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Double ionization of He by ion impact: Second-order contributions
to the fully differential cross section
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In this work, we present a second-order Born series treatment for the double ionization of He by ion impact.
In particular, we show that the well-known independent events and independent electron models naturally result
from an on-shell treatment for the second-order Born approximation. A transition amplitude which coherently
includes first- and second-order terms in the projectile interaction is introduced to study the role of the two-step-1,
shake-off, and two-step-2 mechanisms at different impact energies. Fully differential cross sections for proton
and antiproton impact are presented and analyzed for different projectile momentum transfers.
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I. INTRODUCTION

The calculation of cross sections for the atomic double
ionization (DI) by ion impact provides a critical bench test
for models aiming to describe the four-body dynamics in
the continuum state. The situation differs from atomic single
ionization by electron impact because for the usually tested
He target, both outgoing electrons start from equivalent initial
states, allowing for a simpler description of the process. During
the last five decades, experiments have been conducted to study
the process at the total cross-section level, from the pioneering
work of Fedorenko [1] to the complete works of Shah et al.
[2]. A comprehensive review of this topic was published in
the 1980s by Dubois [3]. Now focusing on the underlying
physics for this process, three collision mechanisms have been
identified as responsible for the atomic DI at intermediate to
large impact energies [4]. In the two-step-1 (TS-1) mechanism,
alternatively denoted as knockout (KO), the projectile interacts
with only one of the target electrons which subsequently ejects
the other via the electron-electron interaction. In the shake-off
(SO) mechanism, the second electron relaxes from an ionic
bound state to continuum, following a sudden remotion of the
primary electron. The third mechanism, usually referred to as
two-step-2 (TS-2), considers that the electrons are ejected by
two successive independent impacts by the projectile. In this
case, the ionization of each electron is considered as an isolated
event, independent of any subsequent or preceding atomic tran-
sition. The shake-off and TS-1 models involve one interaction
of the projectile with a single electron and, therefore, could be
described as first-order terms in a perturbative expansion of the
scattering amplitude in the projectile charge (Zp). In contrast,
TS-2 involves two successive projectile-target interactions and
hence its description requires a second-order term in Zp [5].
At very high impact energies, the SO mechanism dominates
the process and the initial-state correlation is relevant [5,6]. As
the impact energy E decreases, the scattering event duration
increases as well, and the electron-electron interaction should
be expected to gain relevance throughout the whole process.
No isolated mechanism is then expected to dominate the
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double-electron emission, and, in fact, a competition between
the TS-2 and SO or TS-1 mechanisms has been reported [7-9].

At intermediate to large impact energies, independent
electron emission approaches such as the independent electron
(IEL) and the independent event (IEV) models provide a gen-
eral description for the experimental atomic double-ionization
total cross sections [10,11]. The IEL model considers that for
a fast collision, the lapse between subsequent collisions is
short enough so that both electrons are found in the same state
[with the same ionization potential (IP)]. On the other hand,
the IEV model considers that after the removal of the first
electron, the second electron accommodates into the new ionic
state, and the projectile needs to transfer an amount of energy
equal to the vertical secondary IP to reach the double-electron
emission. It has been observed that these models exhibit some
dependence on the electron-electron correlation in the initial
state. In contrast, the electron-electron final correlation gives a
significant contribution to the DI total cross sections of He
by impact of H* and He’* ions, at intermediate energies
[11,12]. This situation has been described by introducing in the
IEL and IEV models the Coulomb density of states given by
the Gamow factor that avoids the emission of electrons with
the same momenta [11-14]. We note that the IEL and IEV
models cannot be used to study (e,3e) processes, provided
that the inherent straight-line trajectory approximation for the
projectile does not apply.

While total cross sections for DI give insight into the
process global trends, the fully differential cross sections
(FDCS) provide the most detailed information on the collision
process and on the electron correlation dynamics. A vast
number of experimental and theoretical studies of the FDCS
are found in the literature for atomic DI by electron impact
[15,16]. Experiments have been mainly conducted by the
group of Lahmam-Bennani, while several theoretical groups
have worked during the last decade towards a successful
description of their data [16-23]. We note that no theoretical
model has yet been able to provide a full description of the
data and several discrepancies have been reported throughout
the years in what is still considered a challenging open field.
On the other hand, experimental FDCS for atomic DI for ion
impact are quite scarce [24]. These data have been obtained by
means of the cold-target recoil-ion momentum spectroscopy
(COLTRIMS) technique with relatively low resolution and are
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restricted to electrons with energies lower than 25 eV to avoid
prohibitive extraction fields. In contrast, several theoretical
studies can be found in the literature. Most of them are
based on two- and three-body correlated wave functions and
all of them rest on some sort of approximation throughout
their numerical implementation [25-28]. The postcollisional
interactions between the receding projectile and the emitted
electrons have been incorporated via the introduction of
effective charges [25,29]. Models based in four-body wave
functions have been applied to the (e,3¢) process [30,31], but
for DI by ion impact, the four-body dynamical coupling has
only been accounted for using effective relative momenta [32].
Recently, with the Monte Carlo Event Generator tool, Ciappina
et al. [33] have simulated the TS-2 mechanism from fully
differential single-ionization cross sections [19].

In the first part of this paper, we focus on the physics
of the TS-2 mechanism, which is expected to dominate at
intermediate impact energies. In particular, we consider the DI
of He atoms by proton impact, retaining second-order terms in
the projectile charge [12]. A probabilistic TS-2 formalism was
formerly applied to transfer ionization and double capture to
the continuum [14,29]. We give a formal derivation of the TS-2
independent electron model starting from the four-body second
order of a perturbative series for the scattering amplitude.
A similar approach was already presented by Gravielle and
Miraglia [34] for double-electron capture processes. We show
that the resulting DI amplitude can be expressed as the
convolution of two single-ionization amplitudes. These are
calculated by means of the continuum distorted wave—eikonal
initial state (CDW-EIS) theory of Crothers and McCann [35],
which over the last three decades has led to reliable results
for a large variety of projectiles and targets. Besides, this
model represents, at intermediate impact energies, a clear
improvement over the models based on the plane-wave initial
state. We analyze the emitted electrons’ angular distributions
resulting from this second-order mechanism. Finally, we
analyze a double-ionization scattering amplitude containing
terms of first and second order in Z p. In particular, we explore
the relevance of the TS-2 and first-order mechanisms as the
projectile momentum transfer varies, for proton and antiproton
impact double ionization of He.

Atomic units (e = m, = h = 1) are used throughout this
work, unless explicitly indicated.

II. AMODEL FOR THE TS-2 MECHANISM

The Hamiltonian of a system composed of a heliumlike
target and an ionic and structureless projectile is

1
H:—; VZRT +HT+VP|+VP2+VPT’ (D
T

where vy = mp(my + 2)/(mp + mr + 2)is the reduced mass
of the projectile-target system, Vp, is the Coulomb potential
between the projectile and the electron i, and Hr is the atomic
Hamiltonian:

1 2

Hy = —
T 2/,LT1 rry

V,, +Vr, + Vi, + Via,
" 2ur,

with ur; = mpm; /(mr 4+ m;) standing for the reduced mass
of the electron i with respect to the target nucleus.
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In a distorted-wave formalism, the transition amplitude is
given by

_ 1 2
Tri = (XFITIT) ~ TS + T8, )

where

T = (FIWHX): TR = xFIWIGT WX, (3)

In this expression, Gt = (E — H + ie)~! is the total Green
function, and surface terms are considered to be null. Here,
x; represents the initial distorted-wave function in which both
electrons are bound to the target, and X]T represents the final
wave function for the two electrons in the continuum. These
functions satisfy

(E—H*io)lx' ) = —Wirlxy).

While T;l) consists of first-order mechanisms in terms of

Zp (i.e., TS-1 and SO), T( ) includes second-order terms in Z P
which correspond to the two step process (TS-2). Theoretical
and experimental studies of double ionization of He by proton
impact, at the total cross-section level, indicate that the TS-1
and SO mechanisms are small in comparison to the TS-2 at
intermediate collision energies [8]. In contrast, at large impact
energies, the SO mechanism turns dominant, clearly indicating
a switch of roles among the physical mechanisms as the impact
energy is varied.

In order to calculate Tﬁ) , we expand the Green function in
the base of its eigenfunctions,

1

=;|¢n>m(¢nl, €]

where {1} spans the complete space of the four-body wave
functions. This leads us to the following expression for the
second-order terms:

1
T® = SIWHY) —————— (W Wil x ). 5
2= x| V) g s Vel Wilx). )

n

Here, E, are the eigenenergies of the four-body system.
Alternative ways to deal with this infinite summation have
been proposed since the pioneering works of Massey and Mohr
in the 1930s. This issue surfaced during the study of elastic
scattering of electrons by atoms [36]. To make this expression
tractable, these authors made use of the so-called closure
approximation, in which E, is replaced in the denominator of
the Green function by an average energy E,.. This procedure
provides a fast route to compute second-order terms,

1
Zhﬂn E_E 1 8<1/fn|’“m2|l/fn (Vnl

1

= . 6
E—E,.+ie ©)

However, there is no precise procedure to choose E,e, and the
outcome is usually very sensitive to the chosen value [20].
By the end of the 1960s, Holt and Moiseiwitsch [37] went
beyond the closure approximation in their elastic electron-
atom scattering studies. These authors evaluated the first
two or three low-lying states of the summation exactly, and
then used the closure approximation for the remaining terms.
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Since then, many other ways to introduce superior orders
have been developed. For instance, Garibotti and Massaro
[38] variationally determined E,,. in order to evaluate the
second-order term, and used the Padé approximants to compute
the elastic scattering of electrons by atoms and compare their
results with perturbative second-order calculations.

A decade later, Byron and Joachain [39] reported second-
order calculations for atomic single ionization by electron
impact within the closure approximation. In that work, they
explored the sensitivity of the cross sections to the average
energy considered, as well as the spread in the distributions
this procedure originates. Other authors have kept up-to-date
continuous track of this line of research for electron-atom
collisions [40—43]. In the ion-atom single-ionization context,
the development of the necessary set of tools to handle the
second-order terms is much more recent. We can cite the
works of Schulz [44], Voitkiv [45], and McGovern [46],
among others. Nevertheless, we note that second-order terms
were also studied in more complex problems: the works
of Marchalant [47-49] and Fang [50] deal with excitation-
ionization reactions, the work of Godunov [27] deals with
transfer ionization reactions, and the work of Gravielle and
Miraglia [34] addresses double capture.

For double ionization by electron impact, many au-
thors have considered the second Born approximation
[17-23]. In particular, for He targets, Dal Cappello et al. [20]
have shown that the closure approximation drastically fails,
since the mean energy has to be representative of states that
range from —79 eV to the double continuum energy of an
atom. Such an energy spread makes the closure approximation
unreliable.

Another possibility is to express

;' = P[;] —ind(E — E,),
E—FE,+i¢ E—FE,+ie
and retain the on-shell contribution only [34,50]. This approx-
imation is valid only if the numerator in Eq. (3) is a smooth
function of the energy and contributions to the principal value
from each side of the pole mutually cancel. In this case,

K2

E=E,=—"+4¢€, +e€n.

21)]"
Here, €,1 and €, are the electronic energies when the system is
found in the intermediate state, in which the electrons could be
either bound or in the continuum. As the incident HT cannot be
bound to the He atomic nucleus, the projectile remains, in the
intermediate state, in a continuum state with momentum K,,.

At this point, we can select diverse alternatives to deal with

the sum over the intermediate states:

1 = in 3 [ K W)

X <wn|Wi|X,‘+>8(E - En)~ (7)

We now consider the subspace of the states {&§,} C {v,},
composed of wave functions where the projectile is described
by a distorted continuum wave of momentum K,,, one electron
is bound to the target, and the other is in the continuum with
its final momentum k,. These states have an eigenenergy

KZ k2 . . . .
E,=E=3+7%+¢, where ¢, is the intermediate ion
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bound-state energy,
9 = _in ZVTKn/dsz,1<x;|W}|wn><wn|Wi|xﬁ>-

From this equation, we can model the TS-2 mechanism by
selecting only one intermediate state &;, which provides the
physical picture of one electron already emitted with final
momentum K; and the other still bound to the target. We
observe that if we choose to represent the bound electron with
a He't(1s) ground state, we are led to the independent event
model (IEV). If we choose the He(1s) bound electron instead,
we are naturally led to the independent electron model (IEL).
Then,

Tk, Ky, Q) = / A9 IWHED (61 Wi i)

= / dQ, Ty (K —K)T (K, — K)).

®)

This amplitude is the convolution of two single-ionization
amplitudes evaluated in a distorted-wave approximation. In
this context, for )(i+ and xl?-, we choose the CDW-EIS

2
zv/;i + V. -V, and Wy =

approximation, for which W; = —
-V, -V

We note that one of the transition amplitudes is in prior
form, while the other is in post form. When the x :’f and the v,
functions correspond to the same potentials, there is no post-
prior discrepancy. However, when approximate wave functions
are recalled for which the potentials are not exactly the same,
post-prior discrepancies arise and the present formulation of
the IEV and IEL models might not be coincident with some
earlier works, where simple products of probabilities were
considered.

The FDCS are then written in terms of a symmetrized
transition amplitude in order to account for the electrons
indistinguishability,

doT5-2 Qn)*
dkidkdQ 4}

rre

|75 57 (k1 ko, )

+ T4 ko ki, Q)|

where v; = K;/vr. We recall that we are evaluating the
cross section retaining the TS-2 term only. This is equivalent
to completely neglect the interelectronic interaction in the
final state. However, nowadays it is recognized that the
double-ionization process is sensitive to the electron-electron
correlation even at intermediate energies. This means that
even when the sequential interaction of the projectile with
the electrons dominates the double-ionization process, the
knockout mechanism must nevertheless be included [4]. A
proper treatment for the whole problem must then contain
an additional first-order term which could be given, in its
simplest form, by the first Born approximation that we have
derived in a former paper [25]. In the next section, we will
analyze the results obtained by retaining the proposed TS-2
amplitude only, and, in the following one, we explicitly add a
first-order term to provide an approximated complete model
for the double-ionization problem.
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III. EVALUATION OF THE AMPLITUDES
AND RESULTS FROM THE TS-2 MODEL

In the CDW-EIS approximation, the initial wave function
is given by

Xi(rr1,r72,rp1,Xp2) = Py, rr2) E_y(rp) E_y(rp2)

x e/Ki-Rer €))

When using a central potential model, i.e., Hartree-Fock
or configuration interaction expansions, the initial state
¢;(rr1,rr2) is given by a linear superposition of terms which
are separable in the electrons coordinates:

@;(rr1,rr2) = @;(rr1)9;(rr2).

In Eq. (9), rr; and rp; are the relative coordinates between
the electron j and the target or projectile, respectively, and
Rpy is the relative coordinate between the heavy particles.
For ¢;, we use the monoelectronic wave functions tabulated
by Clementi-Roetti [51].

The functions Elf(r) in Eq. (9) are the eikonal phases,

Ei(r) _ e*ia In(kr+k.r)
(@)= .
On the other hand, the final state is given by

Xr(@®71,072,Xp1,Xp2) = Vi, ®7 1)V, (t72) Dy, —v(Tp1)
X Dy, —y(rpy)e ™ Rer. (10)

Here, D]f (r) represent the Coulomb distortion factors,

DEr) =T £iae; * FilFial, £itkr Tkl (1)

and « = —Zp r/k is the Sommerfeld parameter.
In our present treatment, the intermediate state is expressed
as follows:

&1(rr1,r72,rp1,rp2) = Yk, (r71)@(r7r2) Dy, —v, (T p1)
X E_y,(rpp)eRer, (12)

withv, = K, /vr.

The ¢(rr;) in & will be the ground state (1s) of the He
atom or that of the Het, depending upon whether we want
to evaluate the double-ionization process with the IEL or the
IEV model. The evaluation of the transition amplitude requires
the integration over the coordinates of the two electrons. These
integrals cannot be separated, requiring a full nine-dimensional
integration. If we now neglect the eikonal distortion between
the projectile and the passive electron, that is, E_(rp,) and
E_y,(rpy) in (& |Wilx;"), and Dy, _y,(rpy) and Dy, _y(rp;) in
( X;|W}|§ 1), the numerical complexity significantly reduces
and we are led to the well-known CDW-EIS three-body
transition amplitudes. Coulomb wave functions of charge 1.34
and 2.0 are used to represent the continuum states ¥y, ,(rry2)
for He and He™, respectively.

From now on, we restrict our analysis to the double-electron
emission along the collision plane (i.e., both electrons are
emitted in the plane determined by the initial and final
projectile momentum). In Fig. 1, we show a contour plot of the
TS-2-FDCS as a function of the polar angles 6; and 6, of the
emitted electrons taken from the incidence direction. The final
projectile is scattered such that the momentum-transfer polar
angle 6y > 0°. The presented FDCS correspond to double
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ionization of helium by protons impinging at 500 keV /amu,
with both electrons emitted with E; = E, =10 eV. In
Figs. 1(a) and 1(b), we show the results obtained with the
IEV and IEL models, respectively. Figures 1(c) and 1(d)
retain the lines for these contours, which are superimposed
over the recoil distribution to provide full access to the
collision dynamics [25]. In this Figure we consider the
threshold momentum transfer (Qreshold = 0.814 a.u.). This
is the configuration at which the momentum-transfer vector
is parallel to the incident direction (89 = 0). This is the
smallest momentum transfer that allows the emission of the
two electrons and provides a physical picture of large-impact
parameter collisions. This longitudinal momentum transfer can
be expressed as follows:
kt + k3

—+1,.
> +

Here, I, = 79 eV is the double-ionization energy for the He
atom, and I, = I, + I, where I; and I, are the energies
required for the successive ionization of each electron. This
energy is provided by the projectile,

K7 =K} —vr (ki + k3 + 21 +2D).

In both models, the symmetrization imposed for
the transition matrix for equal energy emission lead to
axis-symmetric distributions along the main diagonal. In the
IEV model, the sequential ionization energies I; = 24.6 eV
and I, = 54.4 eV are considered, while in the IEL model, the
first ionization energy I; = 24.6 eV is used for both electrons.
As expected, double-electronic emission in the IEL model is
described with an energy transfer of 49.2 eV instead of the
real 79 eV, leading to larger double-ionization cross sections
compared to the IEV model.

For the IEV model, we find a peak located near (6; ~ —62°,
6, ~ 59°), in coincidence with a low value of the recoiling
nucleus total momentum. This emission can be understood
as two successive projectile-electron collisions, where in each
collision one electron is emitted as in a single ionization with a
maximum emission in the binary peak located in the direction
of the partial momentum transfer, i.e., 691 ~ 6;. As the first
ionization is from a He atom, the intermediate momentum of
the projectile is given by

chreshold = AE/Ui , AE

The momentum transfer Q| can be obtained from
Kg = Q% — ZQlKi COS@Q] + Klz

The projectile scattering angles are of the order of 107*
radians and we can safely assume that the projectile moves
in a straight-line trajectory. By so doing, the present projectile
momentum transferis Q; = 0.55 a.u. We proceed in the same
way for the second ionization, now from a He™ ion, assuming
0g2 ~ 6, to obtain O, = 1.08 a.u. In these conditions,

Qthreshold = Q1 + Qa.

A similar interpretation can be made for the symmetrical peak
observed at (6, & 59°, 6, ~ —62°).

Two additional structures can be observed in Fig. 1(a),
located almost in opposite directions to the above-discussed
peaks.
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FIG. 1. Angular distributions of the FDCS (in terms of 107°
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a.u.) for DI of He by proton impact at 500 keV/amu. Both electrons are

emitted with equal energy of 10 eV. The geometry chosen is coplanar. (a) Present IEV model. (b) Present IEL model. Recoil distributions (in

a.u.) with FDCS as contour lines are shown in (c¢) and (d), respectively.

We note that the FDCS describe a coincidence event where
the two electrons arrive simultaneously to detectors at different
angles, and a maximum of the double-ionization FDCS will
be observed after two successive single ionizations, when both
are produced in angles of large emission. In single ionization,
the angular distributions display two maxima, named binary
and recoil peaks. Therefore, these new cusps can be considered
as resulting from a binary collision of the projectile with one
electron followed by a recoil-like collision with the second
electron, and changing order for the other cusp. In both cusps,
there is a relevant participation of the target nucleus, as can be
observed in Figs. 1(c) and 1(d), where the respective FDCS
are drawn over the recoil momentum contour plot [25].

The IEL case seems to show similar features as the IEV
case, but now both collisions are equivalent and the maximum
is observed at (6, ~ —70°, 6, ~ —70°). A first inspection of

Figs. 1(a) and 1(b) would suggest that both models behave
similarly, though we notice that the maximums of the IEL have
magnitudes nearly four times greater than those corresponding
to the IEV model. This fact has been considered by many
authors in the total cross-section context [11-13,52], and
originates in the smaller value considered for the second
electron ionization energy in the IEL model. In the following,
we will no longer consider the IEL model because it does not
present the correct energetic treatment.

In Fig. 2, we use the same collision energy as in Fig. 1,
but we study the variation of the FDCS for the IEV model for
unequal energy sharing between the electrons. The energy
transferred to the electrons amounts to 50 eV, leading to
Othreshold = 1.061. The considered energy sharing for the
electronsis £y = E, =25, E, =30, E; =20¢eV;and E| =
40, E, = 10 eV. The 0; angle corresponds to the fast electron

062709-5



S. D. LOPEZ, S. OTRANTO, AND C. R. GARIBOTTI

PHYSICAL REVIEW A 89, 062709 (2014)

a b c
270 S— @ 270 (b) 270 N7, ©
225 0.48 225 0.48 925 0.51
0.44
1801 0.42 180 042 189
0.36 0.36 0.38
135 0.30 135 0.30 135 0.32
991 024 90 0 024 90 0.25
45 S < 018 < 45 0.18% 45 0.19
0.13
o/ 0.12 0 0.12 0
0.06 0.06 0.06
’45'\ 000 \ 0.00 45 /\ 0.00
-90 -9 -90

-90 -45 0 45 90 135 180 225 270

270 270

225 3.78 225
180 332 g0

2.86
135 240 135

1.94
1.47
1.01
0.55
0.09

-90
-90 -45 0 45 90 135180 225 270
0

1

FIG. 2. Angular distributions of the FDCS (in terms of 1076
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a.u.) for DI of He by proton impact at 500 keV/amu. (a)—(c) Different energy

sharing among the electrons is considered for the IEV model. The energies considered are (a),(d) E; = E, =25 eV; (b),(e) E; =30 and
E, =20eV; and (c),(f) E; =40 and E, = 10 eV. (d)—(f) Recoil distributions (in a.u.) with FDCS as contour lines for the IEV model.

and 6, corresponds to the slow one. The spectra exhibit a
shape similar to Fig. 1, but now as the difference of energies
between the electrons increases, the TS-2 collisions require
a greater momentum transfer by the projectile. Furthermore,
in Fig. 2(c), we observe the presence of antiparallel emission
around 0; ~ 0°, 6, &~ 180° [25]. In that case, the slow electron
acquires a nearly isotropic distribution, and the fast electron
originates in a hard collision with the projectile and is emitted
in the forward quadrants only. This physical picture completes
with the target core recoiling in the backward quadrants.
The positions of the main lobes are slightly changed when
the electron asymmetry energy is increased for a fixed total
electronic energy, but now are located in a region where the
recoil moment is relevant.

For antiproton impact, we have double-ionization mech-
anisms similar to those proposed for protons. However, the
CDW-EIS amplitudes included in Eq. (3a) have different
magnitudes, as will be discussed in the following section.

IV. CONTRIBUTION OF THE FIRST
PERTURBATIVE ORDER

In earlier papers, we evaluated the FDCS from a scattering
amplitude that includes a first-order projectile charge term
in the perturbative Hamiltonian. We calculated the amplitude
using a distorted-wave model that allowed the implementation
of different wave functions for the initial and final states of the
He subsystem.

The acting physical mechanisms in this first-order term in
Zp,ie., SO and TS-1, involve the interaction of the projectile

with only one electron. Subsequent interactions of the target
atomic components lead to the double-electron emission. For
SO, the fast removal of the primary electron by the projectile
is followed by the emission of a slow secondary electron due
to the sudden change of electronic screening. For TS-1, the
primary electron knocks out the secondary electron in what
can be considered a second-order collision for the primary
electron. If expansions in terms of plane waves were recalled
for the emitted electrons, a second-order term in the electron-
electron interaction should be at least explicitly included to
account for the TS-1 mechanism. However, when distorted
waves (which incorporate infinite collision orders between
particles) are used to represent the final state, the higher-order
interactions are already included at the wave-function level.
Following [25], we write the first-order amplitude as

T/ (k1 ks, Q) = (x5 Vil
where
Vi=ZPZT— Zp _ Zp .
R IR—=ri| [R—r;

Here, r; and r; are the positions of the electrons relative to
the target, rj» = r; — rp, and R is the distance between the
ions. In the mentioned papers, we compare the electronic
spectra resulting from two variational initial wave functions
of different accuracy together with analytical wave functions
proposed for the three-body continuum. The projectile is con-
sidered as a plane wave in both initial and final channels. Here
we will apply the more elaborate model formerly developed,
denominated DS3C. This corresponds to a correlated initial
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state given by a Bonham and Kohl wave function (GS2)
as adapted by Otranto et al. to avoid the introduction of
spurious convergence factors in the evaluation of Nordsieck-
like integrals [53]:

K, R
BBy F(ry,ry),

() = :
Xi 1,12) = (27_[)3/2

with

1//i+(r1’r2) = Ni(e—arl—brz + e~ —arzy
e (efzmz + Coef)hrlz)’ (13)

where N; = 1.9358, a = 1.4126, b = 2.2068, A = 0.199, Cy
=-0.6649, and z. = 0.01.
For the final state, we use the C3 wave function [54]:

— 1 KR, —
Xr = (27.[)3/26 ! wf’ (14)

and

1 (1 + Plz) [e,‘(kl.r]+k2
@)y V2

x Dy, (n2,12) Dy, (112,T12)], (15)

where Pj, is the permutation operator and Dk(7,r) is the
Coulomb distortion factor given by Eq. (11).

The C3 model entirely considers the interactions between
the three charged particles but assumes static charges that
do not account for the dynamical screening produced by the
relative motion of the four particles in the final state. The dy-
namical screening model, DS3C, introduces effective charges
to consider the dynamical correlation between the electrons
and the target nucleus [55]. In this case, the Sommerfeld
parameters are given by n; = Zel? EH&/ ki, 12 = ZeszHe+ / ko,
and iy = Z2%, /(2k12) with ki3 = (k; — K;)/2. The explicit
expression of the effective charges can be found in our earlier
paper [25], where we compare the double-emission electronic
spectra resulting from different models for the two-electron
continuum, in particular the DS3C.

With these functions, the electron-electron interaction is
introduced in the initial and final state. Even when the
separation between the shake-off and TS-1 mechanisms is
not explicit, both mechanisms are inherently included at the
wave-function level.

The double-ionization amplitude, up to second order,
remains

Ty = TSP (k1. ko, Q)

vk ko,rr) = ™) Dy, (m1,11)

+ 375 7P ko Q) + T3 P (ko K1, Q)] (16)

and
do _ Qn)*
dkidkd2 v}

1 s
TEPA (k1 K, Q) + E[T;,TS (ki ko, Q)

2

+ 75 (ko k, Q)] (17)

Therefore, the FDCS will contain Z %,, Z 13,,, and Z‘}, terms.
Now we will consider the dependence of the electrons’

angular distribution as the momentum transfer increases, for

the same collision geometry, impact energy, and electrons
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emission energies considered in Fig. 1. In the first row of
Fig. 3, we display the electronic distributions for double
ionization of He atoms by proton impact, for O = 1.0, 1.5,
and 3 a.u. resulting from the first Born approximation (FBA);
in the second row, we display the IEV model; and, in the
third row, we show the coherent sum of the FBA plus IEV
amplitudes, as given by Eq. (16). The successive columns
correspond to increasing values of Q. In the FDCS given
by the FBA, for equal energy emission, the main features
have been thoroughly described in an earlier paper [56].
In the contour-plot representation, the momentum-transfer
direction is fixed. From the momentum conservation law Q =
k; + k; + R, we can distinguish three main structures in the
angular distributions given by the FBA that are characterized
by the particular values of the momentum R acquired by the
recoiling nucleus once the collision has taken place. These
structures are usually denoted as the binary and the recoil
peaks, for which the electrons’ momenta are located along the
dashed lines drawn in each plot of Fig. 3 [56] axially symmetric
in relation to the Q direction. In the binary emission, the total
electronic momentum is similar to the momentum transfer
k; + k; = Q, and the recoil ion is mainly a spectator during
the collision (R = 0). The projectile transfers the momentum
to one electron which then hits the second one. In this picture,
both electrons are emitted in quasiorthogonal directions, while
the nucleus remains almost still. This mechanism, where
the target remains as a spectator, as in the binary collision
in single ionization, is denoted as the two-step 1 (TS-1)
process [16]. In the recoil emission, the total momentum of
the electrons has the same magnitude but is opposite to the
momentum transfer (k; + ky & —Q), therefore R ~ 2Q. The
projectile hits one electron which is scattered backwards by
the nucleus, and this electron knocks the other one before
leaving the atom. The electrons leave the reaction zone with
a relative angle equal to 90°, and the repulsion between the
electrons increases this angle. Another structure we observe
is produced by the back-to-back emission, where the electrons
are ejected in opposite directions (k; + k, =~ 0) with R =~ Q.
This structure can be explained in terms of successive classical
collisions considering that the projectile hits one electron and
this electron hits the nucleus going backwards with k; ~ —Q.
The nucleus then recoils with R =~ 2Q and hits the other
electron, which acquires a momentum k; &~ Q.

Finally, it should be taken into account that as the momen-
tum transfer increases, the role played by the target nucleus
during the collision process increases and the complexity of
the double-emission process increases as well.

For the DS3C model, a shift from strictly orthogonal
emission arises because the momenta exchanges between the
three particles are allowed by the model via the effective
charges, and, on the other hand, by the repulsion among the
electrons. In Fig. 3(a), these features are easier to locate, being
the binary structure centered at (9; =~ —5°, 6, =~ 70°), while
the recoil structure is located at (6; =~ 160°, 6, ~ 250°).

Concerning the SO mechanism, in which one of the
electrons acquires the projectile momentum transfer while the
other relaxes to the continuum isotropically, it is expected
to be relevant for very asymmetric geometries for which the
sudden approximation turns valid. In a recent paper, we have
shown that signatures of the SO mechanism can be identified
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FIG. 3. Angular distributions of the FDCS (in terms of 107 a.u.) for DI of He by proton impact at 500 keV /amu. Both electrons emitted
with 10 eV each. Three momentum transfer magnitudes are considered: (a),(d),(g) O = 1 a.u.; (b),(e),(h) O = 1.5 a.u.; and (¢),(),(i) O = 3 a.u.
(a)—(c) The first row corresponds to calculations performed with the FBA, (d)—(f) the second row corresponds to calculations performed with
the present IEV model, and (g)—(i) the third row corresponds to the coherent sum of both terms. The dotted lines in each panel indicate the

electronic polar angles ¢, and 6, for which k; + Kk, are parallel to Q.

in the angular distributions corresponding to double-electron
emissions in which one of the electrons is fast, while the other
is rather slow [25]. Clearly, these two mechanisms cannot
be isolated within the DS3C model. However, their separate
contributions can be eventually tested by switching on and off
the initial-state correlation or the interelectronic interaction in
the final state [57].

For Q near Qreshold, the FBA is larger than the IEV, but
as Q increases, the magnitude of the FDCS given by the
FBA decreases faster than that obtained with the IEV model.
This is a consequence of the increased probability for a large
momentum transfer after two successive projectile-electron
collisions. In addition, we note that the recoiling nucleus
acquires a major role in the collision. This behavior is clearly
evident in the last row of Fig. 3, where we clearly note

that the TS-2 mechanism becomes dominant for large Q. For
equal energy electrons, a signature of second- or higher-order
processes is a breakup of the symmetry of the cross section
with respect to Q.

The FBA remains symmetric along the momentum-transfer
directions, which are 8y ~ 35° for Q = 1.0 a.u., 6y ~ 57° for
Q =15 au., and 6y ~ 74° for Q = 3.0 a.u. Meanwhile, as
Q increases, the distributions given by the IEV model present
similar features to the threshold case, and the maximums
remain almost at the same position. As a result, the FDCS
resulting from the full second order is not symmetric along Q
[58].

In Fig. 4, we show the electronic distributions for double
ionization of He atoms by antiproton impact, for the same
conditions as in Fig. 3. The FBA distributions are equal to
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FIG. 4. Angular distributions of the FDCS (in terms of 10~® a.u.) for DI of He by antiproton impact at 500 keV/amu. Both electrons
emitted with 10 eV each. Three momentum-transfer magnitudes are considered: (a),(d),(g) Q = 1 a.u.; (b),(e),(h) O = 1.5 a.u.; and (c),(f),(1)
Q =3 a.u. (a)—(c) The first row corresponds to calculations performed with the FBA, (d)-(f) the second row corresponds to calculations
performed with the present IEV model, and (g)—(i) the third row corresponds to the coherent sum of both terms.

those represented in Fig. 3; therefore we only show the FDCS
calculated with the IEV model and those resulting from the
corresponding full amplitude [Eq. (16)]. The shapes of the IEV
distributions are similar to those obtained for proton impact.
However, their magnitudes are almost 20 times larger, probably
due to the strongest repulsion between the negatively charged
particles. The interference between the first and the second
order reduces the difference in the complete FDCS, which is
dominated by the TS-2 mechanism even at low values of Q.

V. CONCLUSIONS

We have given a formal derivation of the TS-2 mechanism
starting from a second-order perturbative expansion for the
double-ionization scattering amplitude in terms of the projec-
tile charge. Via an on-shell treatment for these second-order

terms, we have provided a consistent theoretical description of
the IEV and IEL models usually recalled ad hoc as products
of probabilities. Complementing our earlier works based
on a first-Born-approximation-type treatment, in this work
we have introduced an approximated transition amplitude
which coherently incorporates the TS-2 information via an
on-shell treatment of the second-Born-approximation terms.
The angular distributions of the electrons resulting from the
double ionization of He by proton or antiproton impact present
structures that can be associated to two independent collisions
by the projectile. In the IEV formalism, when the momentum
transfer of the projectile is given by the DI threshold value
(Qthreshold), and for equal velocity electrons, the main peaks
observed in the angular distributions can be associated to two
independent single ionizations. These peaks are located along
the line where 6; + 6, ~ 6o, which indicate a binary DI. For
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Q values larger than Qpnreshold, the peaks almost conserve
their positions and lose correlation with the direction of the
momentum transfer. In this case, the target core must always
absorb a recoil momentum and a net binary DI is not possible.
This is a strong difference from the results given by the first
Born approximation, where the angular structures of the FDCS
rotate as long as Q changes its direction. The sum of the FBA
and the IEV amplitude allowed us to write a double-ionization
amplitude containing all of the main physical mechanisms
in the process. For proton impact and threshold projectile
momentum transfers, we found that the FBA dominates
and the maximum emission is along the direction of Q,
presenting the binary and recoil peaks. As Q increases, the

PHYSICAL REVIEW A 89, 062709 (2014)

TS-2 contribution dominates and the maximum emission
corresponds to the situation where the projectile undergoes
independent collisions with each electron. For antiproton
impact, the magnitude of the FDCS is larger than in the proton
case and the IEV features dominate over all the range of Q.
It would be highly desirable if new experimental data were
available in the near future to help us refine our understanding
of the double-electron emission at a differential level.
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