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In previous papers [A. K. Bhatia, Phys. Rev. A 85, 052708 (2012); 86, 032709 (2012); 87, 042705 (2013)]
electron-H, -He+, and -Li2+ P -wave scattering phase shifts were calculated using the variational polarized
orbital theory. This method is now extended to the singlet and triplet D-wave scattering in the elastic region.
The long-range correlations are included in the Schrödinger equation by using the method of polarized orbitals
variationally. Phase shifts are compared to those obtained by other methods. The present calculation provides
results which are rigorous lower bonds to the exact phase shifts. Using the presently calculated D-wave and
previously calculated S-wave continuum functions, photoionization of singlet and triplet P states of He and Li+

are also calculated, along with the radiative recombination rate coefficients at various electron temperatures.

DOI: 10.1103/PhysRevA.89.062720 PACS number(s): 34.80.Bm

I. INTRODUCTION AND CALCULATIONS

Collision between an electron and the target is a many-body
problem. The perturbation in the target due to the incident
electron induces in it electric multipole moments. The exact
knowledge of the single-electron targets makes it possible to
obtain accurate results. In general, it is not possible to infer
phase shifts, resonance parameters, photoabsorption cross
sections, radiative-attachment rates, and cross sections for
free-free absorption of radiation by scaling as the nuclear
charge is increased. Phase shifts are also required in the
calculations of laser-assisted free-free transitions in electron-
atom collisions [1,2]. Therefore, it becomes important to carry
out calculations in each case.

At low energies, in addition to the exchange between
the electrons, the distortion of the target produced by the
incident electrons is important. This distortion can be taken
into account by the method of polarized orbitals [3,4] which
includes the effect of polarization in the ansatz of the wave
function of the target. Other approximations for calculating
phase shifts are the Kohn-Feshbach variational method [5], the
Kohn variational method [6], the R-matrix method [7], and the
finite element method [8]. The electron-hydrogenic systems
D-wave phase shifts in the elastic region have been calculated
by Sloan [9] and by Khan et al. [10] using the method of
polarized orbitals and by Gien [11,12] using the Harris-Nesbet
method. The electron-H, -He+, and -Li2+ S-wave and P -wave
phase shifts in the elastic region have been calculated [13–17]
in which the long-range potential proportional to −1/r4 was
included variationally.

It is well known that the photodetachment of H− contributes
to the opacity of the sun. Similarly, photoionization and
its reverse process, radiative recombination, in atoms and
ions are needed in the solar and in the stellar modeling of
the opacity. Since the excited states have lower threshold
energies for ionization, much less photon energy is required
for photoionization. These photoelectrons then excite various
levels of the plasma constituents which decay to the lower
levels, providing spectra of various astrophysical objects for
diagnostic purposes. The observations of such spectra help
to infer the electron densities, temperatures, and element
abundances of the astrophysical plasmas. We use Rydberg

units: energy in Rydbergs, length in Bohr radius a0, and phase
shifts in radians.

We briefly describe the formalism already discussed in
previous papers on S and P scattering states. In order to obtain
the Schrödinger equation, the total spatial wave function for
the electron-target partial wave (denoted by L) problem is
written as

�L(�r1,�r2) = u(r1)

r1
YL0(

�

r1)�pol(r1,r2) ± (1 ↔ 2). (1)

The (±) above refers to singlet (upper sign) or triplet
(lower sign) scattering, respectively. The effective target wave
function can be written as

�pol(�r1,�r2) = φ0(�r2) − χβ(r1)

r2
1

u1s→p(r2)

r2

cos(θ12)√
Zπ

, (2)

where

φ0(�r2) =
√

Z3

π
e−Zr2 , (3)

u1s→p(r2) = e−Zr2

(
Z

2
r3

2 + r2
2

)
, (4)

and θ12 is the angle between �r1 and �r2. We have replaced the
step function ε(r1,r2), used by Temkin [4], by a smooth cutoff
function χβ(r1) which is of the form

χβ(r1) = (1 − e−βr1 )n, (5)

where n � 3. Now the polarization of the target takes place
whether the scattered electron is inside or outside the orbital
electron. The polarization function given in Eq. (2) is valid
throughout the range. This is unlike the step function ε(r1,r2)
used in [4] which ensures that the polarization takes place
when the scattered electron r1 is outside the orbital electron
r2. Furthermore, the function in Eq. (5) gives us another
parameter, β, which is a function of k, the incident electron
momentum. This term guarantees that χβ(r1)/r2

1 → 0 when
r1 → 0 and it also contributes to the short-range correlations,
and therefore is useful to optimize the results.

Beyond the terms containing u(r) explicitly, are the terms
giving rise to the exchange approximation, here L = 2. The
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TABLE I. Comparison of phase shift η (radians) for e-H scatter-
ing with those obtained with the method of polarized orbitals [4].

3D 1D

k Present η ηPO [4] Present η ηPO [4]

0.1 1.3217(−3) 1.3193(−3)
0.2 5.0835(−3) 5.0217(−3)
0.3 1.0898(−2) 1.18(−2) 1.0531(−2) 1.13(−2)
0.4 1.8401(−2) 1.7250(−2)
0.5 2.7204(−2) 2.4675(−2) 2.66(−2)
0.6 3.6934(−2) 3.2495(−2)
0.7 4.7286(−2) 4.0544(−2)
0.75 5.2614(−2) 7.46(−2) 4.4596(−2) 4.56(−2)
0.8 5.7990(−2) 4.8620(−2)
0.9 6.8791(−2) 5.6532(−2)
1.0 7.9484(−2) 1.12(−1) 6.4024(−2) 6.27(−2)

scattering function u(r) is obtained by solving the integrodif-
ferential equations resulting from

∫
[Y ∗

20(�1)�pol(�r1,�r2)(H − E)�L]d�r2 = 0. (6)

In the above equation H is the Hamiltonian and E is the
total energy of the electron-target scattering system:

H = −∇2
1 − ∇2

2 − 2Z

r1
− 2Z

r2
+ 2

r12
, (7)

E = k2 − Z2. (8)

k2 is the kinetic energy of the incident electron and Z is the
nuclear charge. The integrodifferential equations are solved by
the noniterative method [18]. The phase shifts are inferred by
knowing the scattering function at r ≡ r1 → ∞,

lim
r→∞ u(r) ∝ sin

[
kr + l(l + 1)

r2
+ Z − 1

k
ln(2kr)

+ arg 

(
1 − i(Z − 1)

k

)
+ η

]
. (9)

The phase shifts for 3D and 1D scattering states for e-H,
given in Table I, are compared with those obtained in [4] using
the method of polarized orbitals. The present results for both
triplet and singlet states are lower than those obtained in [4],
except for k > 0.8, where they are higher in the singlet state.
The results in [4] have no variational bounds, while the present
results have variational lower bounds. Similar results for 3D

and 1D scattering states have been obtained for e-He+. They are
given in Table II and compared with those obtained by Sloan
[9] using the method of polarized orbitals. The present results
for triplet states are lower, while for singlet states they are
higher than those obtained in [9]. Khan et al. [10], taking into
account the exchange-polarization terms also, have carried out
calculations similar to those of Sloan and their results for both
states are lower than those of [9]. However, the results in [9,10]
are not in agreement with the present variational calculations,
which are expected to be accurate because of the bound on the
phase shifts.

TABLE II. Comparison of phase shift η (radians) for e-He+

scattering with those obtained with the method of polarized
orbitals [9].

3D 1D

k Present η ηPO [9] Present η ηPO [9]

0.1 8.5133 (−3) 5.9268(−3)
0.2 9.0331(−3) 1.06(−2) 6.1299(−3) 6.40(−3)
0.3 9.8834(−3) 6.4446(−3)
0.4 1.1044(−2) 1.33(−2) 6.8511(−3) 7.10(−3)
0.5 1.2473(−2) 7.3028(−3)
0.6 1.4152(−2) 1.74(−2) 7.7904(−3) 8.0(−3)
0.7 1.6066(−2) 8.3087(−3)
0.8 1.8172(−2) 2.27(−2) 8.8420(−3) 8.8(−3)
0.9 2.0439(−2) 9.3860(−3)
1.0 2.2841(−2) 2.87(−2) 9.9534(−3) 9.5(−3)
1.1 2.5346(−2) 1.0547(−2)
1.2 2.7921(−2) 3.51(−2) 1.1173(−2) 1.03(−2)
1.3 3.0549(−2) 1.1851(−2)
1.4 3.3233(−2) 4.26(−2) 1.2631(−2)
1.5 3.5939(−2) 1.3454(−2)
1.6 3.8573(−2) 4.77(−2) 1.4306(−2) 1.26(−2)
1.7 4.1158(−2) 1.5206(−2)
1.8 4.3673(−2) 1.6152(−2)
1.9 4.6125(−2) 1.7135(−2)
2.0 4.8454(−2) 1.8149(−2) 1.66(−2)

Phase shifts for 3D and 1D scattering states have also been
calculated for e-Li2+. They are given in Table III and compared
with those obtained in [10] using the method of polarized
orbitals. Again, the present results for triplet states are lower,

TABLE III. Comparison of phase shift η (radians) for e-Li2+

scattering with those obtained with the method of polarized
orbitals [10].

3D 1D

k Present η ηPO [10] Present η ηPO [10]

0.1 8.2703(−3) 3.0363(−3)
0.2 8.4642(−3) 3.0585(−3)
0.3 8.7011(−3) 3.0508(−3)
0.4 9.0700(−3) 1.00(−2) 3.0776(−3) 2.58(−3)
0.5 9.5041(−3) 1.06(−2) 3.0782(−3) 2.54(−3)
0.6 1.0009(−2) 1.13(−2) 3.0608(−3) 2.50(−3)
0.7 1.0622(−2) 1.21(−2) 3.0831(−3) 2.46(−3)
0.8 1.1380(−2) 1.30(−2) 3.1396(−3) 2.41(−3)
0.9 1.2151(−2) 1.39(−2) 3.1537(−3) 2.37(−3)
1.0 1.2984(−2) 1.50(−2) 3.1657(−3) 2.32(−3)
1.1 1.3868(−2) 1.61(−2) 3.1730(−3) 2.27(−3)
1.2 1.4790(−2) 1.73(−2) 3.1723(−3) 2.23(−3)
1.3 1.5735(−2) 1.85(−2) 3.1575(−3) 2.20(−3)
1.4 1.6689(−2) 1.97(−2) 3.1257(−3) 2.17(−3)
1.5 1.7770(−2) 2.10(−2) 3.2378(−3) 2.16(−3)
1.6 1.8623(−2) 2.23(−2) 3.5411(−3) 2.16(−3)
1.7 1.9782(−2) 2.36(−2) 3.6550(−3) 2.18(−3)
1.8 2.0921(−2) 2.48(−2) 3.7901(−3) 2.21(−3)
1.9 2.2067(−2) 2.61(−2) 3.9474(−3) 2.27(−3)
2.0 2.3214(−2) 2.73(−2) 4.1272(−3) 2.35(−3)
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TABLE IV. Total elasticscattering and the spin-flip cross sections
for e-H in units of a2

0 . S-wave phase shifts are from [13], P -wave
phase shifts are from [15], and D-wave phase shifts are the present
results given in Table I.

σ (l = 0) + σ (l = 1)
k σ (l = 0)a σ (l = 0) +σ (l = 1)b + σ (l = 2)c σ SF

0.1 134.9527 135.0669 135.3064 44.2952
0.2 100.6217 101.1241 102.1693 29.0073
0.3 71.8754 73.0780 75.5647 18.9188
0.4 52.2387 54.3175 58.6040 13.5072
0.5 38.8344 41.5355 47.1154 10.4705
0.6 29.3916 32.3317 38.4364 8.3908
0.7 22.5298 25.3547 31.2720 6.6208
0.8 16.6011 20.1350 25.5083 4.9005

aObtained by using S-wave phase shifts only.
bObtained by using S- and P -wave phase shifts.
cObtained by using S-, P -, and D-wave phase shifts.

while for singlet states they are higher than those obtained in
[10].

Phase shifts for L = 0, 1, and 2 for e-H scattering are used
to calculate total cross sections at various incident energies.
The theoretical results are useful because, in general, it is
difficult to measure cross sections in the forward direction.

The total cross section is given by

σ = 0.25σS + 0.75σT , (10)

where

σS = 4π

k2

∑
l

(2l + 1) sin2(ηS) (11)

and

σT = 4π

k2

∑
l

(2l + 1) sin2(ηT ). (12)

In the above equation ηS and ηT are the singlet and triplet
phase shifts, respectively. The spin-flip cross section is given
by

σSF = π

k2

∑
l

(2l + 1) sin2(ηS − ηT ). (13)

The results for σ and σSF are given for electron-hydrogen
scattering in Table IV for various incident electron momenta.
The S-wave and P -wave phase shifts are very accurate as
they have been obtained by using the hybrid theory, while
the D-wave phase shifts are obtained here in the variational
polarized approximation and they are small relative to the S-
wave and P -wave results. The cross sections given in Table IV
are expected to be fairly accurate. In this table, the convergence
of the elastic cross section is shown as the contributions from
S, P , and D partial waves are added.

II. PHOTOIONIZATION OF EXCITED P STATES
IN He AND Li+

Photoionization processes are important in the study of
the upper atmosphere physics and for stellar modeling. The
dominant processes determining the ionization structure of
any plasma are photoionization (in addition to collisional

ionization) and its inverse process, radiative recombination.
In a previous paper [17], we calculated the photoabsorption
cross sections of S states of two-electron systems: H−, He,
and Li+. In this process, the final continuum state of the
photoelectron is the P state when the target is left in the ion
ground state. It is known that the opacity in the sun is due to the
photodetachment of H−. In the photoionization of the P states,
the final continuum states of the photoelectron are S(lf = 0)
and D(lf = 2) states. Both these final states must be included in
the calculation of the total photoabsorption cross section. The
general expression for the cross section at low photon energies
(below 1000 eV) is given in the dipole approximation by

σ (lf ) = 4π (2lf + 1)αkω

3(2li + 1)

∣∣〈�lf

∣∣z1 + z2|�i〉
∣∣2

, (14)

where α is the fine-structure constant, �i is the initial bound
P -state wave function with li = 1, �lf is the final continuum
wave function of the outgoing electron with the momentum
k, and ω is the energy of the incident photon:

ω = I + k2. (15)

I is the ionization potential of the system absorbing the
photon, and k2 is the energy of the photoelectron, and they are
in Rydberg units. Therefore, the total cross section is given by

σ = σ (lf = 0) + σ (lf = 2). (16)

Here we use the length form for the cross section because
this form is most suitable when the long-range correlations
are included in the final-state wave functions and most of the
contributions to the matrix elements in Eq. (10) come from
the outer region rather than the region close to the nucleus.�S

and �D , the continuum S and D states of the photoelectron,
have the form given in Eq. (1). We assume in the derivation
of Eq. (14), the plane-wave normalization. Therefore, we have
the coefficient 4π (2lf + 1) in Eq. (14).�i , the 1,3P -state wave
function of the target, is of the Hylleraas form and is given by

�i(�r1,�r2) = [
f +1

1 (r1,r2,r12)D1+
1 (θ,φ,ψ)

+ f −1
1 (r1,r2,r12)D−1

1 (θ,φ,ψ)
]
. (17)

The Dε
1 functions (ε = +1,−1) are called rotational

harmonics [19]. The f ’s are the generalized “radial” functions,
which depend on the three residual coordinates that are
required (beyond the Euler angles) to define two vectors, r1 and
r2. The distance between the two electrons is given by r12 =
|r1 − r2|. The radial functions f ±1

1 are defined as follows:

f 1+
1 = cos(θ12/2)[f (r1,r2,r12) ± f (r2,r2,r12)], (18)

f 1−
1 = sin(θ12/2)[f (r1,r2,r12) ∓ f (r2,r2,r12)], (19)

and

f (r1,r2,r12) = e−ar1−br2
∑
lmn

Dlmnr
l
1r

m
2 rn

12. (20)

The upper sign in Eqs. (18) and (19) refers to the singlet
state and the lower sign refers to the triplet state. The minimum
value of l = 1 in Eq. (20), while the minimum values of
m and n are 0. The nonlinear parameters are a and b, and
Dlmn are the eigenvectors. Energies for various numbers of
terms are given in Table XIII in the Appendix for the He
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TABLE V. Convergence of photoionization cross sections (Mb)
for the 3,1P excited states, outgoing electron in L = 0.

k System, state Nω = 220 286 364

0.1 He, (1s3p) 1P 2.3792(−1) 2.3897(−1) 2.3910(−1)
0.2 1.7971(−1) 1.8014(−1) 1.8014(−1)
0.3 1.1729(−1) 1.1704(−1) 1.1695(−1)
0.1 He,(1s3p) 3P 7.9846(−1) 7.9618(−1) 7.9048(−1)
0.2 4.7052(−1) 4.7263(−1) 4.6521(−1)
0.3 2.2888(−1) 2.3005(−1) 2.3191(−1)
0.1 He, (1s4p) 3P 1.2989 1.4004 1.3997
0.2 6.6288(−1) 6.1820(−1) 6.0959(−1)
0.3 2.3623(−1) 2.1905(−1) 2.2155(−1)
0.1 Li+, (1s2p) 3P 6.2094(−1) 5.9150(−1) 5.9179(−1)
0.2 5.7604(−1) 5.4871(−1) 5.4893(−1)
0.5 3.4065(−2) 3.2401(−2) 3.2391(−2)
0.1 He, (1s2p) 1P 2.6767(−1) 2.6942(−1) 2.6918(−1)
0.2 2.0524(−1) 2.0524(−1) 2.0605(−1)
0.3 1.3887(−1) 1.3835(−1) 1.3860(−1)
0.1 He, (1s3p) 1P 7.2160(−1) 7.3152(−1) 7.3841(−1)
0.2 4.3695(−1) 4.3692(−1) 4.3019(−1)
0.3 2.1792(−1) 2.1427(−1) 2.1182(−1)
0.1 He,(1s4p) 1P 1.1961 1.2607 1.2628
0.2 5.8137(−1) 5.6109(−1) 5.3909(−1)
0.3 2.0384(−1) 1.9402(−1) 2.0020(−1)
0.1 Li+, (1s2p) 1P 5.5857(−2) 5.5979(−2) 5.6034(−2)
0.2 5.1967(−2) 5.2093(−2) 5.2144(−2)
0.3 4.6322(−2) 4.6440(−2) 4.6482(−2)
0.1 Li+, (1s3p) 1P 1.7283(−1) 1.7287(−1) 1.7369(−1)
0.2 1.4949(−1) 1.4966(−1) 1.5008(−1)
1.3 3.0617(−3) 3.0682(−3) 3.0363(−3)

atom and the Li+ ion. The cross section has a finite value for
k → 0 which is due to the fact that the final-state function is a
Coulomb function, therefore u(r) ∝ 1/

√
k, and the expression

for the cross section becomes independent of k, the outgoing
photoelectron momentum. It is known that there are no bound
excited states of H− ions, therefore no photodetachment cross
sections have been calculated for the excited P states.

In Table V, we show the convergence of the photoionization
cross sections for a few values of the outgoing electron
momentum k for the (1s2p), (1s3p), and (1s4p) 1,3P states of
He and Li+, when the outgoing electron is in the S continuum
state. The convergence with respect to the number of terms
Nω = 220, 286, and 364 in the P state shows that the cross
sections have converged in the third or fourth decimal place in
most cases. The cross sections decrease as k increases and are
seen to be larger for the higher excited states.

In Table VI, we give the photoabsorption cross sections,
when the outgoing photoelectron is in the continuum D state,
for various excited states in He and Li+. It is seen that these
cross sections are much larger than the cross sections when
the continuum electron is in the S state. They also decrease as
k increases and are larger for the higher excited states.

In Table VII, partial and total cross sections σ [Eq. (16)] for
3P states of He are given for various outgoing photoelectron
momenta, and in Table VIII similar results for 1P states of
He are given. In general, triplet state photoionization cross
sections are larger than the singlet ones. Also, the cross sections

TABLE VI. Convergence of photoionization cross sections (Mb)
for the 3,1P excited states, L = 2.

k System, state Nω = 220 286 364

0.1 He, (1s2p) 3P 21.0188 21.0511 21.0554
0.2 15.6489 15.6595 15.6592
0.3 10.0894 10.0888 10.0750
0.1 He, (1s3p) 3P 33.2233 33.1520 33.0946
0.2 20.2710 20.3149 20.1579
0.3 10.2145 10.2350 10.2863
0.1 He, (1s4p) 3P 39.8836 41.9651 42.0424
0.2 20.9864 20.2383 20.0781
0.3 8.1456 7.9045 7.9585
0.1 Li+, (1s2p) 3P 5.7974 5.5209 5.5216
0.2 5.3458 5.0908 5.0912
0.3 4.6884 4.4644 4.4644
0.1 He, (1s2p) 1P 17.4475 17.4809 17.4710
0.2 12.3005 12.2962 12.3033
0.3 7.3245 7.3024 7.3065
0.1 He,(1s3p) 1P 30.4172 30.5785 30.6182
0.2 17.4416 17.3700 17.1937
0.3 7.9201 7.8680 7.8831
0.1 He, (1s4p) 1P 40.0922 41.0226 40.8137
0.2 18.4176 17.8297 17.5213
0.3 6.2366 6.2375 6.3933
0.1 Li+, (1s2p) 1P 4.7574 4.7614 4.7628
0.2 4.3336 4.3371 4.3381
0.3 3.7301 3.7325 3.7330

are larger for the excited states for the first few values of the
photoelectron momentum.

In Tables IX and X, the photoionization cross sections
are presented for Li+. They are much smaller compared to
the cross sections for He. Table IX shows that the (1s2p)
and (1s3p) triplet states of the Li ion have a minimum in
σ (lf = 0).

Jacobs [20] calculated the photoionization of the (1s2p)
1P state of a helium atom by using the close-coupling
approximation. His results (obtained by multiplying the partial
oscillator strengths by 4π2αa2

0 = 8.062 Mb) are compared
with the present results in Table XI, and the close-coupling
results are seen to be lower than the present results. This
comparison is also shown in Fig. 1.

Gisselbrecht et al. [21] have carried measurements of the
photoionization cross sections of the (1s2p) 1P and (1s3p) 1P

states of a helium atom by using picosecond tunable lasers.
Their measured cross sections for the (1s2p) 1P state for
the photoelectron momenta of 0.094 and 0.308 are 16.6 and
6.6 Mb, respectively, while the present results at 0.10 and
0.30 are 17.74 and 7.44 Mb, respectively. The agreement is
fairly good considering that the accuracy of the measurements
is 25%. A similar measurement of the (1s3p) 1P state at
the photoelectron momenta of 0.105, 0.247, and 0.382 are
24.4, 10.5, and 4.2 Mb, while the inferred present results
from interpolation are 30.28, 12.68, and 4.39 Mb, respectively.
Again the agreement is fairly good considering the accuracy
of 25% of the measurements.

A similar experiment on the (1s3p) 1P state of He has
been carried out by Haber et al. [22] at exactly the same
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TABLE VII. Total photoabsorption cross sections (Mb) for 3P

states of He.

(1s2p) 3P state of He

k lf = 0 lf = 2 Total

0.1 2.3910(−1) 21.0554 23.4464
0.2 1.8014(−1) 15.6592 15.8393
0.3 1.1695(−1) 10.0750 10.1920
0.4 6.8129(−2) 5.9141 5.9822
0.5 3.6952(−2) 3.3080 3.3450
0.6 1.8835(−2) 1.8176 1.8364
0.7 9.2323(−3) 9.9685(−1) 1.0061
0.8 4.3557(−3) 5.5048(−1) 5.5484(−1)
0.9 2.0342(−3) 3.0629(−1) 3.0832(−1)
1.0 9.4772(−4) 1.7121(−1) 1.7216(−1)
1.1 4.8002(−4) 9.5712(−2) 9.6192(−2)
1.2 2.6010(−4) 5.2213(−2) 5.2473(−2)
1.3 1.9561(−4) 2.7001(−2) 2.7021(−2)
1.4 2.3343(−4) 1.3331(−2) 1.3564(−2)
1.5 1.8114(−4) 5.8450(−3) 6.0261(−3)
1.6 2.2273(−4) 2.0162(−3) 2.2435(−3)
1.7 2.7622(−4) 3.6277(−4) 6.3899(−4)

(1s3p) 3P state of He
0.1 7.3841(−1) 33.0946 33.8330
0.2 4.3019(−1) 20.1579 20.5881
0.3 2.1182(−1) 10.2863 10.4981
0.4 1.0031(−1) 4.8458 4.9461
0.5 4.7466(−2) 2.2735 2.3210
0.6 2.2293(−2) 1.0978 1.1201
0.7 1.1184(−2) 5.4599(−1) 5.5717(−1)
0.8 5.8524(−3) 2.7979(−1) 2.8564(−1)
0.9 3.0489(−3) 1.4697(−1) 1.5002(−1)
1.0 1.6386(−3) 7.9557(−2) 8.1196(−2)
1.1 8.6149(−4) 4.3627(−2) 4.4488(−2)
1.2 4.2846(−4) 2.3857(−2) 2.8142(−2)
1.3 2.6229(−4) 1.2919(−2) 1.3181(−2)
1.4 1.2897(−4) 6.5604(−3) 6.6894(−3)
1.5 7.1650(−5) 3.0872(−3) 3.1589(−3)
1.6 3.6230(−5) 1.2820(−3) 1.3182(−3)
1.7 1.4598(−5) 3.9579(−4) 4.1039(−4)

(1s4p) 3P state of He
0.1 1.3997 42.0424 43.4421
0.2 6.0959(−1) 20.0781 20.6877
0.3 2.2155(−1) 7.9585 8.1801
0.4 9.0705(−2) 3.3211 3.4118
0.5 3.5954(−2) 1.3712 1.4072
0.6 1.4252(−2) 5.9616(−1) 6.1041(−1)
0.7 6.1057(−3) 2.8723(−1) 2.9334(−1)
0.8 2.8543(−3) 1.4558(−1) 1.4843(−1)
0.9 1.3618(−3) 7.5135(−2) 7.6497(−2)
1.0 6.3061(−4) 3.9231(−2) 3.9862(−2)
1.1 3.5675(−4) 2.0728(−2) 2.1085(−2)
1.2 1.5936(−4) 1.1067(−2) 1.1226(−2)
1.3 9.4393(−5) 5.8585(−3) 5.9794(−3)
1.4 7.4255(−5) 2.8313(−3) 2.9056(−3)
1.5 5.4261(−5) 1.4899(−3) 1.5442(−3)
1.6 5.6225(−5) 6.5995(−4) 7.1618(−4)
1.7 4.5292(−5) 2.3360(−4) 2.7889(−4)

TABLE VIII. Total photoabsorption cross sections (Mb) for 1P

states of He.

(1s2p) 1P state of He

lf = 0 lf = 2 Total

0.1 2.6918(−1) 17.4710 17.7402
0.2 2.0605(−1) 12.3033 12.5094
0.3 1.3860(−1) 7.3065 7.4451
0.4 8.5132(−2) 3.9050 3.9901
0.5 4.9795(−2) 1.9759 2.0257
0.6 2.8560(−2) 9.7950(−1) 1.0081
0.7 1.6168(−2) 4.8812(−1) 5.0429(−1)
0.8 8.9870(−3) 2.4743(−1) 2.5642(−1)
0.9 5.0053(−3) 1.2916(−1) 1.3417(−1)
1.0 2.7539(−3) 6.9854(−2) 7.2608(−2)
1.1 1.5556(−3) 3.9702(−2) 4.1258(−2)
1.2 8.4475(−4) 2.3663(−2) 2.4508(−2)
1.3 4.5915(−4) 1.4296(−2) 1.5419(−2)
1.4 2.3343(−4) 9.3548(−3) 9.5882(−3)
1.5 1.0795(−4) 6.5929(−3) 6.7009(−3)
1.6 5.0196(−5) 4.9742(−3) 5.0244(−3)
1.7 2.1510(−5) 4.0039(−3) 4.0254(−3)

(1s3p) 1P state of He
0.1 7.3841(−1) 30.6182 31.3566
0.2 4.3019(−1) 17.1937 17.6239
0.3 2.1182(−1) 7.8831 8.0949
0.4 1.0031(−1) 3.3590 3.4593
0.5 4.7466(−2) 1.4081 1.4556
0.6 2.2293(−2) 6.0690(−1) 6.2919(−1)
0.7 1.1184(−2) 2.7474(−1) 2.8592(−1)
0.8 5.8524(−3) 1.2836(−1) 1.3421(−1)
0.9 3.0489(−3) 6.2325(−2) 6.5374(−2)
1.0 1.6386(−3) 3.1757(−2) 3.3396(−2)
1.1 8.6149(−4) 1.7145(−2) 1.8006(−2)
1.2 4.2846(−4) 9.5360(−3) 9.9645(−3)
1.3 2.6229(−4) 5.4677(−3) 5.7300(−3)
1.4 1.2897(−4) 3.3547(−3) 3.4837(−3)
1.5 7.1650(−5) 2.4578(−3) 2.5295(−3)
1.6 3.6230(−5) 1.7689(−3) 1.8051(−3)
1.7 1.4598(−5) 1.3604(−3) 1.3750(−3)

(1s4p) 1P state of He
0.1 1.2628 40.8137 42.0765
0.2 5.3909(−1) 17.5213 18.0604
0.3 2.0020(−1) 6.3933 6.5935
0.4 7.8501(−2) 2.3140 2.3925
0.5 3.1604(−2) 8.6143(−1) 8.9303(−1)
0.6 1.4261(−2) 3.4453(−1) 3.5879(−1)
0.7 6.4289(−3) 1.4763(−1) 1.5406(−1)
0.8 3.1733(−3) 6.7067(−2) 7.0240(−2)
0.9 1.6266(−3) 3.1810(−2) 3.3437(−2)
1.0 8.5656(−4) 1.5824(−2) 1.6681(−2)
1.1 4.3334(−4) 8.2951(−3) 8.7284(−3)
1.2 2.7873(−4) 4.4681(−3) 4.7468(−3)
1.3 1.3237(−4) 2.5827(−3) 2.7151(−3)
1.4 8.9883(−5) 1.6329(−3) 1.7228(−3)
1.5 3.5560(−5) 1.0909(−3) 1.1265(−3)
1.6 2.4817(−5) 7.7907(−4) 8.0389(−4)
1.7 2.7506(−5) 5.9654(−4) 6.2405(−4)
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TABLE IX. Total photoabsorption cross sections (Mb) for 3P

states of Li+.

(1s2p) 3P state of Li+

k lf = 0 lf = 2 Total

0.1 5.9179(−1) 5.5216 6.1134
0.2 5.4893(−1) 5.0912 5.6401
0.3 4.8548(−2) 4.4644 4.5129
0.4 4.0711(−2) 3.7444 3.7851
0.5 3.2391(−2) 3.0222 3.0546
0.6 2.4013(−2) 2.3644 2.3884
0.7 1.5771(−2) 1.8055 1.8213
0.8 7.8775(−3) 1.3524 1.3603
0.9 8.0765(−4) 9.9891(−1) 9.9972(−1)
1.0 2.4560(−2) 7.3009(−1) 7.5465(−1)
1.1 7.4757(−2) 5.2942(−1) 6.0418(−1)
1.2 7.8767(−2) 3.7994(−1) 4.5871(−1)
1.3 3.9808(−2) 2.7066(−1) 3.1047(−1)
1.4 2.6681(−2) 1.9367(−1) 2.2035(−1)
1.5 2.0021(−2) 1.3717(−1) 1.5719(−1)
1.6 1.6004(−2) 9.6423(−2) 1.1243(−1)
1.7 1.3321(−2) 6.7171(−2) 8.0492(−2)

(1s3p) 3P state of Li+

0.1 1.9106(−1) 9.4797 9.6708
0.2 1.6524(−1) 8.2323 8.3975
0.3 1.3083(−1) 6.6135 6.7445
0.4 9.7003(−2) 4.9415 5.9115
0.5 6.8820(−2) 3.5349 3.6037
0.6 4.6509(−2) 2.4566 2.5017
0.7 3.0390(−2) 1.6792 1.7096
0.8 1.8446(−2) 1.1371 1.1555
0.9 8.3303(−3) 7.6663(−1) 7.7496(−1)
1.0 2.7700(−6) 5.1688(−1) 5.1689(−1)
1.1 1.5807(−1) 3.4944(−1) 5.0751(−1)
1.2 2.4139(−2) 2.3833(−1) 2.6247(−1)
1.3 1.3291(−2) 1.6048(−1) 1.7377(−1)
1.4 8.9921(−3) 1.1373(−1) 1.2272(−1)
1.5 6.6529(−3) 7.7210(−2) 8.3863(−2)
1.6 5.2192(−3) 5.3401(−2) 5.8620(−2)
1.7 4.1964(−2) 3.6857(−2) 4.1053(−2)

photoelectron momenta of 0.105, 0.247, and 0.382, and
their corresponding results are 24 ± 6.1, 10.5 ± 2.6, and
4.2 ±1.1 Mb. These measurements too have an error of 25%.
A comparison of the results obtained in Ref. [21] with the
presently obtained cross sections is shown in Fig. 2.

III. RADIATIVE ATTACHMENT

As mentioned above, the radiative attachment or recom-
bination process plays an important role in the solar and
astrophysical problems. It is given by

e + He+ → He + hν. (21)

The incident electron has angular momentum l = 0 or 2
to give the He atom in the singlet or triplet (1s2p) P state.
Instead of He+, the target can be Li2+, giving Li+ in the
final state. These processes are exothermal processes and have
a small radiative-attachment cross section compared to the
photoionization cross section σ . The attachment cross section

TABLE X. Total photoabsorption cross sections for 1P states of Li+.

(1s2p) 1P state of Li+

k lf = 0 lf = 2 Total

0.1 5.6034(−2) 4.7628 4.8188
0.2 5.2144(−2) 4.3381 4.3902
0.3 4.6482(−2) 3.7330 3.7795
0.4 3.9932(−2) 3.0571 3.0970
0.5 3.3022(−2) 2.3981 2.4311
0.6 2.6590(−2) 1.8192 1.8456
0.7 2.0950(−2) 1.3456 1.3666
0.8 1.6120(−2) 9.7814(−1) 9.9426(−1)
0.9 1.2312(−2) 7.0360(−1) 7.1591(−1)
1.0 9.3103(−3) 5.0376(−1) 5.1307(−1)
1.1 6.9730(−3) 3.6017(−1) 3.6714(−1)
1.2 5.2005(−3) 2.5624(−1) 2.6144(−1)
1.3 3.8745(−3) 1.8324(−1) 1.8711(−1)
1.4 2.8952(−3) 1.3353(−1) 1.3643(−1)
1.5 2.1322(−3) 9.7684(−2) 9.9812(−2)
1.6 1.5701(−3) 7.2468(−2) 7.4038(−2)
1.7 1.1636(−3) 5.4575(−2) 5.5739(−2)

(1s3p) 1P state of Li+

0.1 1.7369(−1) 8.9895 9.1632
0.2 1.5008(−1) 7.6618 7.8119
0.3 1.1892(−1) 5.9729 6.0918
0.4 8.7412(−2) 4.2978 4.3852
0.5 6.1976(−2) 2.9515 3.0135
0.6 4.2760(−2) 1.9677 2.0105
0.7 2.8983(−2) 1.2920 1.3210
0.8 1.9773(−2) 8.4215(−1) 8.6192(−1)
0.9 1.3509(−2) 5.4763(−1) 5.6114(−1)
1.0 9.2442(−3) 3.5740(−1) 3.6664(−1)
1.1 6.2466(−3) 2.3496(−1) 2.4121(−1)
1.2 4.3094(−3) 1.5808(−1) 1.6239(−1)
1.3 3.0363(−3) 1.0470(−1) 1.0774(−1)
1.4 2.1247(−3) 7.2697(−2) 7.4822(−2)
1.5 1.5030(−3) 5.0774(−2) 5.2277(−2)
1.6 1.0603(−3) 3.5855(−2) 3.6915(−2)
1.7 7.6716(−4) 2.5779(−2) 2.6546(−2)

TABLE XI. Comparison of the present results of photoionization
of the (1s2p) 1P state of He with those of Jacobs [20].

k σ (lf = 0) + σ (lf = 2) Jacobs [20]a

0.4 3.9901 2.7304
0.5 2.0257 1.4000
0.6 1.0081 7.2083(−1)
0.7 5.0429(−1) 3.6214(−1)
0.8 2.5642(−1) 1.7616(−1)
0.9 1.3417(−1) 8.4919(−2)
1.0 7.2608(−2) 4.2709(−2)
1.1 4.1258(−2) 3.2429(−2)
1.2 2.4508(−2) 1.0646(−2)
1.3 1.5419(−2) 6.4050(−2)

aInterpolated.
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FIG. 1. (Color online) The upper curve represents photoioniza-
tion cross sections of the (1s2p) 1P state of the helium atom obtained
in the present calculation, while the lower curve represents results
obtained by Jacobs [20], using the close-coupling approximation.

is given by

σa =
(

hν

cpe

)2
g(f )

g(i)
σ =

(
hν

c

)2 1

2mE

g(f )

g(i)
σ, (22)

which follows from the principle of detailed balance. In the
above equation, pe ≡ k is the electron momentum. The ra-
diative rate coefficient averaged over the Maxwellian velocity
distribution f (E) is given by

αR(T ) = 〈σavef (E)〉 , (23)

where ve is the electron velocity, and the rate coefficient is
given by

αR(T ) =
√

2/π
c

(mc2kBT )1.5

g(f )

g(i)

∫ ∞

0
dE(E+I )2σe−E/kBT ,

(24)
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FIG. 2. (Color online) The solid curve represents photoioniza-
tion cross sections of the (1s3p) 1P state of the helium atom, while
points represent the cross sections obtained in Ref. [21]. These
measurements have an accuracy of 25%.

TABLE XII. Recombination rate coefficients (cm3/s) for the 3,1P

states of He and Li+.

1015αR (T)

T (K) He(3P ) He(1P ) Li+(3P ) Li+(1P )

1000 31.54 7.73 178.96 31.04
2000 29.62 7.21 169.79 29.45
5000 21.76 5.19 123.94 22.38
7000 18.68 4.41 104.78 19.58
10 000 15.53 3.61 85.74 16.70
12 000 14.01 3.23 76.88 15.30
15 000 12.24 2.79 66.95 13.60
17 000 11.30 2.56 61.85 12.78
20 000 10.15 2.28 55.69 11.69
22 000 9.51 2.12 52.32 11.07
25 000 8.68 1.92 48.07 10.28
30 000 7.59 1.66 42.54 9.21
35 000 6.74 1.46 38.30 8.37
40 000 6.05 1.30 34.95 7.68

where E = k2 is the energy of the electron, kB is the Boltzmann
constant, T is the electron temperature, and hν = E + I ,
where I is the threshold for photoionization. Considering the
spin states of the electron, the angular momentum, and the

TABLE XIII. P -state energies of He and Li+ for various numbers
of terms.

System State a B Nω E (Ry)

He (1s2p) 3P 0.91 2.25 220 −4.266 328 36
0.91 2.30 286 −4.266 328 37
0.91 2.30 364 −4.266 328 38

He (1s3p) 3P 0.56 1.91 220 −4.116 161 96
0.56 1.91 286 −4.116 162 04
0.56 1.91 364 −4.116 162 11

He (1s2p) 3P 0.41 1.97 220 −4.064 645 74
0.43 1.93 286 −4.064 648 19
0.43 1.93 364 −4.064 648 19

He (1s2p) 1P 0.86 2.08 220 −4.247 686 12
0.86 2.08 286 −4.247 686 15
0.86 2.08 364 −4.247 686 16

He (1s3p) 1P 0.57 2.01 220 −4.110 292 25
0.58 2.13 286 −4.110 292 51
0.58 2.13 364 −4.110 292 63

He (1s4p) 1P 0.40 1.95 220 −4.062 136 34
0.41 2.04 286 −4.062 138 07
0.41 2.04 364 −4.062 138 66

Li+ (1s2p) 3P 1.70 3.55 220 −10.055 431 4
1.74 3.57 286 −10.055 431 4
1.74 3.57 364 −10.055 431 4

(1s3p) 3P 1.08 3.02 220 −9.460 919 2
1.11 3.02 286 −9.460 919 3
1.16 3.02 364 −9.460 919 3

Li+ (1s2p) 1P 1.70 3.45 220 −9.986 702 1
1.80 3.15 286 −9.986 702 1
1.85 3.45 364 −9.986 702 1

(1s3p) 1P 1.05 3.25 220 −9.440 133 1
1.10 3.30 286 −9.440 136 0
1.15 3.35 364 −9.440 137 1
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polarization directions of the electromagnetic field, we have
g(i) = 4(2li + 1), where li = 0 or 2, and g(f ) = 6(2S + 1),
where S is the spin of the final state of the combined ion. The
above expression can be written as

αR(T ) = g(f )20.501 69 × 1010
∫ ∞

0
dE(E+I )2

×�(E)e−E/kBT , (25)

where

�(E) = [σ (E)/g(i)]li=0 + [σ (E)/g(i)]li=2. (26)

The photoionization cross section in Eq. (25) is in units of
Mb. The rate coefficients, obtained using the photoionization
cross section given in Tables VII–X for He and Li+, are given in
Table XII when the final state is a triplet or singlet P state. Very
few energy points in Eq. (25) are required to get converged
results. The rate coefficients for the higher excited states can
be calculated easily using the cross sections given above. The
rate coefficients are much larger in Li+ than in He and in
all cases and they decrease with the increase of the electron
temperature.

IV. CONCLUSIONS

The long-range potential has been included in the scattering
equation variationally and therefore the present results for
the phase shifts have lower bounds to the exact phase shifts.
The present approach is applied to calculate photoionization

cross sections of singlet and triplet P excited states of He and
Li+. The present results are compared to those obtained using
the close-coupling approximation [20] and the experimental
results obtained using the tunable lasers [21,22]. There are
very few measurements and the accuracy is not very good,
and it is hoped that the present calculation will encourage
new measurements and that the photoionization cross sections
calculated here for various excited states will be useful in the
investigation of solar and stellar objects. These cross sections
are used here to calculate the Maxwellian-averaged radiative-
attachment cross sections at various electron temperatures, the
recombined states being 1,3P states of He and Li+.

As for the accuracy of the calculations, all phase shifts and
cross sections have converged to better than the third decimal
place.
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APPENDIX

In Table XIII, we give the nonlinear parameters of various
excited P -state energies of a He atom and a Li+ ion for a
number of terms in the Hylleraas function, Eq. (13). All ener-
gies have converged to six or seven decimal places when the
number of terms is increased from 220 to 286 and then to 364.
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