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Non-Markovian behavior of ultrafast coherent ionization dynamics in a crystal exposed to a seeded
free-electron-laser pulse
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We investigate the ionization dynamics of a crystal structure driven by ultrafast coherent x-ray pulses of
moderate to high intensities for excitations where dipole-allowed, single-photon ionization dominates. Using a
simple model of the crystal, we demonstrate that quantum coherences may already play an important role at
moderate pulse intensities, leading to qualitatively novel features which cannot be described by rate equations. In
particular, the ionization may exhibit a minimum as a function of the pulse duration, where the ionization drops
to almost zero, although during the pulse a noticeable fraction of the electrons is promoted to unbound states.
For higher intensities, the qualitative deviations between the coherent quantum-mechanical treatment and the
rate description is even more pronounced. In particular, due to the presence of quantum-mechanical coherences,
the full theory predicts, even for the single-photon transitions to a continuum of free-electron states, a Rabi-type
behavior similar to what is known for two-level systems.
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I. INTRODUCTION

The availability of large-scale free-electron-laser (FEL)
facilities all over the world, e.g., Free electron LASer (FLASH)
in Germany [1], Linac Coherent Light Source (LCLS) in
California [2], SPring-8 Angstrom Compact free-electron
LAser (SACLA) in Japan [3], and FERMI in Italy [4], as
high-brilliance ultrafast xuv and x-ray sources provides the
tools needed to explore the electron motion on a time scale of
femtoseconds. Triggered by these advances, experimental and
theoretical developments have been pushed forward to study
phenomena induced by ultrashort light-matter interaction
mediated by FEL pulses [5–10].

So far, recent experiments could often be well described by
rate equations [11,12] which involve a Markov approximation.
This approximation neglects memory effects reflecting the
electronic coherences that are built up by the pulse. One reason
for the success of rate descriptions is the presence of fast
relaxation mechanisms on a time scale of a few femtoseconds
that suppress coherent electron dynamics [13,14]. Examples
are the Auger decay mediated by the electron-electron inter-
action and the fluorescence resulting from the electron-light
coupling. Furthermore, the creation of the pulses in FELs by
self-amplified stimulated emission (SASE) introduces strong
statistical fluctuations [15], which may mask signatures of
coherent or non-Markovian dynamics. Even measuring the
pulse profile of ultrafast x-ray pulses is a demanding task,
which has been achieved only recently [16]. Although recent
theoretical studies of the atomic ionization dynamics indicate
that non-Markovian dynamics may become of importance
at high intensities [17,18], the experimental observation of
coherent phenomena in the ionization dynamics is still a chal-
lenging task. Nevertheless, recent experiments [19] confirmed
a theoretical prediction [20] that the multipeak structure due
to coherent Rabi oscillations between two resonantly driven
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bound states can still be visible as an additional broadening
of the Auger electron spectrum after the statistical averaging
introduced by SASE excitation.

A major obstacle for these experiments has been the
sufficient energetic isolation of the resonantly driven transi-
tion [19,21]. This problem is particularly severe for unseeded
pulses that, e.g., at LCLS exhibit a bandwidth of 0.5%–1.0%
of the photon energy [10]. With up-to-date seeding techniques,
pulse durations below 1 fs [22,23] and a high stability [4,24,25]
are within reach. Nearly transform-limited femtosecond pulses
that become available with these techniques provide a band-
width of only a few electronvolts, which is an order of
magnitude smaller than the bandwidth of typical unseeded
pulses, thus paving the way toward direct investigations of
coherent signatures in the ionization dynamics.

In this paper, we shall discuss coherent phenomena in the
ionization dynamics evoked by strong, coherent, ultrashort
x-ray laser pulses in a crystal. We focus mostly on scenarios
where slow free electrons are created. Although we consider a
situation where direct single-photon ionization is dominant
and thus the conditions are favorable for the application
of rate equations, we find qualitative deviations from the
coherent quantum-mechanical treatment already at moderate
intensities. At high intensities, the time evolution strongly
resembles Rabi oscillations, even though we are not dealing
with the classical Rabi scenario where two discrete states are
resonantly coupled by a laser. Instead, the radiation couples a
narrow band of initially occupied orbitals with the states in the
continuum just above the ionization threshold. In particular,
our studies show that the coherent Rabi-type dynamics may
strongly reduce the ionization. Rate equations completely fail
to account for these dynamical features.

II. THEORY

A. Equation of motion

A widely used approach to describe the ionization from
core shells in many-atom systems, such as macromolecules
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or solids, is to calculate ionization rates for the constituent
atoms, thereby treating the atoms as independent [26,27].
In a crystal the leading order correction to this picture of
noninteracting atoms is to replace the atomic by a lattice
periodic potential Vperiodic. Whether or not further corrections,
such as many-electron effects resulting from electron-electron
interactions, are of importance depends on the specific system
and on the physical quantity to be studied. For example, it
is well known that Coulombic correlations play a decisive
role for the enhanced double ionization of helium in strong
infrared fields [28–30]. On the other hand, calculations of the
total ionization dynamics via a resonant intermediate state
for a similar system with and without accounting for the
electron-electron interaction agreed qualitatively for most of
the predicted dependencies, i.e., the differences were restricted
to quantitative changes that, although noticeable, did not affect
the overall physical picture [18]. Here we present a model
study where we concentrate on the short time dynamics of
the ionization process itself, accounting for the lattice periodic
potential but neglecting any further many-particle effects. Our
main interest is the dynamics that takes place during the pulse,
i.e., in the fully coherent regime, and we focus on ionization
processes that generate slow electrons that within 1 fs do hardly
reach the neighboring atom. Thus impact ionization, which in
a first step requires the acceleration of an electron that then
ionizes a neighboring atom, will be of minor importance. The
model Hamiltonian that describes the interaction of the crystal
with an external coherent laser reads

H =
∑

j

1

2m

(
�

i
�∇j + e �A( �xj ,t)

)2

+ Vperiodic(�xj ), (1)

where �A is the vector potential of the radiation field and m is the
free-electron mass. This Hamiltonian can be split according to

H = H0 + Hfield (2)

into a field-free part H0 and the field interaction part Hfield.
Diagonalizing H0 yields the band structure εn�k and the
corresponding Bloch states |ψn�kσ 〉 with band index n, wave
vector �k, and spin σ , respectively.

Since we intend to discuss coherent phenomena, we
consider seeded FEL pulses that are well described by a
classical field. In addition to disregarding the quantum nature
of the laser field, we also assume a single well-characterized
envelope free of random fluctuations. We note that for SASE
pulses the situation would be different, despite the high photon
numbers of >1011 [31], which are in favor of a classical
description. Due to the lack of coherence, which results from
the chaotic phases that occur in SASE pulses, photoionization
cross sections are expected to undergo strong fluctuations near
resonances [32].

In order to describe the dynamics of our model system, we
set up equations of motion for the reduced density matrix:

�nm(�k,�k′) := 〈c†
n�kσ

cm�k′σ 〉, (3)

where c
†
n�kσ

and cn�kσ are the creation and annihilation operators
of an electron in a Bloch state |ψn�kσ 〉. The spin indices are
omitted on the left-hand side of Eq. (3), since we shall discuss
only situations where all density matrices are spin independent

for all times. The Heisenberg equations for the operators
c
†
n�kσ

and cn�kσ generate a closed set of equations of motion

for �nm(�k,�k′) because the Hamiltonian, Eq. (2), comprises
only single-particle contributions. We assume that initially
the system is in its ground state, which implies that initially
�nm(�k,�k′) is diagonal. The corresponding equations of motion
are given by

i�
d

dt
�nm(�k,�k′)

= (εm�k − εn�k′)�nm(�k,�k′) +
∑
�k′′,ñ

[Wmñ(�k′,�k′′)�nñ(�k,�k′′)

−W ∗
nñ(�k,�k′′)�ñm(�k′′,�k′)], (4)

where Wnn′ (�k,�k′) := 〈ψn�kσ |Hfield|ψn′ �k′σ 〉.

B. Specification of the crystal model

Since the goal of our work is to demonstrate the importance
of coherent effects and not the study of a given specific crystal,
we consider a simple Kronig-Penney potential in a single
spatial dimension that is typically a good starting point for
a qualitative description of solid-state properties [33]. In this
model the periodic potential is defined as

Vperiodic(x) =
{−V0, if x ∈ ⋃

n∈Z [−a + nd,a + nd]
0, else .

(5)
Note that the zero of energy is put at the top of the

core potential, such that states with positive energies de-
scribe electrons that are still within the solid but typically
have enough energy to leave the crystal once they reach the
boundaries [34]. In this sense we shall refer to these electrons
as free electrons. The occupation of free-electron states at long
times after the pulse that drives the excitation is gone can be
regarded as a measure of the total ionization induced by the
pulse. Secondary processes, e.g., electron-electron collisions
and Auger decay, are likely to generate further free electrons
at longer time scales, depending on the distribution of free
electrons induced by the laser pulse.

One-dimensional soft core potentials have been used
successfully to model the ionization dynamics of atomic
systems like helium and lithium [17,18,35], as well as of
solids where the Mathieu or the Kronig-Penney potential have
been used [33]. The Kronig-Penney model guarantees that the
corresponding low-energy Bloch states are strongly localized
near the core positions such that the electron density decays
exponentially between the cores. A similar behavior is known
for 3d Coulomb systems.

For numerical simulations, we choose the core-core dis-
tance d =5 a.u. and define the Kronig-Penney model by the
parameters for the width of an individual rectangular potential
barrier of a=1 a.u. and its depth V0 =6 a.u. The resulting band
structure is shown in Fig. 1(a), where k is measured in units
of the length of the reciprocal lattice vector of minimal length
g= 2π

d
. As expected, the lowest bands have a rather small width

[hardly seen on the scale of Fig. 1(a)]. The electron density
corresponding to these Bloch waves is strongly localized at the
cores. This is illustrated in Fig. 1(a) for the example of the k=0
state of the lowest band (nb =1), where the real-space wave
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FIG. 1. (Color online) (a) Band structure of the Kronig-Penney
model for the parameters chosen in Sec. II B, where εnk denotes the
energy of a state in the nbth bound band with wave vector k or the
nf th free band, respectively. The eigenstates at k=0 in real space,
i.e., ψnk=0(x), of the respective band are outlined in the background.
(b) Transition matrix elements for nb →nf transitions. As an
example, for a bound-bound transition the results for the 1b → 2b

transition are also shown.

function is displayed in the background of the corresponding
band over the range of a single-lattice cell. With our choice of
zero energy, a negative energy implies that the electron does
not have sufficient energy to escape from the core potential.
We shall refer to such bands as bound bands and label them
with band indices nb ∈ N.

For bands with positive energies, the character of the
orbitals changes and now the electron density between the
cores is significant, as expected for free electrons. This can be
seen in Fig. 1(a), where the k=0 orbitals are plotted. Bands
with positive energies corresponding to free electrons will be
labeled with band indices nf ∈ N in the following.

Note that the electron spectrum has gaps also for positive
energies, even far above the ionization threshold. This behavior
is expected for any periodic 1d potential, because for electron
energies much higher than the depth of the core potential, the
electrons can be reliably described in the model of quasifree
particles in a periodic potential. For this limiting case it is
known from standard textbook discussions that in each band at
the zone boundary a gap opens proportional to the coefficients
V±g of the period potential lattice vector g with minimal
length. For a 3d potential this analysis applies as well to any
given direction in reciprocal space. However, as the energy
at the zone boundary depends on the direction, there might
not be gaps in the density of states anymore. But also in this
case typically van Hove singularities appear. The resulting
enhanced density of states resembles the situation just above
such a gap in 1d. Thus we expect our 1d model to capture
essential properties of realistic systems at least qualitatively.
In particular, the feature that the interaction with the periodic

lattice leaves a trace also in the density of free-electron states
is not an artefact of the 1d model.

We assume that initially the band with lowest energy is
fully occupied while all other bands are empty. Our numerical
studies presented below concentrate on excitations where the
laser frequency is tuned in resonance to transitions from
the lowest band (nb =1) to one of the free-electron bands
nf ∈ {1,2}. For such excitation conditions, the transition from
the lowest band to the free-electron states dominates the
ionization in real systems, even when energetically higher
bands are initially occupied. We shall further assume that the
wave vector of the laser can be neglected, which implies that
the transitions between different bands appear at fixed k.

In order to get an overview of the relative importance of
different transitions, we have plotted in Fig. 1(b) momentum
matrix elements for several transitions starting from the lowest
band. These matrix elements determine the corresponding
photoionization cross sections. The largest matrix elements are
found for transitions between bound bands and exhibit only
a marginal k dependence [cf., e.g, the 1b → 2b transition in
Fig. 1(b)]. In contrast, the matrix elements of transitions from
a bound to a free-electron band depend strongly on k. This
k dependence is to a large extent dictated by the symmetry
of the lattice periodic functions un,k(x) in the Bloch solutions
that are either even or odd at k=0. For transitions between
bound states, these functions depend on k only weakly and thus
the resulting transition matrix elements exhibit only a weak k

dependence. For transitions from bound to free-electron bands,
where the corresponding un,k functions have the same parity at
k=0, the selection rules lead to a suppression of the transition
matrix elements in a finite range at around k=0.

C. Connection to rate descriptions

The ionization via a dipole-allowed direct single-photon
process which connects states in continua fulfills all criteria
that are commonly considered to justify the applicability of
a rate equation description. One of the goals of the present
paper is to show that even under these favorable conditions, rate
approaches come to their limits when the pulses are very strong
and/or the pulse duration is short. In order to make explicit
the connection between the full Schrödinger theory and the
rate equation limit, and for later reference, we shall shortly
summarize the main steps needed to derive rate equations
starting from our equations for density matrices. We restrict
the discussion to the 1d version of the general equations of
Sec. II A and use a vector potential which depends only on
time,

A(t) = A0(t) cos(ω0t), (6)

i.e., we neglect the spatial variation of the amplitude �A0,
which for typical FEL pulses is localized in the range of
micrometers [31] and assume crystals that are smaller than
the laser focus. With these assumptions Eq. (4) simplifies to

i�
d

dt
�nm = (εm − εn)�nm +

∑
j

(Wmj�nj − W ∗
nj�jm), (7)

where the matrix elements are Wnj → Wnj (k) :=
e
m

A(t)〈ψnkσ |p̂|ψjkσ 〉 and �nm := 〈c†nkσ cmkσ 〉. Equation (7)
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exhibits only a parametric dependence on the Bloch wave
vector k that is omitted in the notations. Note that the term
involving A2 disappears from the equation as a consequence
of the spatial homogeneity of the field.

Rate equations for occupation numbers of quantum states,
i.e., for the diagonal elements of the density matrix �nn, are
obtained from the equations of motion for the density matrix
by eliminating the off-diagonal elements. Writing Eq. (7) for
the n=m elements of �nm,

d

dt
�nn =

∑
j

gjn(t) , gjn(t) := 2

�
Im(Wnj�nj ), (8)

we can identify a generation rate gjn(t) for the occupation
of state n which accounts for transitions between states with
quantum numbers j ↔ n. The summation can be restricted to
j �=n because gjj (t) = Im(Wjj�jj )=0. By integrating Eq. (7)
for n �=m with an initial condition limt→−∞ �nm(t)=0, i.e.,
initially only the diagonal elements are nonzero, we obtain

�nm(t) = 1

i�

∫ t

−∞
dt ′eiωnm(t−t ′)

∑
j

[Wmj (t ′)�nj (t ′)

−W ∗
nj (t ′)�jm(t ′)], (9)

where we have introduced the transition frequency ωnm :=
1
�

(εn − εm). In the next step, we neglect contributions from
off-diagonal elements of the reduced density matrix on the
right-hand side of Eq. (9). This can be justified by both a pertur-
bation and a time-scale argument. The perturbation argument
rests upon an iterative approach with a diagonal initial state,
while the time-scale argument makes use of �nm(t) ∝ eiωnmt ,
where ωnm is comparable to the laser frequency and is much
faster than the ionization dynamics, i.e., the time scale of the
occupation numbers.

Inserting the so-simplified Eq. (9) into Eq. (8) and introduc-
ing an auxiliary quantity W̃nj (t) := eiωnj tWnj (t), one obtains
for the generation rate

gres
jn (t) = 2

�2
Re

[
W̃nj (t)

∫ t

−∞
dt ′ W̃jn(t ′)(�jj (t ′) − �nn(t ′))

]
.

(10)

The generation rate gres
jn(t) will therefore be noticeably

distinct from zero on resonance when W̃nj (t) has a contribution
in time that does not average out. Despite the fact that only
occupation numbers are present, the equation of motion,
Eq. (8), with the generation rate, Eq. (10), is not a rate
equation in the conventional sense, since it contains a memory.
Furthermore, it comprises fast oscillations of the laser field that
give rise to off-resonant driving terms. These off-resonant parts
can be eliminated by the replacement

W̃nj (t) → e

2m
A0(t) eiδωnj t 〈ψnkσ |p̂|ψjkσ 〉,

(11)

where δωnj :=
{
ωnj − ω0 for ωnj > 0
ωnj + ω0 for ωnj < 0 ,

which is known as the rotating wave approximation (RWA). In
the following, we will refer to Eq. (10) including the RWA as
a resonant approximation. Thus the resonant approximation
neglects off-resonant contributions while still keeping the

memory. Conventional rate equations are obtained from the
resonant approximation by neglecting the memory, i.e., by
performing the Markov approximation. In Ref. [36] the
Markov limit for the generation rate has been explicitly worked
out for a Gaussian pulse, A0(t) = Ā0 exp(− t2

2τ0
), resulting in

the Markovian generation rate,

gMarkov
jn (t) = (�jj (t) − �nn(t))

2π

�2

∣∣W (0)
nj (t)

∣∣2
S(δωnj ), (12)

where W
(0)
nj (t) = e

2m
A0(t)〈ψnkσ |p̂|ψjkσ 〉 and S(ω) =

τ0√
2π

exp(−τ 2
0 ω2) comprises the spectral properties of the

excitation. Note that S(ω) approaches a δ distribution for
long pulses in the limit τ0 → ∞, which represents the energy
conservation in a single-photon absorption. Therefore Fermi’s
golden rule is recovered as a special case of Eq. (12).

III. RESULTS AND DISCUSSION

A. Ionization dynamics at moderate intensities

In this section we shall present numerical results for the
ionization dynamics at not too high intensities. To be specific,
we have adjusted the intensities for the calculations in this
section such that according to the usual rate equation estimates,
the resulting depletion of the lowest band stays below 30%.
Our main interest here is the dependence of the ionization
probability on the pulse length, which turns out to be nontrivial.
From our numerical solution of the equations of motion we
extract the total occupation of free-electron states. The long
time limit of this quantity can be regarded as an estimate for
the ionization probability. All calculations have been carried
out for Gaussian pulses.

In Fig. 2(a) we have plotted the results of simulations for
different pulse durations (τ := full width half maximum of
the intensity), keeping fixed the photon number per pulse,
i.e., the time integral over the intensity. The laser frequency
has been adjusted in resonance to the transition 1b → 1f at
k= 1

4g, i.e., above the single-photon ionization threshold for
transitions between the nb =1 and nf =1 bands. As the time
scale of the ionization process is mainly dictated by the pulse
length, we have chosen τ as the unit of time in Fig. 2 in
order to facilitate the comparison of results for different pulse
durations. Also shown in Fig. 2(a) are results of calculations
using the resonant approximation [cf. Eqs. (10) and (11)]. It
turns out that for moderate intensities the results of the resonant
approximation and the full theory coincide for practically all
cases. For short pulses we see deviations in the form of steplike
structures that are superimposed on the rising curves in the full
calculation which are missing in the resonant approximation.
These structures can be attributed to the RWA contributions
that are left out in the resonant approximation. The overall
conclusion from this comparison is that for the conditions
studied here it is justified to keep only resonant contributions
to the dynamics.

Figure 2(a) demonstrates a pronounced dependence of the
free-electron occupation dynamics on the pulse duration. For
short pulses below τ ≈0.2 fs, the free-state occupation rises
monotonically with time and the final occupation rises with
rising pulse duration. For longer τ the behavior changes
qualitatively. Now the time traces exhibit a maximum and
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FIG. 2. (Color online) Ionization dynamics for a photon energy �ω0 =125 eV tuned to the resonance energy of the transition 1b → 1f at
k= 1

4 g for different pulse lengths τ of Gaussian pulses, keeping the number of total photons fixed. τ is the FWHM of the intensity as indicated
in the legend. The temporal envelope of the laser intensity is sketched in the background. Note that because the unit of time is the pulse lengths
in these plots, the pulse envelopes are the same for all τ apart from the scaling of the amplitude. Plotted is a single representative envelope. The
panels refer to different levels of theory described in the text: (a) full Schrödinger theory [Eq. (7), lines] and resonant approximation [Eq. (10),
crosses], and (b) Markovian approximation Eq. (12).

the final occupation drops with rising τ . In order to better
understand the origin of these dependencies, it is instructive
to compare these findings with corresponding results from
rate equations with the Markovian rates Eq. (12) displayed in
Fig. 2(b). Here the final value also initially rises with increasing
τ until at τ ≈0.2 fs a maximum is reached. For larger τ a
monotonic decrease with growing τ is found. Furthermore, in
the Markovian limit all time traces rise monotonically with
time. The rise and fall of the final value that appears in both
the full theory and the Markovian limit can be understood
as follows: for the shortest pulses considered here, the pulse
spectrum is so broad that a noticeable part of the excitation
is in the transparent region outside all bands and thus gives
only marginal contributions to the ionization. Increasing the
pulse length makes the spectrum narrower and consequently,
a larger portion of the supplied intensity leads to ionization.
Once most of the spectrum is in the band region, a further
increase of the pulse duration concentrates the excitation
closer to the central frequency of the pulse which is near
the middle of the nf = 1 band. Thus the excitation directly
at the band edges, where the density of states is enhanced, is
reduced and therefore a drop of the ionization with rising τ

has to be expected from this mechanism. The nonmonotonic
behavior of the real-time traces, however, cannot be explained
using rate equations. For a description of this feature, it
is important to account for the memory that represents the
influence of the phase-sensitive off-diagonal elements of the
density matrix, i.e., the coherences. Although we are dealing
here with transitions between continuous band states, the
influence of the coherences is to some extent analogous to
the well-known results for a laser-driven, two-level system
where the occupation of the upper state varies in an oscillatory
fashion with the pulse area, which rises with τ when the time-
integrated intensity is kept fixed. This coherent mechanism is
obviously superimposed to the nonmonotonic τ dependence
of the final value that is also present when the ionization is
modeled as an incoherent process by rates that connect only
occupations which do not depend on quantum-mechanical
phases.

As mentioned before, in current discussions of the ioniza-
tion dynamics of many-atom systems, different approaches

are being used. In particular, instead of the Markovian rates
[Eq. (12)] that are derived starting from a crystal model, the
ionization can be accounted for by rates for the constituent
atoms. Furthermore, for situations where the excitation is made
by pulses that are not Fourier limited, it has been suggested to
use rates that are averaged over the pulse spectrum [32]. Note
that this procedure is not the same as using rates that explicitly
depend on the spectral properties of the pulse, as, e.g., in the
case of the Markovian rates [Eq. (12)]. It is thus illustrative to
also compare the curves in Fig. 2 with the outcomes of other
rate equation approaches. However, as this discussion is not
the main target of the present paper, we present corresponding
results in the Appendix and mention only in passing that for
the conditions studied here the Markovian rates of Eq. (12)
give better agreement with the full Schrödinger theory than
other rate-based descriptions.

Most current experiments are not able to resolve the time
traces shown in Fig. 2, as usually only the total ionization is
recorded, which should be proportional to the long time value
of the free-state occupation. The latter is plotted in Fig. 3
as a function of the pulse duration τ for all levels of the
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FIG. 3. (Color online) Final values of the free-electron occupa-
tions after the pulse for conditions as in Fig. 2, where the total photon
number is kept constant and the pulse duration of Gaussian pulses
with FWHM τ is varied.
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theory that have been discussed in connection with Fig. 2.
For short pulses a similar ionization is predicted for all levels
of the theory. After passing the maximum at about τ ≈0.2 fs,
both the Markovian and the Schrödinger theory predict a steep
drop in ionization with increasing τ . For the Markovian case
this drop is monotonic, while in the full quantum-mechanical
calculation a minimal ionization is found for τ ≈3.5 fs, where
the final value of the free-state occupation is close to zero.
For large τ the Markovian and the full quantum-mechanical
curves approach the same value. For long pulses the dynamics
of the occupations slows down and thus going over to the
Markov limit starting from the memory integral Eq. (10) is
more and more justified. Consequently, the deviation of the
Markovian from the full treatment vanishes. The difference
between the full theory and the Markovian approximation is
essentially the neglect of the memory in the latter case, which
represents the coherences. In real systems the coherences can
be suppressed, e.g., when phase relaxation processes that are
not accounted for in our model become important. In such
a case a complete treatment, which includes also the phase
relaxation, should be well approximated by the Markovian
limit.

It may at first sight appear counterintuitive that for 0.2 fs �
τ � 3.5 fs the ionization increases when τ decreases, because
theoretical as well as experimental studies for atomic and
molecular systems showed a suppression of radiation damage
for short pulses [13,26,37,38] as soon as the pulse duration
becomes short enough to be comparable to the decay time
of the dominant relaxation process. However, our analysis
applies to the short time dynamics in the coherent regime
where the above-mentioned relaxation mechanisms are not
yet important. Furthermore, it should be stressed once again
that unlike many other studies, we are dealing here with
Fourier-limited pulses for which the pulse length is correlated
with the spectral width of the excitation. In such a case the
drop of the ionization with increasing pulse duration is to
a large extent related to the corresponding changes of the
spectral properties of the excitation. Indeed, the fact that at
τ ≈ 3.5 fs the free carrier occupation drops to almost zero
implies that in this case the system was first excited and
then practically completely deexcited by the incoming x-ray
pulse. Therefore all secondary processes that usually follow
the initial ionization and eventually destroy the crystal, such
as impact ionization, for example, will not take place as the
system is essentially back in its initial state after the pulse.
Of course, the transitions induced by the laser pulse are the
source of secondary emission. Thus the only secondary process
that will occur is the interaction of the emitted photons with
the crystal, which, however, will be much weaker than the
interaction with the strong primary pulse. All together, the net
effect of the excitation is that a secondary signal is emitted
while the crystal after the pulse is essentially in its initial state,
although during the pulse the system is driven far away from
equilibrium. Comparing the Markovian calculations with the
full theory yields insights about the role of coherences that are
disregarded in the Markovian approach. We learn that phase
relaxation processes, which destroy the coherences, inhibit the
return of the system to its ground state, which is indicated by
the minimum close to zero in the final excited-state occupation
at τ ≈ 3.5 fs. A major relaxation mechanism not included in

our model is Auger recombination, which contributes to both
phase and energy relaxation. Energy relaxation times due to
Auger and other processes of the order of τE ≈ 10 fs have
been reported, e.g., for L-shell excitations of solid-state silicon
corresponding to a binding energy of around 100 eV, and the
core-hole lifetime turns out to be approximately 19 fs [39]. For
heavier elements and/or the K-shell, the relaxation is typically
faster. An energy relaxation time τE sets an upper limit for
the phase relaxation time of τph � 2τE. For τE of the order
of 10 fs, the energy relaxation due to the Auger processes
should not be a major influence for the dynamics during
pulses with durations below τ = 3.5 fs. With increasing τ the
Auger relaxation will, of course, increase the final excited-state
occupation. Consequently, the minimum seen in Fig. 3 is
expected to be visible in the presence of Auger processes with
τE ≈ 10 fs, provided the phase relaxation time is not too short.

B. Rabi cycling

This section is devoted to studies of the ionization dynamics
at elevated intensities. Again, we keep the total photon number
fixed, but at a value that is increased by a factor of 100 com-
pared to the calculations presented before. Figure 4(a) displays
corresponding time traces calculated using different levels of
the theory for a fixed pulse duration τ . As an example we have
chosen τ = 1 fs, which for a Fourier-limited pulse corresponds
to a spread of the pulse energy of ≈1.8 eV (FWHM), which is
feasible for the new FEL sources with seeded pulses [cf. Sec. I].
The central frequency is chosen the same as in the previous
section, such that the excitation is in resonance for transitions
from the initially occupied band nb =1 to the free-electron
band nf =1 at k= 1

4g. As in the case of lower intensities,
the Markovian rate approach leads to a monotonic rise of the
free-state occupation. In sharp contrast, the full theory now
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FIG. 4. (Color online) Ionization dynamics for τ =1 fs and a 100
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predicts deeply modulated oscillations of the free-electron
occupation that are not seen at lower intensities and are
also absent in the rate equation results. Thus, even though
we are dealing here with direct dipole-allowed transitions
between continuous bands, we find Rabi-like dynamics similar
to driven two-level systems. Obviously, at higher intensities
coherences gain in importance. The results also demonstrate
noticeable deviations of the resonant approximation from
the full theory, indicating that off-resonant channels are no
longer negligible at higher intensities, in accordance with
previous findings for atomic systems [18]. Rabi cycling has
been discussed before as a mechanism for suppressing the
ionization probability in atomic systems that are excited via a
resonantly coupled discrete intermediate state [40,41]. Our re-
sults demonstrate that also for crystals excited by direct single-
photon processes, a substantial reduction of the ionization is
possible.

The Rabi-type behavior is in our case a truly collective
phenomenon in which many states of the resonantly coupled
bands participate in a common nonlinear dynamics. Since
important parameters like the density of states and the
transition matrix elements vary noticeably within the bands,
it can be expected that the resulting time traces change when
the excitation is centered at different positions in the band.
This is illustrated in Fig. 4(b), where we show results of
calculations with the same parameters as in Fig. 4(a), but now
for a central laser frequency in resonance with transitions to
the lower band edge of the nf =1 band. The Markov theory
predicts for an excitation at the band edge a slower rise of
the excited-state occupation, as for a laser frequency tuned to
transitions in the middle of the band. This reflects the fact that
transitions to the nf =1 band with low k values are suppressed,
because here the dipole matrix element at k=0 vanishes due
to selection rules [cf. Fig. 1(b)]. But overall, the Markov
results for excitation at the band edge and in the middle of
the band are similar. In particular, in both cases a monotonic
rise is found and also the final values at long times are of
similar order. In contrast, by comparing the results of the full
Schrödinger theory for these two excitation conditions, we find
large qualitative differences. For an excitation at the band edge,
the modulation of the time-dependent excited-state occupation
is much less pronounced, which can be attributed mainly to the
strong k dependence of the dipole moments near k=0 seen
in Fig. 1(b). As the Rabi frequency for a resonantly driven
transition is proportional to the transition matrix element,
we are now essentially dealing with an ensemble of Rabi
oscillations with a large spread in Rabi frequencies. The strong
oscillatory modulations of the time traces are practically gone
because of the destructive interference of the Rabi oscillations
within this effective ensemble. Despite the suppression of the
oscillations, the absolute values reached by the excited-state
occupation are of similar magnitude for the two excitation
conditions considered here. Obviously, the reduction of the
dipole strength near the band edge is largely compensated
by the enhanced density of states in this region. Finally, it
is worthwhile to note that also for the case of near-band-
edge excitations of the nf =1 band, a strong and qualitative
difference between the full theory and the Markovian rate limit
is found. While the latter predicts a monotonic rise as usual, in
the full quantum-mechanical treatment we find a much steeper
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FIG. 5. (Color online) Ionization dynamics for τ =1 fs and a 100
times higher intensity than used in Fig. 2 for different central
frequencies: (a) �ω0 =153 eV, i.e., tuned to the resonance of 1b → 2f
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rise followed by a weakly modulated plateau with a subsequent
steep decrease, which eventually leads to a final value below
the Markovian result.

Further insights into what determines the visibility of Rabi-
type oscillations in transitions to free bands in a solid-state
model can be obtained by comparing excitations from the
nb =1 to the nf =2 band at k= 1

4g and k=0, which is
done in Fig. 5. Apart from switching the central frequency,
all other parameters are the same as in Fig. 4. For a laser
tuned in resonance with transitions to the k= 1

4g states in the
nf =2 band [cf. Fig. 5(a)], in the Schrödinger theory a deep
initial modulation is followed by several weaker oscillations,
resulting in an overall behavior similar to that observed for the
transitions to the k= 1

4g states in the nf =1 band. Obviously,
the increased bandwidth of the second free band has only
little influence on the Rabi-type dynamics. The errors caused
by using the resonant approximation, however, turn out to be
larger than in the corresponding case in the nf =1 band. Now,
already during the first Rabi cycle, noticeable deviations to the
Schrödinger theory results occur. Tuning the laser frequency
in resonance with transitions to the k=0 states of the nf =2
band [cf. Fig. 5(b)] results in a series of deeply modulated
Rabi flops. For these excitation conditions the visibility of
Rabi oscillations is enhanced due to a combination of three
effects: (i) the dipole matrix elements near k=0 depend only
weakly on k for transitions to the nf =2 band; (ii) the density of
states is peaked near k=0, resulting in a large contribution to
the excited-state occupation from a narrow region in the band;
and (iii) for excitations near k=0 the velocity of the excited
free electrons is rather low and thus essentially no electrons
can leave the region of their atoms before they are returned to
their initial states in the course of a Rabi cycle. The comparison
with calculations based on the resonant approximation reveals
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for these excitation conditions an excellent agreement with
the full theory, indicating that, as might have been expected,
the visibility of band-Rabi oscillations is highest when the
resonant transitions clearly dominate the dynamics.

IV. CONCLUSIONS

Using a simple model for a crystal, we have performed
simulations of the ionization dynamics after the exposition
of the crystal to a short and intense x-ray laser pulse. We
have considered excitation conditions where direct allowed
single-photon band-to-band absorption should be the dominant
ionization channel, i.e., a situation favorable for applying the
Markov approximation where the ionization is described by
rate equations. In the short coherent pulse regime of pulse
durations 0.2 fs � τ � 3.5 fs and for moderate intensities, we
find that the ionization drops with rising τ . A comparison
between the Markovian result and the Schrödinger theory
reveals that in this regime the total ionization can be noticeably
reduced when the coherences that are disregarded in the
Markov limit are not lost in dephasing processes. In the
full treatment a minimal ionization close to zero occurs
for τ ≈3.5 fs, while the Markovian rate equations predict a
monotonic decrease on a higher level.

At moderate intensities over a wide range of parameters,
good qualitative agreement is found between the Markovian
and the full quantum-mechanical theory, although already
in this case rate equations are not able to explain the
nonmonotonic time dependence of the free-state occupation
that is found for some pulse durations in the full theory.
However, this changes dramatically at higher intensities. While
the Markovian theory still predicts a monotonic rise of the free-
state occupation for all pulse lengths, the full theory exhibits
qualitative new features. In particular, we find for band-to-band
transitions Rabi-like oscillations that represent a collective
behavior where a continuum of transitions participates. The
oscillations disappear when the spread of Rabi frequencies of
the involved transitions becomes too large. No matter whether
or not oscillations are pronounced, we find in all cases a
nonmonotonic time evolution of the free-electron occupation,
in sharp contrast to the rate equation prediction. Moreover, the
final value of the free-state occupation after the pulse, which
is a measure for the ionization, can be controlled in a wide
range by varying pulse properties such as pulse duration and
intensity.
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APPENDIX: ATOMIC RATES

In this Appendix we shall compare the predictions for
the ionization dynamics obtained from different rate equation
approaches. Let us start by comparing the curves in Figs. 2(a)
and 2(b) that were obtained for the full Schrödinger theory
and the Markovian limit, respectively, with the result of
a description where the ionization from the inner shell is

accounted for by a rate calculated for the constituent atoms.
Here we use the standard golden rule formula for the atomic
rate:


atomic := 2π

�
Datomic(�ωex)|〈ψi |Hfield|ψf 〉|2, (A1)

where 〈ψi |Hfield|ψf 〉 denotes the transition matrix element
between the atomic ground state and a free-electron state [42]
with wave vector k, and Datomic(�ωex) is the density of states
of the atomic system at the excess energy �ωex, i.e., the energy
by which the central laser energy �ω0 exceeds the single-
photon ionization threshold. For a meaningful comparison
with our crystal model, we calculated the atomic rates for the
same atomic potential as in Eq. (5) but without the periodic
continuation. It should be noted that when modeling the
ionization by atomic rate equations it is commonly assumed
that the electrons leave the atom immediately after they are
excited to a free-electron state, thereby disregarding Pauli
blocking effects. Note that the Markovian generation rate
[Eq. (12)] accounts for Pauli blocking. The most striking
difference between calculations based on atomic rates and
the results found in Fig. 2(b) for Markovian rates is that when
taking the pulse length as the unit of time, the time traces of the
free-electron occupation do not depend on the pulse length τ ,
i.e., changing the pulse length while keeping the total photon
number fixed leads only to a rescaling of the time axis. We thus
obtain a universal curve for all τ that is plotted in Fig. 6(a).
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This has to be expected for a model with one-photon
absorption cross sections that disregard the blocking and the
spectral properties of the pulse, because in this case a fixed
percentage of electrons occupying bound states is transferred
to free-electron states. Changing the pulse duration while
keeping the total intensity fixed just redistributes the transfer
differently over the total time of excitation. When in addition
the same pulse shape is used in all cases, rescaling the time
axis leads to identical curves for the free-electron occupations
for all pulse durations.

Evaluation of the cross sections at the central frequency of
the pulse according to Eq. (A1) ignores the finite spread of
frequencies that is present in any pulse of finite duration. A
simple way to account for this effect within the rate equation
approach has been suggested in Ref. [32], where the atomic
rates in Eq. (A1) have been replaced by their average over the
excess energy weighted with the spectral intensity distribution
of the pulse. In Ref. [32] this procedure has been applied
to an excitation with incoherent radiation where there is
not necessarily a connection between the spectral width and
the duration of the pulse. In contrast, we are dealing here
with Fourier-limited pulses and thus this effect can lead to a
dependence of the ionization on the pulse duration. Indeed,
following the suggestion of Ref. [32], time traces of the free-
electron occupation for different pulse durations do not merely
differ by a rescaling of the time axis. However, in our case the
difference turns out to be marginal and is therefore not shown.
The averaging of the rates has only little impact on the results,
mainly because the product Datomic(�ωex) |〈ψi |Hfield|ψf 〉|2
varies only weakly with the excess energy �ωex. It is
tempting to think that the averaging recipe can be im-
proved by replacing in Eq. (A1) this product with the
corresponding product Dcrystal(�ωex)|〈ψnkσ |Hfield|ψjkσ 〉|2 for
our crystal model and then performing the average over the
pulse spectrum. We shall refer to the thus-modified rates in
the following as spectrally averaged rates (SAR). Indeed,
Dcrystal(�ωex)|〈ψnkσ |Hfield|ψjkσ 〉|2 exhibits a more pronounced
dependence on �ωex, as Dcrystal(�ωex) changes noticeably
near the band edges. Also |〈ψnkσ |Hfield|ψjkσ 〉|2 may vary
significantly with k, as follows from Fig. 1. As is seen from
Fig. 6(a), the time trace of the free-electron occupation now
depends noticeably on τ . However, this dependence is different
from that obtained by the full theory in Fig. 2(a) or by the
Markovian limit in Fig. 2(b). It should be noted that replacing
the rate by its average over the pulse spectrum is not the same
as using rates that depend explicitly on the spectral distribution
of the pulse as the Markovian rates in Eq. (12). In fact, the SAR
result can be obtained as a limiting case from the Markovian
rate approach when it is assumed that the occupation densities

ρnn do not change significantly within a given band and
when Pauli blocking can be neglected. These assumptions are
justified, e.g., if the pulse spectrum is broad and structureless
and if the product Dcrystal(�ωex)|〈ψnkσ |Hfield|ψjkσ 〉|2 can be
well approximated by its average. In addition, saturation
effects should be small. In fact, for the shortest pulses
considered here, the results of the Markovian and the SAR limit
are found to be also quantitatively similar. In both approaches,
for rising τ there is a maximum of the final free-state
occupation, but the subsequent drop that follows the maximum
is much less pronounced in the SAR limit. This is most easily
seen in Fig. 6(b), where the final values of the free-electron
occupation after the pulse are plotted for different rate equation
approaches.

As discussed before, one reason for the drop is that
an increasing τ makes the pulse spectrum narrow and less
excitation falls in the region of high density of states near the
band edge. This argument holds, however, in the same way
for both the Markovian and the SAR approach. Accounting
for rates that explicitly depend on the excess energy leads,
for spectrally sharp pulses, to a further concentration of the
excitation within a band and to narrower k distributions (not
shown), as in a calculation based on a pulse spectrum averaged
rate. The consequence is a larger drop of the final free-state
occupation in the Markovian case, which is much closer to the
outcome of the full quantum-mechanical theory as in the SAR
result.

In order to estimate the influence of Pauli blocking
effects, we have also performed calculations with Marko-
vian rates where the Pauli blocking is switched off by
disregarding the final-state occupation in Eq. (12). The
comparison between Markovian simulations with and without
Pauli blocking in Fig. 6(b) reveals that the resulting effect
on the ionization is quantitatively way too small to explain
the large overestimation of the ionization by the atomic
rates and the SAR approach, which both disregard the
blocking.

Finally, it is interesting to note by comparing all the
curves in Fig. 6(b) that for very short pulses a similar
ionization is predicted for all levels of the theory, except for
the atomic rate approach, which unlike all other approaches,
gives a value independent of τ . In particular, in this limit
the SAR model also works quite well, which explains to
some extent why in many cases this model has given reason-
able results for broadband excitations that were not Fourier
limited. What matters here is that broadband excitations
lead to smooth distributions of the free-electron occupations,
which justifies the averaging procedure involved in the SAR
limit.
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[19] E. P. Kanter, B. Krässig, Y. Li, A. M. March, P. Ho, N. Rohringer,
R. Santra, S. H. Southworth, L. F. DiMauro, G. Doumy et al.,
Phys. Rev. Lett. 107, 233001 (2011).

[20] N. Rohringer and R. Santra, Phys. Rev. A 77, 053404
(2008).

[21] N. Rohringer and R. Santra, Phys. Rev. A 86, 043434 (2012).
[22] B. W. J. McNeil and N. R. Thompson, Nat. Photonics 4, 814

(2010).
[23] J. N. Galayda, J. Arthur, D. F. Ratner, and W. E. White, J. Opt.

Soc. Am. B-Opt. Phys. 27, B106 (2010).

[24] E. Allaria, C. Callegari, D. Cocco, W. M. Fawley, M. Kiskinova,
C. Masciovecchio, and F. Parmigiani, New J. Phys. 12, 075002
(2010).

[25] J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma,
Y. Feng, J. Frisch, D. Fritz, J. Hastings et al., Nat. Photonics 6,
693 (2012).

[26] S.-K. Son, L. Young, and R. Santra, Phys. Rev. A 83, 033402
(2011).

[27] H.-K. Chung, M. H. Chen, and R. W. Lee, High Energy Density
Phys. 3, 57 (2007).

[28] D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander,
Phys. Rev. Lett. 69, 2642 (1992).

[29] B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer,
and K. C. Kulander, Phys. Rev. Lett. 73, 1227 (1994).

[30] D. G. Lappas and R. van Leeuwen, J. Phys. B: At. Mol. Opt.
Phys. 31, L249 (1998).

[31] Y. Ding, A. Brachmann, F.-J. Decker, D. Dowell, P. Emma, J.
Frisch, S. Gilevich, G. Hays, P. Hering, Z. Huang et al., Phys.
Rev. Lett. 102, 254801 (2009).

[32] A. Sytcheva, S. Pabst, S.-K. Son, and R. Santra, Phys. Rev. A
85, 023414 (2012).

[33] H. Le Rouzo, Am. J. Phys. 73, 962 (2005).
[34] Note that the work function essentially provides a finite energy

offset of a few electronvolts, which is not of great importance
on the energy scales that we are interested in here.

[35] C. Ruiz, L. Plaja, and L. Roso, Phys. Rev. Lett. 94, 063002
(2005).

[36] F. Rossi and T. Kuhn, Rev. Mod. Phys. 74, 895 (2002).
[37] L. Young, E. P. Kanter, B. Kraessig, Y. Li, A. M. March, S. T.

Pratt, R. Santra, S. H. Southworth, N. Rohringer, L. F. DiMauro
et al., Nature (London) 466, 56 (2010).

[38] M. Hoener, L. Fang, O. Kornilov, O. Gessner, S. T. Pratt, M.
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