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Positronium formation from positron impact on hydrogen and helium targets
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Charge-exchange cross sections are presented for collisions of positrons with hydrogen and neutral and singly
ionized helium targets using a variant of the classical trajectory Monte Carlo approach. As a check on the method
a comparison is made with the corresponding proton results. An extended error analysis is presented. Reasonable
agreement with available experimental data is found, and the charge-exchange cross section for positrons on He+

is predicted.
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I. BACKGROUND

The understanding of positron processes is an area of
heightened interest in many branches of physics. In particular
their significance has long been recognized in astrophysics.
Positrons are produced at a tremendous rate at the center of
the galaxy; estimates from studies of the 511-keV γ -ray line
suggest a rate of ≈1043 e+/s [1]. Despite 30 years of intense
effort the main source of these positrons has not been identified
(for a recent review see [2,3]). Further, a knowledge of the ratio
of the singlet-state and triplet-state photon fluxes would be a
valuable diagnostic for understanding the physical conditions
in a wide range of astrophysical sources, such as type Ia
supernovae, microquasars, and x-ray binaries [2,4]; a direct
observation of positronium would be an important contribution
to the physical understanding of jets escaping from quasars
into the interstellar medium [5]. A study of 3γ versus 2γ

emission would allow the determination of the temperature
and density of the plasma in solar flares [6]. It is only recently
that experimental progress has been made towards the goal of
producing intense beams of positrons in the laboratory; Chen
and collaborators [7,8] have succeeded in producing record
amounts of positrons (they estimate one million particles per
laser shot), and positrons have been observed in experiments
by firing wakefield accelerated electrons into solid targets [9].
These new laser-driver approaches open up the possibility that
superintense positron sources will become a reality in the near
future and, consequently, could be used as diagnostic tools
and for the performance of significant experiments. Our own
particular interest is in the possibility of using positronium
formation as a probe of plasma properties and studying the
positronium fraction in laboratory-produced plasmas [4,10].
In astrophysical situations the plasmas of interest consist
of hydrogen and helium atoms and ions. In this paper we
will focus on positron collisions with neutral hydrogen and
helium as well as with singly ionized helium. Our goal is

to produce cross sections of sufficient accuracy which could
be used in modeling positronium formation in collisions
between positrons and atoms or ions. We are fortunate to
have available high-quality charge-exchange cross-sectional
experimental data for positron-neutral atom collisions [11], but
there are no experiments for collisions between positrons and
ions. Our approach has been to use the well-known classical
trajectory Monte Carlo (CTMC) method for both the positron
and proton projectiles. Our strategy is to benchmark our
theoretical approach for proton impact charge exchange before
applying it to the equivalent positron process. Unless otherwise
stated, atomic units where e = m = � = a0 = 1 are used.

II. CLASSICAL TRAJECTORY MONTE CARLO
APPROACH

The CTMC approach [12–15] is in essence a computer
experiment. In this method exact classical dynamics are
performed on trajectories whose initial conditions are chosen
from a classical ensemble. The initial energy of the target atom
is fixed from known quantum-mechanical energies, e.g., E0 =
−0.5 a.u. for hydrogen. It is assumed that the initial coordinates
and momenta are uniformly distributed in phase space on this
energy shell; this condition effectively defines the classical
microcanonical distribution. The quantum-mechanical prob-
ability distribution in momentum space for the nth level of
a one-electron atom [16] is the identical distribution which
follows from the classical microcanonical distribution [12].
The classical nature of the CTMC approach means that there
is capture into all states of the positronium atom. The accuracy
we can expect from the CTMC method is open to dispute;
certainly, at low impact energies near threshold one would
expect that the electron will tunnel through the potential
barrier it encounters. This is a quantum-mechanical process
and therefore is entirely absent from the CTMC. At the other
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extreme of very high energies all classical calculations have
the wrong asymptotic behavior [12,17].

A. Errors

There are three main sources of error inherent in the
CTMC method: (i) the error due to beginning and ending
each simulated scattering event (or “run”) with the projectile
and the target at a finite distance from each other, (ii) the error
due to the nonzero step length in the numerical Runge-Kutta
integration of the equations of motion, and (iii) statistical error,
which decreases with the total number of runs evaluated. Errors
(i) and (ii) can be controlled explicitly by two parameters in
the input of the CTMC program, γ and ε, while error (iii)
can only be reduced by increasing the number of runs that our
program cycles through for each incident energy.

B. Error parameters γ and ε

The value of the input parameter γ is approximately the
ratio of the major diameter of the target atom to the initial
distance between the projectile and target. Its value is selected
by the user and determines the starting and ending times of
each run through the relationships

γ = |Zn|
EiDi(t−)

= |Zp|
Ef Df (t+)

(1)

defined in [13], where Zp, Zn are the charges of the projectile
and target nucleus, respectively, Ei and Ef are the binding
energies of the initially bound target atom and the finally bound
“atom” resulting from the charge transfer, Di(t−) is the initial
distance between the CM of the projectile and target atom
at the beginning of the run, and Df (t+) is the final distance
between the projectile and nucleus at the end of the run. Since
the Coulomb interaction before time t− and after time t+ is
neglected, it would seem that the smaller the choice of γ is, the
more accurate our simulation will be. However, as we shrink γ ,
we will need more steps in the numerical integration (assuming
constant step size), and the buildup of error due to the finite step
size of the Runge-Kutta method can become unmanageable. In
order to control this a second error parameter, ε, is introduce
to fix the step length of the numerical integration �t through
the following relationship:

ε2

(�t)2
=

[(
v

r

)2

+ ε

2

∣∣∣∣ v̇
r

∣∣∣∣
]

, (2)

where v and r are the relative velocity and distance between
two particles. Since there are three particles under consid-
eration, �t is actually computed by combining the above
expressions for each two-particle interaction. It is worth noting
that the step size varies with the product of the charges Zp,Zn.
For a fixed value of ε, the step size will be smaller when
the charge on either particle is increased; consequently, the
error due to finite step size will be larger if either charge is
greater than 1. We measure these errors by measuring how
badly the program violates conservation of energy. This is
done by evaluating the total energy of all three particles at the
beginning and end of each run. There are four quantities of
interest here: the actual initial energy of all particles Ei , the
initial energy neglecting the interaction between the projectile

and target Ei,mod, the actual final energy of all particles Ef ,
and the final energy neglecting the interaction between the
new atom and the nucleus, in the case of capture, Ef,mod. Each
of these four quantities is evaluated for each event. We can
measure the error due to starting and ending the collision at
finite times by the differences |Ei − Ei,mod| and |Ef − Ef,mod|.
Likewise, we can measure the error due to finite step size in
the numerical integration using the difference |Ei − Ef |; if the
integration were 100% accurate, this difference would always
be zero. We measured the average and the standard deviation
of these differences each time the program is run. If for a given
impact energy the error exceeds a certain limit, the result is not
used. For positron projectiles, this limit is that the average of
the absolute difference between Ei and Ef plus the standard
deviation of this difference should be less than 35% of the
impact energy of the positron:

|Ei − Ef | + σ|Ei−Ef | < 0.35Te+ . (3)

Enforcing this inequality can necessitate accepting quite
large statistical errors at low energies for positron impact
processes. It is well known from numerical treatments of the
Kepler problem in celestial mechanics that standard integrating
methods such as the Runge-Kutta technique can give rise to
similar violations in energy conservation [18,19].

C. Statistical error

The statistical error associated with the cross sections
calculated by the CTMC program is given by the binomial
distribution [12,13]. Let us denote a particular event (such as
charge transfer) by q and the number of occurrences of that
event by nq . Then, letting n be the total number of runs, the
statistical error associated with the cross section for q is given
by

σq

(
n − nq

nqn

) 1
2

, (4)

where σq is the “experimental estimate” of the cross section
for a particular property of the final state, q, and is defined by

σq = nq

n
πa2

max (5)
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FIG. 1. (Color online) Statistical error as a function of nq , with
n = 10 000.
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where amax is the radius beyond which event q no longer
occurs. The maximum statistical error is then

1

2
√

n
πa2

max (6)

and occurs when nq = 1
2n. Figure 1 is a plot of how the error

varies with nq for a typical CTMC calculation of 10 000 runs.

III. RESULTS

A. Hydrogen

Although for a one-electron atom the microcanonical
distribution returns the quantum-mechanical momentum dis-
tribution, the spatial distribution of the charge is not as good.
To correct for this Cohen [21] derived a new phase-space
distribution where the radial distribution is exact and the
momentum distribution remains close to the quantum provided
only that the target electron has a velocity ve < 9. Using this
distribution, the ionization cross sections are improved, but
there is little change to the charge-exchange results [17,22].
Since our interest here is exclusively with the latter, we have
used the “regular” microcanonical distributions in all our
calculations. As we approach threshold, the CTMC is at its
weakest as it does not recognize the sharp quantum thresholds
and has no way of including tunneling effects, and we need
to choose a very large initial distance (very small γ ). We see
that at its lowest energies our results peak and begin to fall
away from experiment; we suspect that this is primarily due
to the absence of tunneling in our calculations [23]. The orbit
of the positron will be fragile compared to that of the much
more massive proton, and consequently, one could reasonably
assume that at the lowest energy it will not be able to get close
enough for tunneling to become significant. Problems still exist
in that the approach will not recognize the correct quantum
threshold. We have attempted to rectify this by shifting the
origin; that is, we assume that the impact energy in the code
Ecode is related to the real impact energy by

E = Ecode + Ethreshold, (7)

where Ethreshold is the quantum threshold. Further, as we
approach threshold, the problem we discussed in Sec. II B
of numerical violation of energy conservation becomes more
pronounced. We will denote our calculations with both the
threshold correction and with (3) enforced by CTMCc to
distinguish it from the regular CTMC where neither correction
is applied. In Fig. 2 we show both CTMCc and CTMC. For
these energies the threshold correction is entirely insignificant,
but we do see an effect due to energy nonconservation
which becomes progressively more evident as the energy gets
smaller; indeed, it becomes unmanageable below about 20 keV,
and we were forced to stop our CTMCc calculations at the very
lowest energies.

In Fig. 3 we show our CTMCc calculations compared with
the experiment of Zhou et al. [24]. Agreement is encouraging
in that the calculations are consistent with experimental mea-
surements of the absolute magnitude and position of the peak
in the cross section. These results are a distinct improvement
over the CTMC calculations. Again, as we lowered the impact
energy, constraining the energy conservation problem became
progressively more difficult.

FIG. 2. (Color online) Charge-exchange cross sections for pro-
ton collisions with neutral hydrogen: our theoretical calculations,
CTMCc with (3) enforced (crosses), and CTMC without threshold
correction and where (3) was not enforced (solid diamonds) compared
with the absolute experimental data of [20] (solid circles).

B. Helium

The CTMC as we formulated it is obviously restricted
to one-electron targets. To calculate the cross section for a
multielectron target we need a strategy for closed-shell targets.
For reasons of consistency and to retain the mathematical
validity of the microcanonical distribution we want to treat
the target as a one-electron atom. Our philosophy differs from
that of Reinhold and Falcón [25], who extended the classical
microcanonical distribution to a two-electron target, used this

FIG. 3. (Color online) Charge-exchange cross sections for
positron collisions with neutral hydrogen: CTMCc (crosses) and
CTMC (solid diamonds) compared with the absolute experimental
data of [24] (solid circles).
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distribution to define the initial conditions for their orbits,
and adjusted the potential that the active electron sees. Our
approach is to treat the target as a one-electron atom with an
effective Coulomb potential:

Veffective = Z̄

r
.

We are concerned with not only getting a good represen-
tation of the momentum distribution in the atom but also
including something of the response of the two-electron system
to the incoming charge. An electron in the n,l,m state of a
hydrogenic atom of charge Z̄ has a wave function (see, for
example, [26])

ψnlm(r) = Rnl(r)Ym
l (θ,φ),

where for the ground state, (1,0,0) in atomic units,

R10(r) = 2(Z̄)
3
2 e−Z̄r , Y00 = 1√

4π
. (8)

The wave function in momentum space is then

φ1,0,0(p) = 1

(2π )
3
2

∫
e−ipψ1,0,0(r)d3r

= 2
3
2

π
Z̄

5
2

[
1

(Z̄2 + p2)2

]
. (9)

It will be convenient to write p in spherical polar coordinates
(p,θp,φp); then the wave function in momentum space may
be decomposed [26]:

φnlm(p) = Fnl(p)Ym
l (θp,φp). (10)

A general formula for Fnl(p) is given in [26]. For the ground
state we have

F10(p) = (2Z̄)
5
2√

π

[
1

(Z̄2 + p2)2

]
, (11)

in agreement with (9). The probability that the absolute value
of the momentum lies between p and p + dp, independent of
direction, is

|Fnl(p)|2p2dp. (12)

We can interpret

ρ(p) = p2|Fnl(p)|2 (13)

as the momentum distribution. Indeed (see [26]),∫ ∞

0
|Fnl(p)p|2dp = 1. (14)

We can determine Z̄ by deducing it from the static dipole
polarizability [26],

ᾱ ≡ 2
∑
nlm

|〈ψnlm|z|ψ1,0,0〉|2
En − E1

. (15)

For hydrogen Z̄ = 1, and there is an exact analytic solution of
ᾱ [27], viz., ᾱH = 4.5. For a general hydrogenic ion [26]

ᾱZ̄ = 4.5

Z̄4
. (16)

FIG. 4. (Color online) Plot of p2|F10(p|2) for hydrogenic ions
against the magnitude of the momentum p for various values of Z̄

as well as the equivalent Byron-Joachain momentum distribution for
helium: Z̄ = 1.344, solid line; Z̄ = 1.47, dotted line; Z̄ = 1.6875,
dash-dotted line; Byron-Joachain, dashed line.

Experiment and theory [28] would suggest that the best
estimate of the static dipole polarizability of helium is ᾱHe =
1.383 a.u. As a first guess for Z̄ we could try

Z̄ =
(

αH

αHe

)1/4

≈ 1.343 a.u. (17)

If we take Z̄ = 1.344, the binding energy of the hydrogenic
ion Z̄2

2 will be exactly 24.59 eV [29], the ionization energy
of the helium atom, and the polarizability is then 1.379,
which is close enough to the current best estimate for helium
to lie within the predicted uncertainty. In Fig. 4 we show
a comparison between the momentum distribution, (13),
with Z̄ = 1.344 and several other choices. Clement and
Raimondi [30] suggest Z̄ = 1.6875 is a good effective charge
to represent the combined field as seen by a helium electron
after including the effect of the screening of the nucleus by the
other electron. This choice of Z̄ corresponds essentially to the
energy required to remove two electrons, i.e.,

�E = 24.56 eV + 54.4 eV = 78.96 eV.

If we treat both electrons as being entirely independent
electrons with bound energies Z̄2, then

2Z̄2 = 78.96

13.6
⇒ Z̄ ≈ 1.7.

We would like our effective charge to give us a reasonable
estimate of the binding energy and the polarizability but at the
same time to have something of the character of the momentum
distribution in the helium atom.

As a wave function for the helium ground state we consid-
ered the correlated wave function of Byron and Joachain [31]
and the Roothan-Hartree-Fock wave function of [32]. The
Byron-Joachain wave function gives a good estimate of the
correlation energy, coming within 0.4% of the “exact” value.
Interestingly, it is the product of two one-electron wave
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FIG. 5. (Color online) Charge-exchange cross sections for pro-
ton collisions with neutral helium: CTMC (crosses) compared with
the absolute experimental data of [35] (solid circles).

functions:

φ0(r) = 1√
4π

(2.60505e−1.41r + 2.08144e−2.61r ), (18)

which suggests a crude interpretation of one electron being,
on average, more tightly bound than the other. A similar but
much more pronounced effect is seen in the representation of
the wave functions for negative ions such as H− [33,34]. In
Fig. 4 we show the momentum distribution, (13), for several
choices of 1.344 � Z̄ � 1.6875 and the equivalent density for
helium calculated using the correlated wave function of Byron
and Joachain [31]. Calculations using the Roothan-Hartree-
Fock wave function of [32] are imperceptibly different from
the Byron-Joachain case. The choice Z̄ = 1.6875 gives the
best fit to the distribution but the largest error in the binding
energy. Choosing Z̄ = 1.344 gives the best binding energy and
the worst momentum distribution. As a compromise we have
chosen to restrict the error in the binding energy to be at most
20%, and this leads us to a choice of Z̄ = 1.47.

Note that for reasons of consistency and to preserve
the validity of the microcanonical distribution we use the
theoretical binding energy that corresponds to our choice of
Z̄ in the CTMC calculations and in (7). In Fig. 5 we show a
comparison between our CTMC calculation and experiment
for proton impact, and while agreement is good for the
range of values where a comparison is possible, we note
that our calculations exhibit the same qualitative behavior as
we saw for hydrogen with a low-energy peak, so tunneling
effects might well increase the cross section in this region.
Our threshold-corrected CTMC calculations are in reasonable
agreement with experiment for the positron case (Fig. 6).
Again the peak position is well predicted, but the absolute
magnitude at the peak is a little elevated above experiment.

The analysis of positronium-formation experiments is
complicated by the possibility of electron capture into excited
states [37]. Because of its classical nature the CTMC does
not yield any information as to which quantum state of the

FIG. 6. (Color online) Positronium-formation cross sections for
positron collisions with neutral helium: threshold-corrected CTMC
(Z̄ = 1.47; crosses) compared with the absolute experimental data
of [11,36] (solid circles).

positronium the electron is captured into. To estimate this we
follow the method outlined in [38]. We calculate the binding
energy U = −E and assign a “classical principal quantum
number” nc according to

U = 1

2n2
c

a.u. (19)

The classical values are then “quantized” to a specific n level if[
(n − 1)

(
n − 1

2

)
n

] 1
3

� nc �
[

(n + 1)

(
n + 1

2

)
n

] 1
3

. (20)

For positron-hydrogen collisions both fully quantum-
mechanical [39] and CTMC calculations [10] find that capture
is almost exclusively into the n = 1 state, while for Cs both
quantum and CTMC predict significant capture into excited
states [10,40]. For helium our current calculations show that
for threshold-corrected impact energies of less than 42 eV
there is essentially 100% capture into n = 1. As the impact
energy is increased, we see some small amount of capture into
excited states; for example, at 100 eV, approximately 85% is
captured into n = 1, 11% into n = 2, 4% into n = 3, and 1%
into n = 4 and little or nothing into higher-lying states. This
is in stark contrast to the Cs case where Kernoghan et al. [40]
estimated for low-energy positron collisions that 20% of the
cross section came from n � 4.

C. He+

Finally, we calculated the CTMC charge-exchange cross
section for singly ionized helium.

In Fig. 7 we show a comparison between the CTMCc
calculations and experiment for a proton on He+. While
the position and the absolute magnitude of the peak in
the experimental data are reasonably well represented, the
theoretical distribution is somewhat too broad. It is striking
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FIG. 7. (Color online) Charge-exchange cross sections for pro-
ton collisions with He+: CTMC (crosses) compared with the absolute
experimental data of [41] (solid circles) and [42] (open circles).

that these results are not as good as those we found for proton
a on H. Intuitively, one would imagine that the CTMC method
would work well for hydrogenic ion targets. The weakness in
the CTMC was noted in [22] for H+ and indeed only gets worse
if we increase the charge on the hydrogenic target ion [17,43].
It is not immediately obvious why this is. We note that we
found it much more difficult to enforce (3) in the H+ case.
The nuclear charge of the target enters into the step length in
the Runge-Kutta, and we suspect that this may be the source
of the problem. It would be of value to entirely replace the
fourth-order Runge-Kutta part of the code with some form
of symplectic or conservative integrator [18,19]. We hope to
return to this problem in a future publication.

We were, however, sufficiently encouraged that we calcu-
lated the threshold-corrected CTMC for a positron on He+.
Results are shown in Fig. 8. As we mentioned earlier, the
finite-step-size instability will be slightly worse is this case.
The maximum value of our cross section with (3) enforced
is roughly 30% larger than that presented in [10]. There are
no experimental data available. However, given the agreement
we have found with other calculations in this paper, it would
seem likely that these results should be reasonably accurate
and would be useful as part of a plasma simulation code,
which, after all, is our primary purpose. In Fig. 9 we show a
comparison between a fit to the experimental data [36] for a
positron on neutral helium and a fit to our CTMC calculation
for He+. Consider a helium plasma containing both neutral and
singly ionized helium into which a positron beam is fired. For
impact energies less than 17.8 eV there will be no positronium
formed. Between 17.8 and 47.6 eV positronium formation
will come exclusively from collisions with neutral helium. At
energies above 47.6 eV it becomes energetically possible for
collisions with ionized helium to contribute, and by 150 eV the
contribution from the ion will be at least an order of magnitude
bigger than that from the neutral target.

FIG. 8. (Color online) Positronium-formation cross sections for
positron collisions with He+ in the threshold-corrected CTMC
(crosses).

Given our results, it should be possible to construct a model
to relate the γ -ray spectrum observed after injecting positrons
into a helium plasma to the charge state of the plasma.

IV. CONCLUSIONS

We used the classical trajectory Monte Carlo method to
calculate charge-exchange cross sections for positron colli-
sions with hydrogen and neutral and singly ionized helium
targets with the ultimate purpose of including these results

FIG. 9. (Color online) Positronium-formation cross sections for
positron collisions with neutral and singly ionized helium: solid
blue curve, high-order polynomial fit to the absolute experimental
data of [11,36] for neutral helium; dashed red curve, high-order
polynomial fit to our CTMC calculations for He+.
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in plasma simulations. We benchmarked these results by
comparison with experiment where available and by using
the same method to calculate proton collisions with the same
targets. We were encouraged by the agreement we found.
The CTMC method remains a useful way of estimating
charge-exchange cross sections; however, it is important to
keep careful track of the errors inherent in the code, and it
is misleading to present results without at least displaying the
statistical errors. Further for the low-energy positron collisions
we found that the numerical integration using the standard
fourth-order Runge-Kutta gave rise to a numerical violation of
energy conservation, and the containment of this error placed

a limit on how small an impact energy we could reliably treat.
We hope to return to this problem later.
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