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Control of two-photon double ionization of helium with intense chirped attosecond laser pulses
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We study the two-photon double-ionization process of the helium atom by solving numerically the
nonrelativistic, time-dependent Schrödinger equation in its full dimensionality. We investigate with intense
chirped attosecond laser pulses of 23.5-nm wavelength the two-photon absorption near and above the sequential
threshold. We show how it is possible by adjusting the chirp parameter to control the electronic transitions
inside the atom, thereby reinforcing or weakening the ionization process. Attosecond chirped laser pulses offer a
promising way to probe and control the two-photon double ionization of helium when compared with attosecond
transform-limited pulses.
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I. INTRODUCTION

Many studies have been conducted in past years on the
two-photon double ionization (TPDI) of the helium atom,
which is the benchmark system for investigating the electronic
correlations (see [1–9] and references therein). The majority
of studies have focused on the use of a transform-limited laser
pulse to trigger the TPDI that could take place as a direct or a
sequential ionization process.

In this paper, we used chirped laser pulses instead of
transform-limited pulses (unchirped pulses) to investigate the
TPDI in helium. The characteristic attribute of chirped laser
pulses is their selectivity that has permitted the control of the
population transfer in atoms [10–12]. Other recent studies have
stressed the efficiency of these pulses to measure attosecond
time-scale electron dynamics [13], to extend the cutoff of
above-threshold ionization spectra [14], or to induce a red
or blue shift of some emitted harmonics [15,16]. We show
in the present paper the opportunity that chirped pulses offer
to achieve TPDI yield control. To the best of our knowledge,
the TPDI by chirped laser pulses in helium has only been
addressed by Lee et al. [17], where the authors pointed out the
sensitivity of the process to the chirp parameter of intense
attosecond laser pulses of 13.5-nm wavelength. We report
here the first study that demonstrates the efficiency of chirped
laser pulses to control the transfer of the population to the
double-continuum electronic states, thereby reinforcing or,
conversely, weakening the ionization process.

We numerically investigate the TPDI process in helium
under intense chirped attosecond laser pulses of 23.5-nm
wavelength, which corresponds to the 34th harmonic of an
800-nm wavelength Ti-sapphire laser. Our time-independent
theoretical approach to calculate the whole atomic spec-
trum is based on a discretization technique using B-spline
functions [18,19]. The approach we used to solve the time-
dependent Schrödinger equation is based on a spectral method
of configuration interaction type that gives very accurate
results and incorporates electron-electron correlations with a
high degree of accuracy [3]. At the end of the laser-atom inter-
action, we extract the population of the doubly ionized states
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by projecting the total electronic wave function onto Coulomb
states. After that, the calculation of physical quantities neces-
sary to analyze the behavior of the two active electrons under a
chirped pulse, such as the total two-photon double-ionization
probability and the energy distribution of ejected electrons,
is straightforward. We determine the effect of the sign and
the magnitude of the chirp parameter on these quantities. In
contrast with transform-limited pulses, chirped laser pulses are
of time-dependent frequency. The latter increases or decreases
with time depending on the sign of the chirp, which offers
the possibility to control the electronic transitions inside the
atom. The amount of the population transferred to the double
continuum can then be enhanced or decreased, enabling us to
achieve a double-ionization yield control.

Atomic units (me=�=e=1) are used throughout the paper
unless otherwise stated.

II. THEORETICAL APPROACH

A. Atomic structure calculations

The full electronic eigenvalue problem, i.e., the time-
independent Schrödinger equation (TISE) for the helium atom,
is given by

HψL,M
n (r1,r2) = Enψ

L,M
n (r1,r2). (1)

The nonrelativistic Hamiltonian H reads as follows:

H = −1

2
�1 − 1

2
�2 − Z

r1
− Z

r2
+ 1

|r1 − r2| , (2)

where r1 and r2 are the distances from the nucleus of charge
Z = 2 to electrons 1 and 2, respectively. For a given total angu-
lar momentum L and projection M , the stationary wave func-
tion ψL,M

n (r1,r2) is expanded on a basis of two-electron config-
urations that are products of one-electron functions as follows:

ψL,M
n (r1,r2) = A

∑
α=i,j,l1,l2

cL,M
n,α

Bk
i (r1)

r1

Bk
j (r2)

r2
YL,M

l1,l2
(1,2),

(3)

where A is the antisymmetrization operator, and l1(l2) is
the angular momentum of electron 1(2). The angular part of
ψL,M

n (r1,r2) is described by the bipolar spherical harmonic
function YL,M

l1,l2
(1,2), while the radial part is interpolated by
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a product of B-spline functions of order k [18,19]. The Nb

B-spline function basis set is defined on the radial interval
(box) I =[0,Rmax]. Each ith B-spline Bk

i (r) of this set is
composed of polynomial pieces of degree k − 1 and is only
nonzero in a well-defined limited radial segment of I . With
this interesting property, there are no large cancellations
between contributions of the various B-spline functions, which
insures the numerical stability. By substituting Eq. (3) in
Eq. (1) and by projecting on every B-spline product, the TISE
is reduced to a system of linear equations that can be written
in the matrix form as HC=ESC. The resulting Hamiltonian
matrix H and the positive overlap matrix S are symmetric and
banded. The straightforward diagonalization of Eq. (1) gives
the eigenenergies En and the expansion coefficients cL,M

n,α of
all bound and continuum electronic states. More details about
the application of B-spline functions in the calculation of the
unperturbed electronic structure of two- and three-electron
atomic systems are given in [4–6] and references therein.

B. Time-dependent calculations

Within the electric dipole approximation, the time-
dependent Schrödinger equation (TDSE) is given, in the
velocity gauge, by

i
∂

∂t
�(r1,r2,t) = [H + (p1 + p2) · A(t,ξ )]�(r1,r2,t). (4)

The chirped laser pulse is assumed to be polarized along the z

axis, with its vector potential given by

A(t,ξ ) = A0f (t) sin[ω(t,ξ )t]ez, (5)

with ξ as the dimensionless chirp parameter. A0 is the peak
amplitude, which is related to the laser pulse central frequency
ω0 and the peak intensity I0 by

A0 = 1

ω0

√
I0

Ia.u.

, (6)

where Ia.u. = 3.51 × 1015 W/cm2 is the atomic unit of intensity.
We consider the laser pulse having a Gaussian time envelope
f (t) identical to that given in [17,20]:

f (t) = exp

[
−2 ln 2

t2

τ 2
0

]
. (7)

We note that the chirp filters used in laser pulse generation
techniques are implemented by means of dispersive optical
systems. Upon transmission through a filter characterized
by a b chirp coefficient, an initially transform-limited pulse
(ξ = 0) becomes chirped, i.e., with frequency ω(t,ξ ) that
varies in time and depends on the chirp parameter ξ = b/τ

2

0 .
(For the experimental details, see [20].) τ0 is the FWHM
duration of the transform-limited pulse. The generated pulse
is said to be up-chirped if ξ is positive and down-chirped if
ξ is negative [20]. Its instantaneous frequency ω(t,ξ ) and its
frequency bandwidth �ω are given, respectively, by

ω(t,ξ ) = ω0 + 4 ln 2
ξ t

τ 2
0

, (8)

�ω = 4 ln 2
√

1 + ξ 2

τ0
. (9)

The time-dependent total wave function is expanded on the
basis of the field-free atomic eigenstates, normalized to unity:

�(r1,r2,t) =
Ns,Lmax∑
α≡n,L

Cα(t)ψL,M
n (r1,r2). (10)

By substituting Eq. (10) into Eq. (4), we obtain a set of coupled
integro-differential equations, which we solved using an
explicit fifth-order Runge-Kutta numerical method. Electron-
electron correlations are included during the integration of
the TDSE over the total pulse duration. The helium atom He
is considered to be, before its exposure to the pulse, in its
electronic ground state 1s2, which sets the following initial
condition:

�(r1,r2,tinitial) = ψ
L,M=0
1s2 (r1,r2). (11)

The linear polarization of the laser field implies that only
electronic transitions between states of �M = 0 are permitted.
Hence it is assumed in the following that M = 0.

At the end of the laser pulse, the population of a given
stationary state ψL

k1l1k2l2
(r1,r2) in the atomic double continuum

can be obtained by projecting this state on the total wave
function:

P L(Ek1l1 ,Ek2l2 ) = ∣∣〈ψL
k1l1k2l2

(r1,r2)
∣∣�(r1,r2,tf inal)

〉∣∣2
, (12)

where Eki li is the energy of the kili electron. We neglect,
in our calculations of P L(Ek1l1 ,Ek2l2 ), the electron-electron
correlations in the double-continuum state ψL

k1l1k2l2
(r1,r2),

which we approximate by a simple antisymmetrized product of
hydrogenic functions φkl(r)=Rkl(r)Ym

l (θ,φ). We note that this
approximation has proven its efficiency to correctly describe
the general shape of the electron energy distribution resulting
from the two-photon double-ionization process [3]. In this
case, the double-continuum wave function ψL

k1l1k2l2
(r1,r2)

simply reads

ψL
k1l1k2l2

(r1,r2) = A[Rk1l1 (r1)Rk2l2 (r2)YL,M
l1,l2

(1,2)], (13)

with 〈
ψL

k1l1k2l2
(r1,r2)

∣∣ψL
k1l1k2l2

(r1,r2)
〉 = 1 (14)

and [
−1

2
�i − Z

ri

− Eki li

]
φki li (ri)|i=1,2 = 0. (15)

The radial part of Eq. (15) is solved by interpolating Rkili (ri)
with the same B-spline function basis set used to solve Eq. (1).

C. Physical quantities of interest

The last step of the calculations consists of extracting the
following three physical quantities necessary to analyze the
effect of an intense chirped laser pulse on the helium atom. The
first quantity is the total two-photon double-ionization (2ω,2e)
probability that can simply be obtained by summing the
contributions of the (L = 0,l1,l2) and (L = 2,l1,l2) channels:

P (2ω,2e) =
∑

(L=0,2,k1l1,k2l2)

P L(Ek1l1 ,Ek2l2 ). (16)

The second quantity is the electron energy distribution of
both ejected electrons of energy Ek1l1 and Ek2l2 , which can
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be extracted as follows:

d2P L(Ek1l1 ,Ek2l2 )

dEk1l1dEk2l2

= ρ
(
Ek1l1

)
ρ
(
Ek2l2

)
P L

(
Ek1l1 ,Ek2l2

)
, (17)

where ρ(Eki li ) is the density of states in the kili contin-
uum [3,18]. And finally, the third is the distribution of a single
ejected electron of energy Ek1l1 in the atomic double continuum
that can readily be calculated as follows:

dP L(Ek1l1 )

dEk1l1

=
∑
Ek2 l2

ρ
(
Ek1l1

)
P L

(
Ek1l1 ,Ek2l2

)
. (18)

III. RESULTS AND DISCUSSION

We consider in our calculations a set of Nb = 50 B-splines
of order k = 7 defined on the radial box [0,Rmax = 50] atomic
units (a.u.). We expand the stationary electronic wave function
[see Eq. (3)] on a basis of (L,l1,l2) combination terms, where
the l1 and l2 angular momenta (0 � l1,l2 � 3) couple to
total angular momentum 0 � L � 3. The convergence of our
numerical results has been checked by increasing the number
of B-splines, the radial box size, and the number of angular
momenta. We also checked that the results of the numerical
integration of TDSE are gauge independent.

Before we present our study of the TPDI process by a
chirped laser pulse of time-dependent frequency, we recall,
as indicated in Fig. 1, how the process takes place as a
direct or a sequential process under a laser pulse of constant
frequency ω0 [3–6]. In order to overcome the He(1s2) double-
ionization potential of 2.903 a.u. (79 eV), ω0 has to be higher
than 1.45 a.u. Direct ionization is the only energetically
possible process to take place if ω0 is insufficiently high
to overcome the He+(1s) ionization potential of 2 a.u.; the
ejected electrons in this case share uniformly the excess energy
Eex = −2.903 + 2ω0 a.u. [1]. For ω0 larger than 2 a.u., both
processes take place but the sequential one will be dominant.
The electron energy distribution exhibits in this case two peaks:
one located at E1 = EHe(1s2) + ω0 − EHe+(1s) a.u., which is

FIG. 1. (Color online) Schematic He energy-level diagram show-
ing the direct and the sequential ionization processes from 1s2.
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FIG. 2. (Color online) Dependence of laser pulse vector potential
A(t,ξ ), spectral profile, and instantaneous frequency ω(t,ξ ) on the
chirp parameter ξ for three cases ξ = 0, ± 1.75. Each laser pulse
has a central frequency ω0 = 1.938 a.u. (52.7 eV), peak intensity
1015 W/cm2, and FWHM duration τ0 = 460 asec.

the energy of the ejected electron after the absorption of the
first photon by He; and the second located at lower energy
E2 = EHe+(1s) + ω0 a.u., resulting from the ionization of the
He+ by the absorption of the second photon.

In our investigation, we trigger the TPDI process by
exposing the atom to a laser pulse [see Eq. (5)] of 23.5-
nm wavelength (ω0 = 1.938 a.u.), a peak intensity of 1015

W/cm2, and a FWHM duration of τ0 = 460 asec. Figure 2
depicts the dependence of laser pulse vector potential A(t,ξ ),
spectral profile, and instantaneous frequency ω(t,ξ ) on the
chirp parameter ξ , as shown, for example, for ξ = 0, ± 1.75.
For ξ = 0, the laser pulse is a transform-limited pulse that
keeps its frequency constant with time, in contrast with an
up-chirped (down-chirped) pulse with a positive (negative)
value of ξ that sees its instantaneous laser frequency increases
(decreases) with time. We present in Fig. 3 the total atomic
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Chirp parameter ξ

0.0010
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P(
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FIG. 3. Total two-photon double-ionization probability
P (2ω,2e) as a function of the chirp parameter ξ .
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two-photon double-ionization probability P (2ω,2e) obtained
with Eq. (16) by the transform-limited pulse and chirped laser
pulses of ξ values ranging from −1.75 to +1.75. Figure 3
clearly indicates the sensitivity of the TPDI process to the sign
of ξ . The discrepancy between the P (2ω,2e) obtained for each
positive and negative ξ becomes increasingly pronounced by
strengthening the chirp. An up-chirped laser pulse, in contrast
with a down-chirped laser pulse of the same peak intensity and
the same chirp magnitude |ξ | (the same frequency bandwidth),
clearly boosts the ionization process. With an up-chirped laser
pulse of a strengthened chirp of ξ = +1.75, the P (2ω,2e) is
more than 3 times higher than with ξ = −1.75, as depicted
in Fig. 3. The right adjustment of the chirp parameter, as
demonstrated by the results, could be indeed an effective means
for achieving TPDI yield control in the He atom.

The sensitivity of P (2ω,2e) to the chirp parameter results
directly from the time and the chirp dependence of the
instantaneous frequency ω(t,ξ ). As we can see in the insert
of Fig. 2, the ω(t,ξ ) of a chirped laser pulse varies differently
in time, depending on the sign of the chirp. In this case,
the frequency of the second absorbed photon by the atom
will differ from that of the first photon, which will dictate
whether the TPDI will be reinforced or weakened. For a
better understanding of how the chirp has an effect on the
TPDI process, we looked at the results of the electron energy
distribution of both ejected electrons of energy E1 and E2

and the single electron energy distribution [see Eqs. (17)
and (18)] of the He atom exposed to the transform-limited pulse
(ξ = 0) and the up- and down-chirped laser pulses used before.
Figure 4 shows the results obtained in the dominant channel
(L = 2,l1 = 1,l2 = 1) when ξ = 0 and ξ = ±1.75. The TPDI
process by the transform-limited pulse is expected to occur
in the “far” direct regime near the region of the sequential
ionization threshold, as the absorbed photons have in this case
the constant frequency of ω0 = 1.938 a.u., which is close to
the He+ ionization threshold of 2 a.u. The electrons exposed
to such laser frequency do not have to interact strongly in
order to overcome the attraction of the nucleus; hence the
sequential process takes over the direct one, as it is clearly
indicated in Fig. 4(a). Here, a first absorbed photon ejects
one of the two electrons, creating the residual He+ ion that
immediately relaxes into its ground state 1s. Although, in
this particular case, a second photon does initiate the second
step of the sequential process, it is of insufficient energy
to eject the electron of He+ well beyond the He double-
ionization threshold, which results rather in populating the
He+ Rydberg states and less the double-continuum electronic
states. Figure 4(a) shows that the single electron energy
distribution exhibits, in this case, two maxima at the edges
(U-shaped structure); the first ionized electron absorbs most
of the interaction energy, 〈1s2| 1

|r1−r2| |1s2〉, which is converted
into kinetic energy, while a minimum is transferred to the other
electron. With any of the down-chirped laser pulses we used,
we observed that the sequential two-photon absorption still
holds. However, the TPDI process is considerably weakened
compared to when the atom is under the transform-limited
pulse. In this case, as the ω(t,ξ ) of a down-chirped pulse
decreases linearly with time and gets lower than ω0 in the
second half of its duration, the absorption of the second
photon enhances the population of the He+ excited states,

FIG. 4. (Color online) (Right) Single electron energy distribution
(dP/dE) as a function of ejected electron energy. (Left) Contour
plots of the electron energy distribution of both ejected electrons of
energies E1, E2 in the dominant channel (L = 2,l1 = 1,l2 = 1) for
ξ = 0 and ±1.75.

which weakens the double-ionization yield far more than
in the previously studied case. The general shape of the
electron energy distribution for all negative ξ , as is shown, for
example, in Fig. 4(b) for ξ = −1.75, is of a flattened structure.
The results indicate that the double continuum is much less
populated here, which explains the decrease of P (2ω,2e) when
He is exposed to down-chirped pulses compared to when it is
under the transform-limited pulse (see Fig. 3). In the above
studies, the sequential two-photon absorption is dominant,
as each electron absorbs a photon and attempts to escape
independently from the other, which causes an unequal energy
sharing between them. However, the control of the repartition
of the energy between the ejected electrons by a down-chirped
laser pulse could be possible by adequately adjusting its chirp
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magnitude |ξ |. The more we strengthen the latter, the more we
make ω(t,ξ ) increasingly lower than ω0. With |ξ | � 1.75, we
can reach the “deep” direct regime, 1.45 � ω(t,ξ ) � 1.65;
the TPDI process will then take place mainly as a direct
process. The electrons that will strongly interact in this case to
overcome the attraction of the nucleus will be ejected almost
simultaneously, sharing the excess energy uniformly.

The response of the atom to an up-chirped laser pulse
of +ξ of the same peak intensity and spectral width than a
down-chirped pulse of −ξ is quite different. We observe in
Fig. 4(c) that for ξ = +1.75, the electron energy distribution
reaches its maximum at two distinguished peaked areas
separated by a deep valley. Under an up-chirped laser pulse,
one electron takes the majority of the available energy via the
ionization of He(1s2) by the absorption of the first photon. The
instantaneous frequency ω(t,ξ ), in this case, keeps increasing
as the pulse progresses. By strengthening the chirp, the
frequency reaches values ω(t,ξ ) � 2 a.u. at the beginning of
the second half duration of the pulse, which makes the second
absorbed photon acquire enough energy to eject the other
electron beyond the He ionization threshold, thus populating
the double-continuum states much more. In contrast with a
down-chirped pulse, the TPDI process is here clearly rein-
forced, which explains the significant increase of P (2ω,2e)
when the atom is under up-chirped pulses (see Fig. 3).

IV. CONCLUSION

We have investigated the interaction of the two active
electrons of the helium atom with chirped attosecond laser
pulses of 23.5-nm wavelength and an intensity of 1015

W/cm2. The electronic correlations have been included in

the initial ground state and during the numerical solution of
the time-dependent Schrödinger equation. We have projected,
at the end of the laser pulse, the total electronic wave
function onto double-continuum states in order to extract
the physical quantities of interest. The double continuum
has been approximated by an antisymmetrized product of
hydrogenic functions. We have analyzed the effect of the
sign and the magnitude of the chirp on the two-photon
double-ionization probability and the energy distributions of
ejected electrons. The findings of the presented study have
demonstrated that chirped laser pulses are promising tools that
offer the possibility to achieve a two-photon double-ionization
yield control. Instead of transform-limited pulses, chirped laser
pulses are of time-dependent frequency that depends on the
chirp parameter. The appropriate adjustment of the latter is
the key to successfully achieve the control of the way the two
active electrons will leave the atom and how much energy each
will acquire. Our numerical study could easily be applicable
to any multielectron atom having two valence electrons. We
will assume in this case that the laser field will not influence
the core electrons. We hope that the findings of this study will
guide future experiments on the control of atomic ionization
by chirped attosecond laser pulses.
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