) which assumes
that the ion density is low such that ion-ion interactions can
be neglected. To obtain a model for the measured density ρz,m

at the position (0,yL), the model density ρz must be folded
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FIG. 11. (Color online) Ion column densities at three different
RF amplitudes: (a) V0 = 300 V, (b) V0 = 550 V, and (c) V0 = 700 V.
The black circles represent the experimentally determined column
densities (see also Fig. 7), the dashed lines the column density
modeled by statistical mechanics, and the solid lines the modeled
column density folded by the laser profile and the geometrical
constraint imposed by the end-cap electrode [see Eq. (46)]. The
red curves represent the calculated profiles that provide the best
simultaneous fit to the three measured profiles yielding ηmax =
0.284 ± 0.009 and E0 = 27 ± 10 meV. The blue curves represent
the calculated profiles for ηmax = 0.2 and E0 = 27 meV, while the
green curves represent the calculated profiles for ηmax = 0.4 and
E0 = 27 meV.

with the laser profile, and also the geometrical constraint
imposed by end-cap electrode must be taken into account.
Thus, the model density relevant for comparison with the data
is calculated according to

ρz,m(0,yL) ∝
∫

gy(y − yL)ρz(0,y)H (ycap − |y|) dy, (46)

where H is the Heaviside step function. Figure 11 shows
the three experimental profiles from Figs. 7(d)–7(f) overlayed
with the calculated column densities for three different values
of ηmax and for a low-energy cutoff of E0 = 27 meV. The
calculated profiles were fitted to the experimental ones by
varying ηmax and E0 which were restricted to the same values
for all three profiles. The best fit yields ηmax = 0.284 ± 0.009
and E0 = 27 ± 10 meV, and calculated profiles at these values
are represented by the solid red lines in the figure. As seen,
the experimental and calculated profiles agree to a very high
extent, and the small uncertainty in ηmax obtained from the fit is
reflected in the fact that the model profiles for ηmax = 0.2 (blue
curve) and ηmax = 0.4 (green curve) provide poor descriptions
of the measured profiles for the two largest RF amplitudes.

As mentioned in Sec. IV C, the low-energy cutoff E0 is
introduced since an ion must enter the trap at a very specific
point in time in order to arrive at the trap center with exactly

FIG. 12. (Color online) The goodness-of-fit parameter χ 2 as a
function of the maximum value of the adiabaticity parameter ηmax

and the low-energy cutoff of the energy distribution E0. The black
point indicates with uncertainties the values of E0 and ηmax obtained
from the best fit of the model to the experimental data.

zero energy. Therefore, the probability for trapping ions with
extremely low energy is small. Although in principle ions
could still be trapped initially with zero kinetic energy, minor
jitter in the trap supplies and the Coulomb repulsion between
the ions would prevent ions from staying trapped with zero
kinetic energy. Hence, the existence of E0 is justified, but its
value is more evasive. To examine the correlation between the
low-energy cutoff E0 and ηmax, a contour plot of the goodness-
of-fit parameter χ2 as a function of E0 and ηmax is presented in
Fig. 12. As seen, ηmax decreases with increasing E0 which can
readily be explained: as E0 increases, the low-energy states
are slowly removed thereby shifting the density towards the
outer regions. Consequently, ηmax (which controls the spatial
extent of the ion cloud through the trap depth) must be lowered
in order to keep the same apparent width of the profile. As
already stated, the best fit to the data yields E0 = 27 ± 10
meV and ηmax = 0.284 ± 0.009 which is indicated by the
black point in Fig. 12. Overall, the obtained value of ηmax

is in good agreement with the generally accepted value
of 0.3.

In the first investigations of ion trapping using the injection
mechanism described in Ref. [5], the maximum adiabatic-
ity parameter was estimated from the measured trapping
efficiency to be ηmax = 0.64. This value is in significant
excess of the values of ηmax = 0.3 [2] or 0.36 [16] previously
reported to characterize the stable region of multipole RF traps.
Furthermore, from the model densities presented in Fig. 11,
it is clear that the experimental column densities can not in
fact reflect a maximum adiabaticity parameter of ηmax = 0.64.
Thus, the experimental results indicate a significant energy
exchange between the ions and the oscillating electric fields for
an extended period of time after closing the trap. This energy
exchange provides an overall energy relaxation which finally
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leads to trapping in the region governed by a smaller value of
the maximum adiabaticity parameter around 0.28. However,
the total trapping efficiency reported earlier seems to indicate
that ions initially are trapped with energies corresponding to
ηmax = 0.64.

As already stated, the energy distribution of the trapped ions
P (E) used in the model density is not explicitly measured in
this work, but inferred from simulations. However, it would be
very interesting in a future experiment to probe this distribution
since it would allow us to deduce more precisely a value for
ηmax for the present trap. It might seem straightforward already
at this point to probe the energy distribution by using the
quadrupole mass filter as a retarding energy analyzer as done
in similar experimental setups (see, for example, Ref. [24]). In
the present setup, the longitudinal RF field at the trap entrance
modulates the energy distribution of the ions as they enter the
trap and, similarly, the longitudinal RF field at the trap exit
might affect the energy distribution of the extracted ions. It
is therefore not obvious that the energy distribution measured
by using the quadrupole mass filter would be representative
of the ion energy distribution in the trap. Another approach
could be to probe the ion energy distribution inside the trap
by Doppler spectroscopy of, e.g., trapped Ca+ or Mg+ ions,
where the photoabsorption intensity could be monitored by
fluorescence detection, which we indeed wish to implement in
future studies.

A. Time-resolved mass spectrometry

In Figs. 5(a) and 6 we showed the experimentally deter-
mined temporal evolution of the number of parent and daughter
ions during trapping and after the presence of a laser pulse at a
selected time. Viewed together, the depletion signal observed
for parent ions (Cl2−) [Fig. 5(a)] and the corresponding gain
in the dissociation products (Fig. 6) illustrate an important
methodological possibility of the present setup, namely, the
ability to perform time-resolved mass spectrometry where both
the loss of the parent ions as well as the gain of daughter ions
can be monitored.

For the present simple Cl2− system, the total laser-induced
loss of parent ions and the corresponding gain of daughter
ions agrees when measured immediately after exposure to light
(see Sec. III B). For laser-induced processes that are prompt
relative to the round-trip time in the RF trap (typically 20 μs),
this correspondence allows us to deduce not only the total
absorption cross section for the parent ions (see Sec. V B), but
also reliable fraction branching ratios into channels producing
various daughter ions. This is of relevance to many molecular
ions as generally several dissociation pathways will be open
after photoabsorption.

In future studies, we will explore this possibility of time-
resolved mass spectrometry in particular for molecular ions
irradiated by synchrotron radiation from the ASTRID2 facility
[25]. Under irradiation with energetic ionizing synchrotron
radiation, we expect the present method (see Fig. 2) to
become advantageous since injection of parent ions can be
done efficiently without the use of buffer gas. A possible
relative dense buffer gas would strongly ionize under extreme
ultraviolet (XUV) irradiation providing a high density of
reactive ions in the trap which moreover would alter the

trapping conditions (space charge) and finally could cause
detection problems.

A clear advantage of the present method of time-resolved
mass spectrometry is that the extraction time tE can be set
freely relative to the laser pulse time (tL) allowing us to follow
the evolution of the fragment channels on the microsecond
time scale. This is in contrast to, for instance, another recently
developed method of time-resolved mass spectrometry based
on fast ion beams in a storage ring, where the time resolution
is defined by the ion revolution time in the instrument [26].
Furthermore, high (variable) mass resolution is obtained due
to the extraction of the ions through the QMS, the resolution
of which can be adapted to the studied system. For the present
study of Cl2−, only a poor resolution was applied (see Fig. 3),
giving on the other hand high transmission and thereby shorter
measuring times. Moreover, the current method of time-
resolved mass spectrometry is very sensitive since only a very
few counts per injection (�1) provide sufficient measurable
signal. Especially, very weak fragmentation channels will be
identifiable since the background of daughter ions is generally
small. Here, the spontaneously decaying Cl2− ions from the
ANIS source are probably to be regarded as an exception
or a peculiarity of the production in the sputtering process
[27]. Finally, the decay of the daughter ion signal after
photodissociation shown in Fig. 6 in fact contains information
on the kinetic energy of the trapped ions.

Of course, a general setback of the method is the inability to
detect directly produced neutral fragments and photoelectrons.
However, another potential use of the present setup is to
prepare specific daughter ions based on photofragmentation of
a trapped precursor parent ion. After irradiation of the parent
ions, the produced daughter ions could be extracted through
the QMS and reaccelerated to form a fast beam for further
experiments. The feasibility of this approach naturally relies
on the ability of generating a sufficient number of product ions
for the envisioned experiment.

B. Absolute cross section

In addition to the potential of the present method to
characterize photon-induced molecular reactions in terms of
relative absorption intensity and fragment branching ratios,
scanning of the laser light across the transverse plane of the
trap also allows for determination of absolute cross sections.
This is directly seen from Eq. (17) for the column density at
laser position (xL, yL). Hence, integration of Eq. (17) over the
laser position leads to a closed expression for the cross section
as

σL = 1

Nph

∫ −�NCl2−

N
Cl2−
I (tL)

dxLdyL, (47)

where the right-hand side contains measurable quantities only.
All the quantities in this expression can not be determined in
a single trap loading, as the laser-induced depletion �NCl2−

is obtained essentially as the difference between the number
of trapped Cl2− ions with and without the presence of laser
light. However, as already mentioned, short-term variations in
the number of trapped ions are negligible and do not limit the
determination of the absolute cross section.
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This method is similar to the depletion tomography method
[10,22,28] developed previously to measure absolute cross
sections for photodetachment of anions in a 22-pole trap. In
these studies, the induced change of the observed exponential
decay rate constant of trapped parent ions when applying laser
pulses during trapping was measured across the transverse
plane of the trap. The present method [Eq. (47)] differs on one
central aspect compared to these studies, namely, that it only
requires to measure the relative change [�N

Cl2−
I /N

Cl2−
I (tL)]

of parent (daughter) ion induced by the laser. For each laser
position, this ratio only needs to be measured shortly after
the exposure of the parent ions to the laser light, whereas
the aforementioned method relies on measuring an assumed
exponential decay law of the trapped parent ions for each laser
position. Thus, apart from making no assumptions on the decay
law of trapped parent ions, the method presented here should
also be faster in terms of measurement time.

Furthermore, the column densities obtained in this study
are smooth compared to recent studies in a 22-pole trap [10]
where strong variations across the trap were observed due
to slight imperfections in the mechanical construction [11].
The fact that the variation of the column density is rather
smooth and homogeneous (see Fig. 7) in the present trap
makes scanning with a moderate step size feasible compared
to a profile dominated by sharp structure, where evidently
the step size must be adapted to be much smaller than the
extent of the structures. In the present setup, the ion cloud is
not sensitive to minor modifications of the trapping potential
since the ion ensemble contains ions of energies comparable
to the trap depth. However, if the translational degrees of
freedom are cooled to 10 K as in the aforementioned case
of the 22-pole trap, it can not be excluded that structures in
the column density appear as a result of, for example, minor
mechanical misalignments. Finally, it should be noted that the
determination of absolute cross section using the formalism in
Eq. (47) is most accurate when applied to the depletion signal
[Fig. 5(a)].

Although it is possible to extract an absolute cross section
from the data shown in Figs. 7(c) and 7(f), we refrain
here from stating an actual number since the initial state
distribution of the ion ensemble delivered from the ion source
is unknown and no effort was made here to manipulate or
characterize it.

VI. CONCLUSION

With this study, we have further explored the experi-
mental possibilities arising from the trapping of ions in a
RF trap without the use of a dense buffer gas for initial
ion deceleration. While advantageous in many respects, the
use of dense buffer gas becomes problematic in combi-
nation with ionizing agents such as XUV radiation from
the upcoming ASTRID2 synchrotron radiation facility [25]
for which the present experimental setup is intended to be
used.

We have demonstrated that upon injection with the newly
described mechanism [5], a dilute ion cloud of Cl2− trapped
in the RF field relaxes (cools) within ∼20 ms and after-
wards occupies a volume of the trap consistent with the
range predicted by a maximum adiabaticity parameter of
ηmax ∼ 0.28.

Furthermore, we have shown that the experimental setup
is suited for time-resolved mass spectrometry on fragmenting
molecular ions, and indicated the possibly of absolute-cross-
section measurements with a tomographic method without the
restrictive assumption on the decay law for the trapped parent
ions.

ACKNOWLEDGMENTS

H.B.P. acknowledges support from the Lundbeck foun-
dation. A.S. acknowledges for support from the Carlberg
foundation. Discussions with Professor J. Ulrik Andersen are
greatly appreciated.

[1] W. Paul, O. Osberghaus, and E. Fischer, Forschungsber.
Wirtsch.-Verkehrminist Nordrhein-Westfalen 415, 1 (1958).

[2] D. Gerlich, in State-Selected and State-to-State Ion-Molecule
Reaction Dynamics. Part 1: Experiment, Advances in Chemical
Physics Series, Vol. LXXXII, edited by C.-Y. Ng and M. Baer
(Wiley, New York, 1992), pp. 1–176.

[3] R. Wester, J. Phys. B: At., Mol. Opt. Phys. 42, 154001 (2009).
[4] O. Asvany and S. Schlemmer, Int. J. Mass Spectrom. 279, 147

(2009).
[5] A. Svendsen, L. Lammich, J. E. Andersen, H. K. Bechtold,

E. Søndergaard, F. Mikkelsen, and H. B. Pedersen, Phys. Rev.
A 87, 043410 (2013).

[6] M. Weiss, in Proceedings of CAS School: Fifth General
Accelerator Physics Course, Vol. 94-01, edited by S. Turner
(CERN, Meyrin, Switzerland, 1994), pp. 913–953.

[7] H. Andersen and P. Tykesson, IEEE Trans. Nucl. Sci. 22, 1632
(1975).

[8] J. G. Dojahn, E. C. M. Chen, and W. E. Wentworth, J. Phys.
Chem. 100, 9649 (1996).

[9] E. C. M. Chen and W. E. Wentworth, J. Phys. Chem. 89, 4099
(1985).

[10] P. Hlavenka, R. Otto, S. Trippel, J. Mikosch, M. Weidemüller,
and R. Wester, J. Chem. Phys. 130, 061105 (2009).

[11] R. Otto, P. Hlavenka, S. Trippel, J. Mikosch, K. Singer,
M. Weidemüller, and R. Wester, J. Phys. B: At., Mol. Opt.
Phys. 42, 154007 (2009).

[12] F. Schwabl, Statistical Mechanics (Springer, Berlin, 2006).
[13] H. Yoshida, IAU Symposia 152, 407 (1992).
[14] H. Yoshida, Phys. Lett. A 150, 262 (1990).
[15] SIMION 8.0, Scientific Instrument Services, Inc., Ringoes, NJ.
[16] J. Mikosch, U. Frühling, S. Trippel, R. Otto, P. Hlavenka,

D. Schwalm, M. Weidemüller, and R. Wester, Phys. Rev. A
78, 023402 (2008).

[17] J. Mikosch, U. Frühling, S. Trippel, D. Schwalm,
M. Weidemüller, and R. Wester, Phys. Rev. Lett. 98, 223001
(2007).

[18] C. Champenois, J. Phys. B: At., Mol. Opt. Phys. 42, 154002
(2009).

063410-16

http://dx.doi.org/10.1088/0953-4075/42/15/154001
http://dx.doi.org/10.1088/0953-4075/42/15/154001
http://dx.doi.org/10.1088/0953-4075/42/15/154001
http://dx.doi.org/10.1088/0953-4075/42/15/154001
http://dx.doi.org/10.1016/j.ijms.2008.10.022
http://dx.doi.org/10.1016/j.ijms.2008.10.022
http://dx.doi.org/10.1016/j.ijms.2008.10.022
http://dx.doi.org/10.1016/j.ijms.2008.10.022
http://dx.doi.org/10.1103/PhysRevA.87.043410
http://dx.doi.org/10.1103/PhysRevA.87.043410
http://dx.doi.org/10.1103/PhysRevA.87.043410
http://dx.doi.org/10.1103/PhysRevA.87.043410
http://dx.doi.org/10.1109/TNS.1975.4327952
http://dx.doi.org/10.1109/TNS.1975.4327952
http://dx.doi.org/10.1109/TNS.1975.4327952
http://dx.doi.org/10.1109/TNS.1975.4327952
http://dx.doi.org/10.1021/jp953601z
http://dx.doi.org/10.1021/jp953601z
http://dx.doi.org/10.1021/jp953601z
http://dx.doi.org/10.1021/jp953601z
http://dx.doi.org/10.1021/j100265a035
http://dx.doi.org/10.1021/j100265a035
http://dx.doi.org/10.1021/j100265a035
http://dx.doi.org/10.1021/j100265a035
http://dx.doi.org/10.1063/1.3080809
http://dx.doi.org/10.1063/1.3080809
http://dx.doi.org/10.1063/1.3080809
http://dx.doi.org/10.1063/1.3080809
http://dx.doi.org/10.1088/0953-4075/42/15/154007
http://dx.doi.org/10.1088/0953-4075/42/15/154007
http://dx.doi.org/10.1088/0953-4075/42/15/154007
http://dx.doi.org/10.1088/0953-4075/42/15/154007
http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1103/PhysRevA.78.023402
http://dx.doi.org/10.1103/PhysRevA.78.023402
http://dx.doi.org/10.1103/PhysRevA.78.023402
http://dx.doi.org/10.1103/PhysRevA.78.023402
http://dx.doi.org/10.1103/PhysRevLett.98.223001
http://dx.doi.org/10.1103/PhysRevLett.98.223001
http://dx.doi.org/10.1103/PhysRevLett.98.223001
http://dx.doi.org/10.1103/PhysRevLett.98.223001
http://dx.doi.org/10.1088/0953-4075/42/15/154002
http://dx.doi.org/10.1088/0953-4075/42/15/154002
http://dx.doi.org/10.1088/0953-4075/42/15/154002
http://dx.doi.org/10.1088/0953-4075/42/15/154002


TRAPPING IONS FROM A FAST BEAM IN A RADIO- . . . PHYSICAL REVIEW A 89, 063410 (2014)

[19] T. Majima, G. Santambrogio, C. Bartels, A. Terasaki,
T. Kondow, J. Meinen, and T. Leisner, Phys. Rev. A 85, 053414
(2012).

[20] R. D. Knight and M. P. Prior, J. Appl. Phys. 50, 3044 (1979).
[21] H. Schaaf, U. Schmeling, and G. Werth, Appl. Phys. 25, 249

(1981).
[22] S. Trippel, J. Mikosch, R. Berhane, R. Otto, M. Weidemüller,

and R. Wester, Phys. Rev. Lett. 97, 193003 (2006).
[23] P. H. Hemberger, N. S. Nogar, J. D. Williams, R. G. Cooks, and

J. E. P. Syka, Chem. Phys. Lett. 191, 405 (1992).
[24] K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83, 166

(1985).

[25] N. Hertel and S. V. Hoffmann, Synch. Radiat. News 24, 19
(2011).

[26] K. Støchkel, U. Kadhane, J. U. Andersen, A. I. S. Holm,
P. Hvelplund, M.-B. S. Kirketerp, M. Koefoed-Larsen, M. K.
Lykkegaard, S. B. Nielsen, S. Panja, and H. Zettergren, Rev.
Sci. Instrum. 79, 023107 (2008).

[27] J. Fedor, K. Hansen, J. U. Andersen, and P. Hvelplund, Phys.
Rev. Lett. 94, 113201 (2005).

[28] T. Best, R. Otto, S. Trippel, P. Hlavenka, A. von
Zastrow, S. Eisenbach, S. Jezouin, R. Wester, E. Vigren,
M. Hamberg, and W. D. Geppert, Astrophys. J. 742, 63
(2011).

063410-17

http://dx.doi.org/10.1103/PhysRevA.85.053414
http://dx.doi.org/10.1103/PhysRevA.85.053414
http://dx.doi.org/10.1103/PhysRevA.85.053414
http://dx.doi.org/10.1103/PhysRevA.85.053414
http://dx.doi.org/10.1063/1.326380
http://dx.doi.org/10.1063/1.326380
http://dx.doi.org/10.1063/1.326380
http://dx.doi.org/10.1063/1.326380
http://dx.doi.org/10.1007/BF00902978
http://dx.doi.org/10.1007/BF00902978
http://dx.doi.org/10.1007/BF00902978
http://dx.doi.org/10.1007/BF00902978
http://dx.doi.org/10.1103/PhysRevLett.97.193003
http://dx.doi.org/10.1103/PhysRevLett.97.193003
http://dx.doi.org/10.1103/PhysRevLett.97.193003
http://dx.doi.org/10.1103/PhysRevLett.97.193003
http://dx.doi.org/10.1016/0009-2614(92)85400-5
http://dx.doi.org/10.1016/0009-2614(92)85400-5
http://dx.doi.org/10.1016/0009-2614(92)85400-5
http://dx.doi.org/10.1016/0009-2614(92)85400-5
http://dx.doi.org/10.1063/1.449799
http://dx.doi.org/10.1063/1.449799
http://dx.doi.org/10.1063/1.449799
http://dx.doi.org/10.1063/1.449799
http://dx.doi.org/10.1080/08940886.2011.550553
http://dx.doi.org/10.1080/08940886.2011.550553
http://dx.doi.org/10.1080/08940886.2011.550553
http://dx.doi.org/10.1080/08940886.2011.550553
http://dx.doi.org/10.1063/1.2884121
http://dx.doi.org/10.1063/1.2884121
http://dx.doi.org/10.1063/1.2884121
http://dx.doi.org/10.1063/1.2884121
http://dx.doi.org/10.1103/PhysRevLett.94.113201
http://dx.doi.org/10.1103/PhysRevLett.94.113201
http://dx.doi.org/10.1103/PhysRevLett.94.113201
http://dx.doi.org/10.1103/PhysRevLett.94.113201
http://dx.doi.org/10.1088/0004-637X/742/2/63
http://dx.doi.org/10.1088/0004-637X/742/2/63
http://dx.doi.org/10.1088/0004-637X/742/2/63
http://dx.doi.org/10.1088/0004-637X/742/2/63



