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Electron-impact total cross sections for phosphorous triflouride
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Various total cross sections for scattering of electrons by phosphorous triflouride (PF3) using the R-matrix
method for incident energies from 0.1–15 eV and using spherical complex optical potential formalism beyond
ionization threshold of target to 5000 eV are reported. We performed close-coupling calculations using static
exchange plus polarization model. We employed different target models in order to study their relative dependence
on the total cross sections. Three important structures are revealed in the total-cross-section curve: one that
corresponds to the Ramsauer-Townsend minimum at 0.33 eV, the second is a strong maximum of 100 Å2 at 1 eV,
the third is around 11 eV corresponding to negative ion formation as predicted by earlier study. The total
ionization cross sections are computed using the complex scattering potential ionization contribution method and
the binary encounter Bethe method. The electronic-excitation cross sections, momentum-transfer cross sections,
and differential and ionization cross sections are our maiden efforts for this system. We have compared our
total-cross-section results with available theoretical and experimental results.
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I. INTRODUCTION

Considerable progress has been made in the study of
electron-molecule collision studies in the past decades both
experimentally and theoretically. By utilizing better elec-
tron spectrometers and adopting position-sensitive detectors,
experimentalists are capable of producing accurate cross-
sectional data on electron collisions with larger molecules
and even explore free radical species. However, given the
vast number of molecular systems and the requirement for an
ever-increasing amount of data, the experimental community
is unable to meet the demands of the myriad of data users.
In this respect, one must look to theory to provide much
of the required electron-scattering data. On the theoretical
front, with the advent of high-performing computers and the
development of very accurate theories, computation of reliable
cross-section data is now possible at least for smaller targets.
These theoretical methods are computationally taxing and
consume longer computing time. Thus, there is a demand for
more generic and faster calculations to provide reliable data to
the user community.

Electron-molecule collision cross sections from very low
energy up to threshold play a pivotal role in determining
electron transport properties and electron energy distribution
of a swarm of electrons drifting through various gases. They
also play a significant role in modeling low-temperature
plasmas. In addition to the practical interest, electron scattering
data are of fundamental theoretical importance towards the
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understanding of various electron-assisted molecular interac-
tions [1]. The electron bombardment on a molecule may result
into the formation of positive and negative ions. The latter may
be produced by resonance attachment, dissociative resonance
capture, and ion-pair formation. These mechanisms operate at
different electron energies. The resonance processes usually
occur in the 0–10 eV energy region and the ion-pair processes
at energies above 10 eV.

Perfluorinated compounds are widely used in electrical in-
dustries, plasma-assisted fabrication of microcircuits, surface
hardening, agriculture, and medicinal fields. For example, in
microelectronics doping of phosphorous is done either with
pure phosphorous or with its halides or hydrides. However,
the pure phosphorous is highly inflammable and the hydrides,
i.e., PH3, are highly toxic compared to halides [2]. PF3 is thus
suggested to be a potential reagent for the gas-phase synthesis
in microelectronic dopings.

There exist numerous studies on PF3 which include positive
and negative ion formation on electron bombardment, deter-
mination of ionization potential of PF3 using photoelectron
spectroscopy, determination of the structure of PF3, and
electron-stimulated desorption of positive ion of PF3

+, etc.
Macneil and Thynne [3] and Harland et al. [4] studied negative
ion formation of PF3 as a function of electron energy using
a Bendix time-of-flight mass spectrometer. Torgerson and
Westmore [5] determined relative intensities and appearance
potentials of several positive ions in the mass spectrum of
PF3

+. There are extensive studies on determination of ioniza-
tion potential of PF3 using photoelectron spectroscopy. While
Bassett et al. [6,7] measured adiabatic ionization potential
at 11.66 eV, the vertical ionization potential of 12.28 eV is
reported by Potis et al. [8] and at 12.3 eV are reported by
two groups (Green et al. [9] and Maier et al. [10]) and at
12.27 eV is reported by Zhao and Setser [11]. Aside from this,
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the photoionization studies on PF3 are reported by Price and
Pasmore [12] and molecular orbital calculations are performed
for PH3, PF3, and P(CH3)3 by Hillier and Saunders [13] and
for PF3 and PF2CN by Hall and Hameka [14]. An extensive
study on electron-stimulated desorption (ESD) of positive ions
from PF3 molecules adsorbed on a Pt substrate over a wide
electron energy range (0–175 eV) is performed by Akbulut
et al. [15]. These studies are important to get information
on the bonding mechanisms of adsorbed PF3 as well as
the coverage-dependent azimuthal orientations of adsorbed
PF3 [15].

In view of these extensive studies as seen from the literature
survey, it is evident that not much of experimental or theoretical
work is reported on e-PF3 scattering cross sections. On the
experimental front, a single set of scattering cross-sectional
data is reported by Szmytkowski et al. [16]. They measured
total cross sections using linear transmission method for
energy range 0.6 to 370 eV. The theoretical total cross sections
based on the modified additivity rule are reported by Shi
et al. [17] for impact energies from 30 to 5000 eV. Apart
from the electron impact total cross sections, there are no
studies reported for the electronic excitations, differential
cross sections, momentum-transfer cross sections, as well as
ionization cross sections in literature. Hence, present study on
e-PF3 over energies 0.1 to 5000 eV is important to fill the void
of various total-cross-section data, viz., electronic-excitation,
differential, momentum-transfer, and ionization cross sections.

II. THEORETICAL METHODOLOGY

For the low energy (0.1 eV to about 15 eV), we employed the
ab initio calculations using Quantemol-N [18] which utilizes
UK molecular R-matrix code [19]. The spherical complex
optical potential (SCOP) method is employed for calculating
total (elastic plus inelastic) cross sections beyond ionization
threshold up to 5 keV [20]. An outline of these two formalisms
is briefly discussed in the following subsections. Before going
to the details of theoretical methods, we also discuss the target
model employed for the present system.

A. Target model

The accuracy of the scattering data depends on the accuracy
of the target wave function, hence, it is imperative to have an
appropriate target model. For many-electron targets such as
PF3, the relative energy between the N -target electrons and
the N + 1-target plus scattering electron becomes important
since neither the target nor the scattering wave functions have
the energies close to the exact value for the given system.
This requires careful choice of the configurations in terms of
a complete active space (CAS) and the valance configuration
interaction (CI) representation of the target system [18]. It
is realized by characterizing the low-lying electronic states
of the target and by generating a suitable set of orbitals.
The molecular orbitals are generated by performing a self-
consistent field (SCF) calculation of the ground state of the
molecule (X 1A1). Since the SCF procedure is inadequate
to provide a good representation of the target states, we
improve the energies of these states by invoking the variational
method of configuration interaction (CI) in which we take

linear combination of configuration state functions (CSFs) of
a particular overall symmetry. This lowers the energies and
the correlation introduced provides a better description of the
charge cloud and the energies. For all the states included here,
we employ CI wave function to represent the target states.

The Hartree-Fock electronic configuration for the ground
state of PF3 at its equilibrium geometry in Cs symmetry is 1a′2,
2a′2, 1a′′2, 3a′2, 4a′2, 5a′2, 2a′′2, 6a′2, 7a′2, 8a′2, 3a′′2, 9a′2,
10a′2, 11a′2, 4a′′2, 12a′2, 5a′′2, 13a′2, 6a′′2, 7a′′2, 14a′2. Out
of 42 electrons, 38 electrons are frozen in 1a′, 2a′, 3a′, 4a′,
5a′, 6a′, 7a′, 8a′, 9a′, 10a′, 11a′, 12a′, 13a′, 1a′′, 2a′′, 3a′′,
4a′′, 5a′′, 6a′′ orbitals and 4 electrons are kept free to move
in active space of 14a′, 15a′, 16a′, 7a′′, 8a′′, 9a′′ molecular
orbitals. All calculations of PF3 are performed in Cs symmetry
since the R-matrix code can only handle calculations in a
subgroup of the highest accessible Abelian point group D2h.
We have used 6-311G Gaussian-type orbital (GTO) basis set
and double zeta plus polarization (DZP) basis set in order to
study the dependency of target properties and scattering cross
sections on the basis set chosen.

The target wave functions are computed using the complete
active space configuration integration (CAS-CI) method. They
are subsequently improved using a pseudonatural orbital
calculation. The Born correction for this polar molecule is
employed to account for higher partial waves, l > 4. In the
static-exchange-polarization (SEP) model, the ground state of
the molecule is perturbed by single and double excitations
of the electrons, thus leading to the inclusion of polarization
effects. The SEP model augments the static-exchange (SE)
model by including polarization effects. Thus, polarization
effects are accounted by including closed channels in a CI
expansion of the wave function of the entire scattering system.
These electronic and angular momentum channels altogether
generated 393 configuration state functions (CSFs) and 90
channels in the calculation. The four lowest Cs electronic
excited states 1A′, 3A′′, 3A′, 1A′′ are employed and all possible
single and double excitations to virtual orbitals are included.

The Quantemol-N modules GAUSPROP and DENPROP [21]
construct the transition density matrix from the target eigen-
vectors obtained from configuration integration (CI) expansion
and generate the target properties. The multipole transition
moments obtained are then used to solve the outer region
coupled equations and the dipole polarizability α0. These
are computed using second-order perturbation theory and
the property integrals are evaluated by GAUSPROP [21]. Our
self-consistent field (SCF) model calculations yielded target
parameters such as the ground-state energy, the first electronic-
excitation energy, rotational constant, and dipole moment
which are listed in Table I.

The self-consistent field calculations yielded the ground-
state energy of −639.0582 hartree using 6-311G and
−639.227 hartree using DZP basis set, which is probably not
reported earlier in the literature. We report four electronic
excitation states below ionization threshold of the target for
phosphorous triflouride with the first electronic-excitation
energy obtained at 6.965 eV using DZP and at 6.971 eV using
6-311G basis set as listed in Table II. There are no data, either
theoretical or experimental, for the first electronic-excitation
energy available for comparison to the best of our knowledge.
The present rotational constant of 0.2792 cm−1 is in good
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TABLE I. Target properties obtained for the PF3 molecule using
6-311G and DZP basis sets

Present Other

Target property (unit) 6-311G DZP Theor. and Expt.

Ground-state energy − 639.058 − 639.227
energy (hartree)

First excitation 6.965 6.971
energy (eV)

Rotational constant (cm−1) 0.2792 0.2792 0.2608 [22]
Dipole moment (debye) 3.44 2.24 1.03 [23]

1.32 [24]

agreement with the theoretical value of 0.2608 cm−1 reported
in CCCBDB [22]. The dipole moment is 3.44 D obtained using
6-31G and 2.24 D obtained using DZP are quite high compared
to experimental value of 1.03 D reported in CRC [23] and
1.32 D calculated earlier by Bendiab et al. [24]. It can be
easily seen that the dipole moment is very sensitive to the
basis set chosen. Also, inclusion of large diffused functions can
improve upon the dipole moment but we can not use diffuse
functions for the target representation as this would violate the
boundary condition that the molecular orbitals should vanish
on the surface of the R-matrix sphere [25].

B. Low-energy formalism (0.01 ∼ 15 eV)

The most popular methodologies employed for low-
energy electron collision calculations are the Kohn variational
method [26,27], the Schwinger multichannel method [28,29],
and the R-matrix method [19], of which the R matrix is
the most widely used. The R-matrix method [19] splits
configuration space into an inner region, which is a sphere
of radius “a” about the target center of mass, and an outer
region. The boundary between these two regions is defined
by R-matrix radius. This radius is chosen large enough so
that, in the external region, only known long-range forces are
effective and antisymmetrization effects can be neglected. In
the inner region, the full electron-molecule problem is solved
using quantum chemistry codes. The inner region is usually
chosen to have a radius of around 10 a.u. and the outer region
is extended to about 100 a.u. The choice of this value depends
on the stability of results obtained in the inner and outer region
calculations. We describe the scattering within the fixed-nuclei
(FN) approximation that neglects any dynamics involving the
nuclear motion (rotational as well as vibrational), whereas the
bound electrons are taken to be in the ground electronic state of

TABLE II. Vertical excitation energies for PF3 below ionization
threshold for 6-311G and DZP basis sets.

Energy (eV)

State 6-311G DZP

1A′ 0.0000 0.000
3A′′ 6.9658 6.971
3A′ 8.182 7.295
1A′′ 9.8963 10.032
1A′ 10.323

the target at its optimized nuclear geometry. This is an effect of
the extent of electronic charge density distribution around the
center of mass of the target. In this study, we have considered
three different choices (10, 12, 13 a.u.) of inner R-matrix radii
to find its dependence on the cross sections.

In the inner region, the total wave function for the system
is written as

�N+1
k = A

∑
I

�N
I (x1, . . . ,xN )

∑
j

ζj (xN+1)aIjk

+
∑
m

χm(x1, . . . ,xN+1)bmk, (1)

where A is the antisymmetrization operator, xN is the spatial
and spin coordinate of the nth electron, ζj is a continuum
orbital spin coupled with the scattering electron, and aIjk and
bmk are variational coefficients determined in the calculation.
The summations in the first term run over the target states used
in the close-coupled expansion. The summation in the second
term runs over configurations χm, where all electrons are
placed in target molecular orbitals. The number of these con-
figurations varies considerably with the model employed. With
the wave function given by Eq. (1), a static-exchange calcula-
tion has a single Hartree-Fock target state in the first sum. The
second term runs over the minimal number of configurations
(usually three or fewer)required to relax orthogonality con-
straints between the target molecular orbitals and the functions
used to represent the configuration. Our fully close-coupled
system uses the lowest number of target states represented by
a CI expansion in the first term and over 100 configurations in
the second. These configurations allow for both orthogonality
relaxation and short-range polarization effects.

The target and the continuum orbitals are represented by
Gaussian-type orbitals (GTOs) and the molecular integrals
are generated by the appropriate molecular package. The R

matrix will provide the link between the inner and outer
regions. For this purpose, the inner region is propagated to
the outer region potential until its solutions match with the
asymptotic functions given by the Gailitis expansion [19].
Thus, by generating the wave functions, using Eq. (1), their
eigenvalues are determined. These coupled single center
equations describing the scattering in the outer region are
integrated to identify the K-matrix elements. The K matrix
is a symmetric matrix whose dimensions are the number of
channels. All the observables are basically deduced from it
and further it is used to deduce the T matrix using the relation

T = 2iK

1 − iK
. (2)

The T matrices are in turn used to obtain various total cross
sections. The K matrix is diagonalized to obtain the eigenphase
sum. The eigenphase sum is further used to obtain the position
and width of the resonance by fitting them to the Breit-Wigner
profile [30] using the program RESON [30].

Differential and momentum-transfer cross sections
(MTCS) are calculated using the POLYDCS program [31]. The
differential cross section (DCS) study is very important as it
provides large information about the interaction processes.
Indeed, the evaluation of DCS is a stringent test for any
scattering theory as it is sensitive to effects which are averaged
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out in integral cross sections. The DCS for polyatomic
molecule is represented by

dσ

d�
=

∑
L

ALPL(cosθ ), (3)

where PL represents the Legendre polynomial of order L.
The details about AL are already discussed by Gianturco
and Jain [32]. For a polar molecule, this expansion over L

converges slowly due to the long-range nature of the dipole
potential. To overcome this problem, we use the closure
formula given by

dσ

d�
= dσB

d�
+

∑
L

(
AL − AB

L

)
PLcosθ. (4)

Here, the superscript B denotes the fact that the relevant term
is calculated under the Born approximation with an electron
point dipole interaction. It is clear from the expression (4) that
convergence of the series is faster as the contribution arising
from the Born term is subtracted as seen in Eq. (4). The quantity
dσB

d�
for any initial rotor state is given by the sum over all final

rotor states as

dσB

d�
=

∑
J ′τ ′

dσB

d�
(Jτ → J ′τ ′). (5)

The calculated dipole moment (3.44 D) and rotational
constants (A = 0.2792 cm−1, B = 0.2577 cm−1, C =
0.1768 cm−1) for PF3 are used in the calculation of elastic
DCS (J = 0 → J ′ = 0) and rotationally inelastic (J = 0 →
J ′ = 1, 2, 3, 4 and 5) DCSs at different collision energies.

In fact, the MTCS is obtained by integrating the differential
cross sections (DCS) with a weight factor (1-cosθ )

σm = 2π

∫
dσ

d�
(1 − cosθ )dθ. (6)

C. Higher-energy formalism (threshold to 5 keV)

The scattering calculations above the threshold energy are
studied using the SCOP formalism [20,33]. In this formalism,
the electron-molecule system is represented by a complex
potential comprising of real and imaginary parts as

Vopt(r,Ei) = VR(r) + iVI (r,Ei) (7)

such that

VR(r,Ei) = Vst (r) + Vex(r,Ei) + Vp(r,Ei), (8)

where Ei is the incident energy. Equation (8) corresponds
to various real potentials to account for the electron target
interaction, namely, static, exchange, and the polarization
potentials, respectively. These potentials are obtained using
the target geometry, molecular charge density of the target,
the ionization potential, and polarizability as inputs. The
molecular charge density may be derived from the atomic
charge density by expanding it from the center of mass
of the system. The molecular charge density so obtained
is normalized to account for the total number of electrons
present. The atomic charge densities and static potentials
(Vst ) are formulated from the parametrized Hartree-Fock wave
functions given by Cox and Bonham [34].

The parameter-free Hara’s free-electron-gas exchange
model [35] is used for the exchange potential (Vex). The
polarization potential (Vp) is formulated from the parameter-
free model of correlation-polarization potential given by
Zhang et al. [36]. Here, various multipole nonadiabatic
corrections are incorporated in the intermediate region which
will approach the correct asymptotic form at large r smoothly.
The target parameters such as ionization potential (IP) and
dipole polarizability (α0) of the target used here are the best
available from the literature [37].

The imaginary part in Vopt, called the absorption potential
Vabs, accounts for the total loss of flux scattered into the allowed
electronic excitation or ionization channels. The expressions
used here are vibrationally and rotationally elastic. This is due
to the fact that the nonspherical terms do not contribute much
to the total potential at the present high-energy range.

The well-known quasifree model of Staszeweska et al. [38]
is employed for the absorption part, given by

Vabs(r,Ei) = −ρ(r)

√
Tloc

2

(
8π

10k3
F Ei

)

θ
(
p2 − k2

F − 2�
)
(A1 + A2 + A3), (9)

where Tloc is the local kinetic energy of the incident electron
which is given by

Tloc = Ei − (Vst + Vex + Vp). (10)

Here, p2 = 2Ei and kF = [3π2ρ(r)]
1
3 is the Fermi wave

vector and A1, A2, and A3 are dynamic functions that depend
differently on θ (x), I , �, and Ei . Here, I is the ionization
threshold of the target, θ (x) is the Heaviside unit step function,
and � is an energy parameter below which Vabs = 0. Hence,
� is the principal factor which decides the values of total
inelastic cross section since below this value, ionization or
excitation is not allowed. This is one of the main characteristics
of the Staszewska model [38]. This has been modified by us
by considering � as a slowly varying function of Ei around
I . Such an approximation is meaningful since � fixed at I

would not allow excitation at energies Ei ≤ I . However, if �

is much less than the ionization threshold, then Vabs becomes
unexpectedly high near the peak position. The amendment
introduced is to give a reasonable minimum value 0.8I to
� [39] and also to express the parameter as a function of Ei

around I , i.e.,

�(Ei) = 0.8I + β(Ei − I ). (11)

Here, the parameter β is obtained by requiring that � = I

(eV) at Ei = Ep, the value of incident energy at which present
Qinel reaches its peak. Ep can be found by calculating Qinel by
keeping � = I . Beyond Ep, � is kept constant and is equal
to I . The expression given in Eq. (11) is meaningful as �

fixed at the ionization potential would not allow any inelastic
channel to open below I . Also, if it is much less than I , then
Vabs becomes significantly high close to the peak position of
Qinel.

The complex potential thus formulated is used to solve
the Schrödinger equation numerically through partial-wave
analysis. This calculation will produce complex phase shifts
for each partial wave which carries the signature of interaction
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of the incoming projectile with the target. At low energies,
only a few partial waves (5–6 for absorption and 100 for
polarization at ionization threshold) are significant, but as
the incident energy increases more partial waves (around
40 for absorption and 100 for polarization) are needed for
convergence. The phase shifts δl thus obtained are employed
to find the relevant cross sections, total elastic (Qel) and the
total inelastic cross sections (Qinel), using the scattering matrix
Sl(k) = exp(2iδl) [40]. Then, the total scattering cross section
(TCS) QT is obtained by adding these two cross sections [40].

III. RESULTS AND DISCUSSION

This work reports total cross sections for e-PF3 scattering.
We have employed the ab initio R matrix code below the
ionization threshold of the target. The total cross section is
the sum of total elastic and total electronic-excitation cross
sections below the ionization threshold of the target. Above
it, we have computed the total cross section as the sum of
total elastic and total inelastic cross section using the SCOP
formalism. Using these two formalisms, we are able to predict
the total cross sections over a wide energy range [33,41–43].
The numerical results of total cross sections for PF3 are
reported from 0.1 to 5000 eV and are listed in Table III and
are also plotted graphically.

It is important to study eigenphase diagrams as they provide
the positions of resonances which are important features
of collision study in the low-energy regime. Resonances
are a common characteristic of electron molecule scattering
at low impact energies and lead to distinctive structure in
pure vibrational excitation cross sections [44]. A recursive
procedure for detecting and performing Breit-Wigner fits to
the eigenphase diagram is done through program RESON [30].
This program generates new energy points and marks those
points where the numerically computed values of second
derivative changes sign from positive to negative. Finer grids
are constructed about each of these points which are used as
inputs for Briet-Wigner fit [30] and the two most important

TABLE III. Total cross section (TCS) for the e-PF3 scattering
(energies are in eV and TCS′ are in Å2).

Energy TCS Energy TCS Energy TCS Energy TCS

0.1 93.02 5.5 33.94 12 29.20 300 9.89
0.2 64.25 6 32.19 13 29.17 400 8.45
0.4 57.42 6.5 30.83 14 29.00 500 7.43
0.6 71.03 7 29.72 15 28.73 600 6.66
0.8 93.05 7.5 28.99 16 28.38 700 6.05
1 103.50 7.52 28.96 17 27.97 800 5.56
1.2 101.54 7.54 28.93 18 27.54 900 5.15
1.5 90.70 7.56 28.90 19 27.09 1000 4.80
2 72.62 7.58 28.87 20 26.90 2000 2.94
2.5 60.10 7.6 28.84 30 23.50 3000 2.31
3 51.86 7.62 26.50 40 21.39 4000 1.78
3.5 46.20 8 27.43 60 18.93 5000 1.41
4 42.03 9 28.23 80 17.41
4.5 38.77 10 28.77 100 16.18
5 36.11 11 29.08 200 12.15

TABLE IV. Position and width of resonance states for PF3.

Resonance state Position (eV) Width (eV)

2A′′ 0.776 0.902
2A′ 13.574 1.157

parameters (position and width) related to resonances are
obtained.

Table IV gives the positions and widths of resonances
obtained in the present case using R-matrix calculations.

Doublet A′′ state shows a shape resonance structure at
0.77 eV with a resonance width of 0.902 eV. This resonance
is reflected as a strong peak in the TCS curve around 1 eV
with a maximum cross-section value of 100 Å2. Second shape
resonance is predicted at 13.57 eV with a width of 1.15 eV.
This peak corresponds to the negative ion formation predicted
by MacNeil and Thyne [3] at 14 eV. It is indeed remarkable that
our SEP calculation is able to report the Ramsauer-Townsend
(RT) minimum at approximately 0.33 eV which is not reported
earlier in the literature for this target.

Figure 1 presents electron-impact excitation cross sections
from the ground state (X 1A′) to the first three excited states
(3A′′, 3A′, 1A′′) obtained using the R-matrix calculation. The
first electronic-excitation energy is 6.965 eV which is obtained
from the transition of ground state of X 1A′ to 3A′′. The
excitation cross section for this transition rises sharply with
maximum value of 1.6 Å2 and then falls fast up to 10 eV and
then decreases slowly and shows a structure at 14.8 eV. The
second transition is from ground state X 1A′ to 3A′ which
starts at nearly 8.2 eV and rises to maxima of 1.1 Å2 and
then decreases slowly and finally shows a hump at 14.8 eV.
This transition corresponds to formation of PF− ion which is
predicted at 8.9 eV earlier by MacNeil and Thynne [3] which is
closer to present value of 8.2 eV. It shows a sharp peak around

FIG. 1. (Color online) e-PF3 excitation cross sections from the
ground state (X 1A′) to the first three excited states (3A′′, 3A′, 1A′′):
3A′′, solid line; 3A′, short dashed line; 1A′′, dashed dotted dotted
line.
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FIG. 2. (Color online) Rotationally resolved differential cross
sections (DCS) for incident energy of 0.32 eV.

14.8 eV which may be the signature of another negative ion
formation. The third transition is not much prominent which
is from ground state X 1A′ to 1A′′ which starts at 9.9 eV
and rises to a maxima of 0.6 Å2 at around 14.8 eV. This
transition corresponds to formation of the PF−

2 ion which
was earlier predicted at 10.3 eV [3]. All the three electronic
transitions show some peak structure around 15 eV which
may correspond to dipolar desorption process giving rise to
formation of F− as predicted by Akbulut et al. [15]. The
electronic excitations to 3A′′, 3A′, 1A′′ show a sharp increase
near their respective thresholds which show the dominance
of these energy levels in the present calculation. These cross
sections show the probability of excitation to various energy
levels of the target.

Figure 2 shows our rotationally resolved DCS at 0.32 eV
for all transitions (J = 0 to J ′ = 0 to 5) and also the summed
total of all transitions. As evident from the curve, the total
DCS at 0.32 eV is dominated by the dipole component (J = 0
→ J ′ = 1). As PF3 is a polar molecule, the dipole component
(J = 0 → J ′ = 1) is much larger than the elastic component
(J = 0 → J ′ = 0). The calculated DCS is converged when J ′
increases up to 5. Moreover, in the elastic component, there is
a minimum at about 60◦.

Figure 3 shows the sum of our rotationally resolved
differential cross sections summed over all transitions (J = 0
to J ′ = 0 to 5) for incident energies 1, 2, 4, 10, 13, 15,
16, and 19 eV. In the absence of any comparisons, we have
plotted all DCS curves at different energies in the same
figure. The scattering is dominated by elastic component 0
→ 0 and dipole component 0 → 1. The elastic component
shows a strong dip at 108◦ in the 1-eV curve, which indicates
the dominance of a p wave in the interference pattern
arising due to various partial-wave amplitudes. As the energy
increases, the convergence with respect to J is rapid. The
divergence at the forward angle is confirmed as being due
to dipole-allowed transitions 0→1 dominating the scattering.
The differential cross sections decrease as the incident energy
increases. The sharp enhancement in the forward direction

FIG. 3. (Color online) Rotationally resolved differential cross
sections (DCS) for incident energies 1, 2 4, 10, 13, 15, 16, and 19 eV.:
1 eV, solid line; 2 eV, dashed line; 4 eV, dotted line; 10 eV, dashed
dotted line; 13 eV, dashed dotted dotted line; 15 eV, short dashed line;
16 eV, short dotted liune; 19 eV, short dashed dotted line.

is a result of the strong long-range dipole component of the
interaction potential. There are no theoretical or experimental
comparisons available to the best of our knowledge.

The momentum-transfer cross sections (MTCS) indicate
the importance of the backward scattering and are an important
quantity that forms the input to solve the Boltzmann equation
for the calculation of electron distribution function of a swarm
of electrons drifting through a molecular gas. In contrast to
the divergent behavior of DCS in the forward direction, the
MTCS does not diverge due to the multiplicative factor (1 −
cos θ ). A further test of the quality of our DCS is shown by
the momentum-transfer cross section (MTCS) in Fig. 4 from

FIG. 4. (Color online) e-PF3 momentum-transfer cross section
(MTCS). Inset: Magnified view of MTCS between 8 and 20 eV.
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energies 0.1 to 20 eV. In order to make more visibility of
structures in the MTCS curve we have presented an inset in
Fig. 4 with expanded scale with energy range 8 to 20 eV. The
various peaks or structures observed in MTCS correspond to
various resonance processes. For instance, at 10.5 eV there is
a peak which corresponds to formation of PF2

− [3] at 12 eV
the small peak corresponds to formation of PF3

+ ion [8] and
many peaks for Ei > 15 eV correspond to dipolar desorption
process which leads to formation of F− ion [15]. At low impact
energy the curve is divergent due to the presence of dipole
moment. There are no comparisons for momentum-transfer
cross section for e-PF3 scattering to the best of our knowledge.

Due to the presence of long-range dipole interaction, the
total cross section at low energy is diverging in the fixed
nuclei approximation due to singularity in the differential cross
section in the forward direction. It is well known that the cross
sections of dipole-dominated processes only converge slowly
with partial waves. To obtain converged cross sections, the
effect of rotation must be included along with a large number
of partial waves. The higher partial waves (l � 4) are included
using a Born correction as given in the work of Chu and
Dalgarno [45]. This is done by adjusting the T matrices using
the CC cross sections generated by the code POLYDCS [31].
In this procedure, our low-l T matrices are added to analytic
dipole Born T matrices using the adiabatic nuclear rotation
(ANR) [33,46–48]. The Born contribution for partial waves
higher than l = 4 to the elastic cross section at energies below
0.5 eV is quite large as seen from Fig. 5.

In Fig. 5, we have compared total-cross-section data for e-
PF3 scattering using 6-311G and DZP basis sets with available
comparisons. The present calculations for total cross section
at low energy are carried out using various target models. The
total cross-section calculation depends on R-matrix radius (r),
number of states per symmetry (n), and complete active space
(c) considered in the present calculations. We have considered
R-matrix radii to be 10, 12, and 13 a.u. and observed the

FIG. 5. (Color online) e-PF3 total scattering cross sections: Com-
prehensive study (M1 to M6 and present SCOP) and their compar-
isons with the available experimental data: Szmytkowski et al. [16]
(open star); theoretical data: Shi et al. [17] (dashed dotted line).

consistency of results. The increase of the R-matrix radius
increases the cross-section value which is evident from Fig. 5
[model 1 (M1), model 2 (M2), model 3 (M3), and model 4
(M4)]. Increasing the CAS value, the computation becomes
more complex and it will make the resonant structures more
refined but do not change the results (see results of M3 and
M4). Finally, increasing the number of states per symmetry
will increase the computation time and will shift the peak value
of cross sections towards the left as can be seen from M1
and M2.

Three prominent structures are observed in the total-cross-
section curve presented for e-PF3 scattering in Fig. 5. The
first structure is the Ramsauer-Townsend minimum which is
observed at 0.33 eV. There are no theoretical or experimental
data available at this energy to compare with. The Ramsauer-
Townsend minimum is observed whenever the eigenphase
diagram or phase shift crosses zero. In the present case, the
eigenphase for doublet A1 state crosses the zero line which is a
clear signature of the RT minimum. The physical significance
of the R-T minimum is that at this energy, the attractive part of
the polarization potential is canceled by the repulsive part of
the exchange potential and it is a purely an S wave, low-energy
phenomenon.

The second is a strong maximum at 1 eV of 100 Å2.
The third structure is a broad maxima at 11 eV due to
formation of negative ion (PF−

2 ) as reported earlier at 10.3 eV
by MacNeil and Thynne [3]. The data sets produced by two
formalisms, viz., R matrix and SCOP, are consistent and have
identical cross-section value at transition energy (∼7.62 eV).
The higher peak value in our total-cross-section data at low
energy is attributed to the absence of vibrational channel
in our calculation. Including this channel will decrease the
cross-section peak as well as broaden the peak thereby bringing
the data closer to experimental data of Szmytkowski et al. [16].
However the position of the peak value of the cross section is
identical in the present case (M2) and the measured results
of Szmytkowski et al. [16] which is around 0.4 eV. Beyond
7 eV, the present data are in good agreement with the data
of Szmytkowski et al. [16]. Theoretical results of total cross
sections of Shi et al. [17] are in very good agreement with
present data throughout the range of energy reported by them.

In Fig. 6, we present the comparison of total cross section
of PF3 with other structurally similar targets (BF3, NF3, NH3,
H2S, and PH3) as the comparison for its TCS is very limited.
At very low impact energies, generally the elastic cross section
observed either shoots high in the case of polar targets or it
is very low for nonpolar targets. This feature is clearly seen
in Fig. 6. BF3 is a nonpolar target and hence its elastic cross
sections are very low. On the other hand, PF3 (μ = 3.44 D),
NH3 (μ = 1.47 D), H2S (μ = 0.970 D), PH3 (μ = 0.580 D),
and NF3 (μ = 0.235 D) are all polar targets whose cross
sections are very high at low energy. While the elastic cross
sections for BF3 and NF3 are reported by Pastega et al. [48]
and Joucoski et al. [29], respectively, using the Schwinger
multichannel method and that of NH3, H2S, and PH3 reported
in earlier study by Vinodkumar et al. [33] using R-matrix
code through Quantemol-N are compared with the PF3 data
in Fig. 6. While the R-T minimum in case of BF3 is reported
at 0.7 eV [48], here in case of PF3 we have obtained it at
0.33 eV. The other important feature of low-energy cross-
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FIG. 6. (Color online) Comparisons of total cross sections of
various targets: present PF3, solid line; NH3 by Vinodkumar et al.,
dashed dotted line [33]; H2S by Vinodkumar et al., dashed dotted
dotted line [33]; PH3 by Vinodkumar et al., short dashed line [33];
NF3 by Joucoski and Bettega, dotted line [29]; BF3 by Pastega et al.,
dashed line [48].

section calculations is the position of the shape resonance
which arises due to transient negative ion formation. For BF3,
NF3, H2S, PH3, and PF3, the positions of shape resonances are
found at 3.53, 7.26, 3.07, 3.46, and 1 eV, respectively.

Finally, in Fig. 7 we have compared the total ionization
cross section for e-PF3 scattering obtained using the complex
scattering potential ionization contribution (CSP-IC) method
developed by our group and using the binary encounter Bethe
(BEB) method developed by Kim and Rudd [49]. Since the
CSP-IC method is discussed elaborately in previous papers and
references therein [33–35], we do not include it here. The basic
idea is to extract out the total ionization cross section from the

FIG. 7. (Color online) e-PF3 total ionization cross section:
present CSP-IC method, solid line; present BEB method, dashed
line.

total inelastic cross section through dynamic ratio [50–52].
The reason for computing the total ionization cross sections
using two methods (CSP-IC and BEB) is that there are no
other theoretical or experimental data available to compare
with the present results. From the curves it is quite clear that
data produced by two methods are in good agreement with
each other except at the peak. This is attributed to the fact that
we have considered IP of PF3 as 11.70 eV for the CSP-IC
method, while for the BEB calculation using Quantemol-N,
the IP obtained using Koopman theorem is 14.02 eV. The
difference in two IPs can be easily seen at the starting point of
both the ionization curves in Fig. 7. The lower the value of IP,
the greater the ionization cross section is clearly reflected in
Fig. 7. With IP = 11.70 eV (CSP-IC), the peak value of cross
section is 5.202 Å2 at 100 eV and with IP =14.02 eV (BEB),
the peak value of the cross section is 4.767 Å2 at 124 eV.

IV. CONCLUSION

The elastic differential, momentum-transfer, and excitation
cross sections are reported for electron impact on PF3 using the
R-matrix method with an adequate target representation. We
are able to predict two resonances: 2A′′ having shape resonance
at 0.776 eV with width of 0.902 eV and 2A′ having Feshbach
resonance at 13.57 eV of width 1.157 eV. Our calculations are
able to predict a Ramsauer-Townsend minimum at 0.33 eV
that reflects the accuracy of electron-electron correlation
considered in the theoretical treatment. We predicted four
vertical excitation states above threshold and the first excitation
energy predicted using 6-311G as 6.965 eV and using DZP
as 6.971 eV. We employed different target models at low
energy. We repeated our calculations with R-matrix radii of
10, 12, and 13 a.u. and observed that the cross-section results
increase with increase in R-matrix radii. Also increasing CAS
value increases computational time and is used to refine the
resonance structure. CAS above 3 does not produce much
variation in results.

The energy (7.6 eV) at which the equal values of cross
sections provided by the two formalisms (R matrix and
SCOP) is considered as the switchover energy. Present results
find good agreement with measurements of Szmytkowski
et al. [16] above 6 eV for all energies reported by them.
Below 6 eV, the present results are high due to noninclusion of
vibrational channels in our calculation. Present results are also
in excellent agreement with theoretical results of Shi et al. [17].
In Fig. 7, we have presented total ionization cross sections
using the CSP-IC and BEB methods. Results obtained using
these two methods are matching well both quantitatively and
qualitatively. This work will inspire both theoreticians as well
as experimentalists to investigate all the features for e-PF3

scattering reported in this paper.
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