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We present a nonadiabatic treatment of the hydrogen-antihydrogen system. The technique used to describe H-H̄
collisions is based on the coupled-rearrangement-channel method. Within this approach the total, nonadiabatic
wave function of the system is divided into two parts: an inner and an outer one. To describe the inner part a
set of square-integrable four-body functions is used. These functions are obtained by a diagonalization of the
total Hamiltonian projected on a chosen L2 subspace; they explicitly contain components of various arrangement
channels expressed in terms of corresponding Jacobi coordinates. The outer part of the total wave function reflects
its asymptotic character. Our procedure leads to a system of nonlocal integrodifferential equations that are solved
iteratively and simultaneously determine the outer part of the solution and the coefficients in the four-body
expansion of the inner part. To solve these equations the compact fine difference method was applied. Using this
formalism we perform a one-channel calculation of the elastic scattering to obtain the S matrix, the nonadiabatic
scattering length, and the cross section for the low-energy elastic scattering in the H-H̄ channel.
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I. INTRODUCTION

The studies of interaction of antiatoms with ordinary matter
have become possible thanks to the spectacular progress in
the production and trapping of cold antihydrogen. In 2011
antihydrogen atoms were trapped for more than 1000 s [1]; this
allowed the first spectroscopic measurements for antiatoms in
2012 [2]. In 2013 the first test of the gravitational properties
of antiatoms was presented [3] and very recently [4] one has
succeeded to demonstrate the prototype of the antihydrogen
beam. Experiments with antiatoms can provide us with the
information crucial for testing the fundamental symmetries
underlying the standard model of physics [3]. The theoretical
description of antimatter interacting with matter is centered
around the simplest but not yet fully understood benchmark
system consisting of hydrogen and antihydrogen atoms [5].
The H-H̄ pair is the simplest neutral atomic system containing
both ordinary matter and antimatter. A very important and
difficult feature of this system is that unlike H2 it cannot
form a stable molecular structure even at the Coulombic level
of description; instead various decay processes are possible.
The most important Coulombic process, which competes with
processes driven by leptonic and nuclear annihilation, is the
rearrangement into protonium and positronium atoms:

H + H̄ → Pn(N) + Ps(n). (1)

The competing processes include “on the flight” annihilation
of hadrons:

H + H̄

→ e + ē + annihilation products (photons, pions, etc.) ,

(2)

*piotr.froelich@kemi.uu.se

leptonic annihilation:

H + H̄ → p̄ + p + 2γ (or 3γ ), (3)

and formation of metastable molecular resonances:

H + H̄ → HH̄ + γ. (4)

Leptonic annihilation (3) is less probable than the hadronic
one by three orders of magnitude [6], in spite of the apparently
large interleptonic correlation leading to the rearrangement
reactions (1). The cross sections for radiative association (4)
are also very small [7]. However, the molecular HH̄ reso-
nances can play an important role as the intermediate states
during the rearrangement collisions (1). The intermediate HH̄
molecule decays further to positronium and protonium, or via
intramolecular annihilation of the proton and antiproton:

H + H̄ → HH̄ → Pn(N) + Ps(n) or p + p̄ + 2γ. (5)

The four-body H-H̄ system has in the past been treated
by means of approximate methods. The first theoretical
description was given by means of the Born-Oppenheimer
(BO) approximation [8]. In more recent publications the
ultracold H-H̄ collisions have been studied by means of the
adiabatic distorted-wave approximation [9–11], the optical-
potential method [12], the Kohn variational method [13,14],
the close-coupling method [15], and the coupled-channel
method [16,17].

Though the H-H̄ interaction at interatomic distances ex-
ceeding few bohrs could be very precisely described by
the adiabatic potential, the description of rearrangement
collisions, which occur at distances smaller then ∼1 a.u.
is a nontrivial problem. Below the critical proton-antiproton
distance rc ≈ 0.7 a.u. [18] the leptons are no longer bound
by the proton-antiproton dipole and the rearrangement takes
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place. The existence of the critical distance causes serious
problems in the BO-based methods. The BO-based techniques
require a choice of the interaction potential for distances
smaller than the critical distance. More disturbing is that one
cannot systematically improve this description by including
adiabatic and off-diagonal corrections, because, as was shown
by Strasburger [18] the adiabatic correction to the BO potential
is not well defined for this system. So far, the interaction
in this region was treated approximatively, using Born-
Oppenheimer or optical potentials. One has also attempted
the Kohn variational method, which is not based on the BO
separation. However, the results previously presented within
this approach [13] were obtained in a relatively small basis set.

In the present paper we are trying to overcome these
obstacles by employing the fully nonadiabatic description
of the four-body system, namely, the coupled-rearrangement-
channel method (CRCM). This technique allows one to include
different possible arrangement channels of the system under
consideration. Moreover the proper asymptotic form of the
continuum wave function is ensured, while the inner part of
the wave function can still be described with square-integrable
basis functions, as in the bound state calculations. The CRCM
does not involve any presumptions concerning the adiabaticity
of the collision process. In particular, it does not suffer from
the presence of the critical distance characteristic for the BO
approach and it allows a proper description of the four-body
system for any interatomic distance and for any arrangement
configuration.

II. NONADIABATIC
COUPLED-REARRANGEMENT-CHANNEL METHOD

The system under consideration can, for a given energy, un-
dergo rearrangement to different physical channels which have
distinct asymptotic features, i.e., the system can “dissociate”
into pairs of different atoms. The two main rearrangement
channels which are possible are hydrogen-antihydrogen and
protonium-positronium channels. Depending on the total
energy of the system in each rearrangement channel several
physical channels can be opened, which correspond to various
excited states of the fragments and different dissociation limits.

Following [19,20] we represent the total wave function as a
sum of two terms. The first term is aimed to describe correctly
the asymptotic behavior of the wave functions in all physical
channels; the second term is used to describe the inner region
of the wave function:

� =
∑

c

φ(c)
a (rc)φ(c)

b (qc)Y (c)(R̂c)
χc(Rc)

Rc

+
vmax∑
v

bv�v, (6)

where c numbers open physical channels (possibly in different
rearrangement channels), φ(c)

x is a wave function of an isolated
atom x in channel c, and rc and qc are the internal coordinates
of the atoms. The yet unknown functions χc satisfying the
appropriate boundary conditions are added to describe the

relative motion of the atoms in each open channel c, and Rc is
the interatomic Jacobi coordinate for this channel.

To facilitate the description of the inner (nonasymptotic)
part of the total wave function � a set of auxiliary functions
�v is added. It is important to emphasize that functions χc

are not requested to vanish in the inner region (except for
Rc = 0). In that way they can contribute to the description of
the inner region spanned by functions �v , and at the same
time facilitate a smooth transition between the inner and outer
regions. As will be seen in following, expansion coefficients
bv and functions χc are determined simultaneously via a self-
consistent, integrodifferential procedure.

The �v functions are square-integrable and are chosen to
be solutions of the following eigenvalue problem of the total
Hamiltonian projected onto the subspace P :

HP �v = Ev�v. (7)

The HP Hamiltonian is defined as

HP = PHP, (8)

where H is the total four-body Hamiltonian of the system
and P is a projector operator on some subspace H′ of the
total Hilbert space H. H′ is spanned by L2(R) basis functions
and these functions are of the finite range (i.e., they can be
considered to vanish at some distance). Since they are used to
provide a proper description of the inner part of the wave
function, it is not intended to extend the spatial range of
these functions when the dimension of P is enlarged. The
enlargement of the basis leads to a more complete span of the
inner region and gives a procedure allowing the systematic
improvement of the accuracy of the obtained solutions �.

The total function (6) must fulfill the time-independent
Schrödinger equation with the full four-body Hamiltonian H :

(H − E)� = 0. (9)

To find both functions χc and expansion parameters bv one
is now projecting Eq. (9) onto the atoms’ functions in each
channel〈

φ(c)
a (rc)φ(c)

b (qc)Y (c)(R̂c)
∣∣H − E

∣∣�〉
rcqcR̂c

= 0,

for c = 1, . . . ,Nc,

(10)

where the subscript in the bracketed notation means that the
integration goes over vectors rc,qc and angular coordinates
of the Rc vector. Similarly one can project (9) onto the �v

functions:

〈�v|H − E|�〉 = 0, for v = 1, . . . ,vmax. (11)

Using (11) together with (6) and the fact that functions �v are
chosen to diagonalize the Hamiltonian H in the subspace P ,

〈�v|H |�v′ 〉 = 〈�v|HP |�v′ 〉 = Evδvv′ , (12)

we can write the following explicit expression for the expan-
sion parameters bv:

bv = − 1

Ev − E

〈
�v

∣∣∣∣H − E

∣∣∣∣∑
c

φ(c)
a (rc)φ(c)

b (qc)Y (c)(R̂c)
χc(Rc)

Rc

〉
. (13)
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Similarly using (6), (10), and (13) we may write〈
φ(c)

a (rc)φ(c)
b (qc)Y (c)(R̂c)

∣∣∣∣H − E

∣∣∣∣φ(c)
a (rc)φ(c)

b (qc)Y (c)(R̂c)
χc(Rc)

Rc

〉
rcqcR̂c

+
∑
c′ �=c

〈
φ(c)

a (rc)φ(c)
b (qc)Y (c)(R̂c)

∣∣∣∣H
−E

∣∣∣∣φ(c′)
a (rc′)φ(c′)

b (qc′ )Y (c′)(R̂c′)
χc′(Rc′)

Rc′

〉
rcqcR̂c

+
vmax∑
v

〈
φ(c)

a (rc)φ(c)
b (qc)Y (c)(R̂c)

∣∣∣∣H − E

∣∣∣∣bv�v

〉
rcqcR̂c

= 0. (14)

By representing the total Hamiltonian as a sum of atomic Hamiltonians ha,hb, kinetic energy operator of the relative motion TR
and the interaction part V int

ab = H − TR − ha − hb the integration in the first term in (14) can be performed explicitly which leads
to the following expression:〈
φ(c)

a (rc)φ(c)
b (qc)Y (c)(R̂c)

∣∣∣∣H − E

∣∣∣∣φ(c)
a (rc)φ(c)

b (qc)Y (c)(R̂c)
χc(Rc)

Rc

〉
rcqcR̂c

= − 1

2μcRc

[
d2

dR2
c

− J (J + 1)

R2
c

+ k2
c − U (c)(Rc)

]
χc(Rc),

(15)
where k2

c = 2μc(E − e(c)
a − e

(c)
b ), with μc being the reduced mass of the atoms in channel c, and e(c)

x being the energies of the
isolated atoms in this channel. The function U in Eq. (18) is given by

U (c)(Rc) = 2μc

〈
φ(c)

a (rc)φ(c)
b (qc)

∣∣V int
ab

∣∣φ(c)
a (rc)φ(c)

b (qc)
〉
rcqcR̂c

, (16)

where hx stands for a monomer’s Hamiltonian, i.e., a Hamiltonian for a two-body Jacobi fragment, which in our case might
be hydrogen, antihydrogen, protonium, or positronium atom. One can easily recognize that U (c) is the first-order interaction
potential between monomers a and b.

The last term in Eq. (14) is evaluated by inserting (13) which, after additional algebraic manipulations, leads to the following
expression:

vmax∑
v

〈
φ(c)

a (rc)φ(c)
b (qc)Y (c)(R̂c)

∣∣H − E
∣∣bv�v

〉
rcqcR̂c

=
∑
c′

∫ ∞

0
Rc′

vmax∑
v

〈
φ(c)

a (rc)φ(c)
b (qc)Y (c)(R̂c)

∣∣H − E
∣∣�v

〉
rcqcR̂c

1

E − Ev

× 〈
�v

∣∣H − E
∣∣φ(c′)

a (rc′ )φ(c′)
b (qc′ )Y (c′)(R̂c′)

〉
rc′ qc′ R̂c′

χc′ (Rc′)dRc′ . (17)

Using (15) and (17) in (14) and introducing some new notation we can write the equation for the χc function in the following
form:[

d2

dR2
c

− J (J + 1)

R2
c

+ k2
c − U (c)(Rc)

]
χc(Rc) +

∫ ∞

0
W (cc)(Rc,R

′
c)χc(R′

c)dR′
c +

∑
c′ �=c

∫ ∞

0
W (cc′)(Rc,Rc′ )χc′ (Rc′)dRc′ = 0. (18)

The second term in (18) represents the diagonal (c = c′)
part of (17), whereas the off-diagonal term of (18) stems
from the second term in (14) and the of-diagonal part
of (17). The nonlocal kernels W (cc) and W (cc′) are responsible
for introducing higher order corrections to potential U (c).
Equation (18) is the main equation of the nonadiabatic
coupled-rearrangement-channel (NACRC) method, which
will be used in a later part of the present work. For more
detailed derivation and definitions see Appendix A.

III. BOUNDARY CONDITIONS

To solve Eq. (18) one needs to apply the proper boundary
conditions for the functions χc. Since the second term on
the right-hand side of (6) is always finite, and the total wave
function � has to be finite at each point, it means that the
functions χc(Rc) must vanish at Rc = 0. This gives us the
boundary conditions at zero

χc(0) = 0. (19)

The other boundary condition we can use is given by the
asymptotic form of the wave functions for large separations

between monomers:

lim
Rc→∞

χc(Rc) = u(−)(kcRc)δcc0 −
√

vc0

vc

Scc0u
(+)(kcRc), (20)

where c0 denotes the initial channel, and

u(±)(kR) = Rh
(±)
0 (kR), (21)

with h
(±)
J being the Riccati-Hankel functions [21]. The

condition given by (20) is valid for Rc large enough, so
the interaction between monomers is negligible. In practice,
the boundary condition is implemented by matching the
function χc to the combination of Hankel functions given
on the right-hand side of (20) at a given channel radius
Rmax

c . This combination is, however, given in terms of the
unknown (and sought after) S-matrix element. Hence, while
the boundary condition (19) can be used explicitly in the
numerical procedure, the condition (20) must be rewritten in
another form that temporarily eliminates S. To do this, we are
assuming that Eq. (20) is fulfilled for some large Rmax

c

χc

(
Rmax

c

) = u(−)
(
kcR

max
c

)
δcc0 −

√
vc0

vc

Scc0u
(+)

(
kcR

max
c

)
.

(22)
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The condition (22) is written as a condition at some chosen
point Rmax

c , but the initial condition (20) is given as a functions
equality. This means that the analog relation can be written for
the first derivative of χc,

χ ′
c

(
Rmax

c

) = u(−)′(kcR
max
c

)
δcc0 −

√
vc0

vc

Scc0u
(+)′(kcR

max
c

)
.

(23)

Both conditions (22) and (23) involve the yet unknown
scattering matrix element Scc0 ; for practical reasons we need
to temporarily eliminate it from our equations by combining
both boundary conditions (for the function and for the first
derivative) together. For c = c0 the resultant condition can be
written as

χc0

(
Rmax

c0

) − u(−)
(
kc0R

max
c0

)
u(+)

(
kc0R

max
c0

) = χ ′
c0

(
Rmax

c0

) − u(−)′(kc0R
max
c0

)
u(+)′(kc0R

max
c0

)
(24)

and a similar condition can be written for the c �= c0 case,

χc

(
Rmax

c

)
u(+)

(
kcRmax

c

) = χ ′
c

(
Rmax

c

)
u(+)′(kcRmax

c

) . (25)

In the case of the H-H̄ system we can introduce a modifi-
cation of the boundary condition (20). For the distances much
larger than the critical distance rc the HH̄ system is supposed to
be well described within the adiabatic (or Born-Oppenheimer)
approximation. This should allow us to impose the boundary
conditions at much smaller distances. Since the adiabatic
functions possess the correct asymptotic shape it is possible to
use them instead of functions h0 in (20), which will ensure the
proper description of the interatomic interaction (including
dispersion) at medium and larger distances. In this case the
functions u± for H-H̄ in (20) need to be replaced by functions
ξ± defined as

ξ±(R) = Rϕ±(R), (26)

where ϕ±(R) denotes the Born-Oppenheimer nuclear wave
function obtained with the following boundary conditions:

lim
R→∞

ϕ±(R) = h±
0 (kR),

lim
R→∞

d

dR
ϕ±(R) = d

dR
h±

0 (kR).
(27)

The ϕ± functions were obtained by means of numerical
integration of the nuclear Schrödinger equation with the mass-
scaled Born-Oppenheimer potential [22]. Since functions ϕ±
fulfill the condition (27) Eqs. (22) and (23) must be valid for
functions ξ± in place of u±, with the same S, but for smaller
Rmax

c .

IV. NUMERICAL RESULTS

We have performed one-channel computations for the
elastic scattering in the H-H̄ channel with J = 0. Our aim
in this paper is to describe the scattering of hydrogen and
antihydrogen ground state atoms at low energies. For the
collisions at very low energies only the S-wave scattering
is contributing to the cross section and scattering length.
For this reason in our calculations we only consider zero

angular momentum for the relative motion of the atoms.
Moreover, since the orbital angular momenta for the ground
state atoms is also zero, due to the conservation law the
total angular momentum of the four-body system must be
J = 0. For the calculation of the scattering length (which
determines the low-energy limit of the elastic cross section) the
collision energy was chosen to be 10−9 hartree. For this energy
several calculations were done with different lengths of the
expansion in (6). The functions used in this expansion are the
solutions of the four-body problem that explicitly contain com-
ponents of the Pn + Ps and H + H̄ arrangement channels. The
solution of the four-body problem is described in Appendix B.
The value of the scattering matrix element S is obtained by
fitting the calculated χ function to the form given by (22) in
an asymptotic region. Function χ is obtained as the solution
to the integrodifferential equation (18); the method of solving
this equation is described in Appendix C. After the iterative
procedure of solving the integrodifferential equations (C13)
has converged the nonunitarity of S is smaller than one part
in 108. From the S value, the phase shift δ can be easily
computed as

δ = ln S

2i
. (28)

Using δ the value of the scattering length can be estimated as

a = − tan δ

k
, (29)

where k is a momentum of the relative motion of the
monomers.

In the present calculations the boundary condition radius
Rmax was chosen to be 14 bohrs. In principle we are aiming
to make the value of Rmax as small as possible so that the
proper asymptotic shape of the wave function, which includes
dispersion, is “switched on” as soon as possible (i.e., at the
smallest distance where its correct form is known). Of course
Rmax has to be chosen such that the overlap of the leptonic
charges can be considered negligible at this distance. Then the
total interaction potential is well represented by the asymptotic
form of the dispersion energy. To achieve that for the H-H̄
system, Rmax must not be smaller than ∼12 a.u.

Shrinking of the matching radius to such a small value is
possible thanks to the use of modified boundary conditions (24)
and (25), where the nuclear Born-Oppenheimer functions ξ±
replace the Hankel functions u±. This has two important
effects. First, it shrinks the internal configuration space
described by the projector P . Therefore, given the number of
basis functions, one obtains a much more complete description
of the inner rearrangement region. Second, it allows for the
correct description of the dispersion interaction in the entire
region where the latter occurs.

Let us stress here, that proper asymptotic behavior of the
wave function is crucial in the calculations of the scattering
length. Since the potential Uc in Eq. (18) is the first-order
interaction energy between monomers, it does not, by itself,
possess the asymptotic form of the dispersion forces. The
dispersion interaction, governed by the well-known −C6/R

6

term, is generated by the integral part of Eq. (18), i.e., by
the nonlocal potentials W . However, the pseudostates �v ,
which constitute integral kernels W , are expanded in the L2

062703-4



NONADIABATIC TREATMENT OF HYDROGEN- . . . PHYSICAL REVIEW A 89, 062703 (2014)

TABLE I. Scattering length as a function of the expansion size
vmax.

vmax a (a.u.)

0 3.691
1 5.768
2 6.324
5 7.112
10 7.225
15 7.242
20 7.266
30 7.267
44 7.267

basis set, and this means that information about higher order
contribution to the interaction energy is included at most to
the distance at which functions �v die out. Therefore, to
facilitate the description of dispersion interaction, we move
in the boundary conditions point Rmax as close as possible to
the range of the functions �v , i.e., we have chosen the Rmax

value to be the same as the spatial extent of the �v functions.
In our case this is ∼14–15 bohrs.

Table I presents the convergence of the calculated scattering
length a with the size vmax of the four-body expansion used
in (6). The value of the scattering length obtained in the
present work, a = 7.3 bohr, can be compared with the previous
result obtained within the Born-Oppenheimer approximation,
a = 8.1 bohr [10]. This gives an approximately 10% difference
between nonadiabatic and BO calculations. The results of the
previous calculations which aimed to somehow go beyond
the Born-Oppenheimer approximation [12,17] suggested that
the value of the scattering length obtained within the BO
scheme is overestimated and our present calculations support
this observation. The smaller value of the scattering length
also implies that the value of the scattering cross section for
the elastic collisions should be smaller than in the BO case.
Since our result was obtained in one-channel calculations,
but with the wave function that explicitly contains the Pn-Ps
component, one can draw the conclusion that the presence
of closed channels plays a significant role in elastic H-H̄
scattering.

Knowing the value of the scattering matrix S one cannot
only calculate the scattering length, which characterizes the
zero energy collisions, but also the scattering cross section σ ,
which is a function of collision energy. For a given J the cross
section for scattering from channel c0 to c is given as

σJ
cc0

= π

k2
c0

(2J + 1)
∣∣δcc0 − SJ

cc0

∣∣2
, (30)

where kc0 is a relative momentum of the atoms in the initial
channel. In our case we are considering the elastic collisions
for J = 0, which simplifies the above formula to

σ 0
elast = π

k2
c0

∣∣1 − S0
c0c0

∣∣2
. (31)

The results for the cross section for the elastic H-H̄ collisions
are presented in Fig. 1.

Similarly the cross section for the rearrangement process
can be obtained from the scattering matrix elements Scc0 that

 0
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FIG. 1. The cross section for the elastic H-H̄ scattering as a
function of the collision energy.

are explicitly present in our scheme of integrodifferential
equations (18); however, this kind of calculation is much more
demanding from the numerical point of view.

One notices that the elastic cross section shows the correct
behavior expected from the general theory of scattering for
slow particles, i.e., it tends to the constant value in the
low-energy limit. It is also interesting to see what are the
contributions of different �v functions to the total wave
function � in Eq. (6). For this, in Table II we collected
the absolute values of the complex expansion parameters bv

together with the energy differences Ev − E. It should be
stressed that bv does not necessarily decrease as |Ev − E|
increase. It can be seen that |E − Ev| is one of the factors

TABLE II. Expansion parameters bv for Rmax = 14 a.u. and
vmax = 44.

v Ev − E (a.u.) |bv| v Ev − E (a.u.) |bv|
1 0.0002648 2.0581016 23 0.0186578 0.0039995
2 0.0005100 1.9558148 24 0.0213473 0.0225094
3 0.0008304 0.9120635 25 0.0214303 0.0066594
4 0.0012221 0.0057262 26 0.0235457 0.0004833
5 0.0017036 0.4609114 27 0.0248763 0.0110494
6 0.0020820 0.0008963 28 0.0274537 0.0148000
7 0.0022992 0.5510484 29 0.0286673 0.0008758
8 0.0030274 0.4592296 30 0.0300451 0.0023895
9 0.0034076 0.0009672 31 −0.0012953 0.0007571
10 0.0036412 0.0009671 32 −0.0042211 0.0001288
11 0.0038913 0.3267039 33 −0.0050323 0.0000850
12 0.0048078 0.2327922 34 −0.0074774 0.0000151
13 0.0059240 0.1719270 35 −0.0085173 0.0000006
14 0.0064491 0.0078132 36 −0.0107979 0.0000435
15 0.0072433 0.1209706 37 −0.0137106 0.0002640
16 0.0087856 0.0932506 38 −0.0158440 0.0000161
17 0.0100517 0.0020057 39 −0.0185291 0.0000658
18 0.0109006 0.0680535 40 −0.0213553 0.0000434
19 0.0136014 0.0485956 41 −0.0226220 0.0000576
20 0.0140060 0.0069673 42 −0.0229332 0.0000071
21 0.0158479 0.0052012 43 −0.0238608 0.0000094
22 0.0170979 0.0334709 44 −0.0273824 0.0000144
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determining the value of bv , as can be seen in (13), but it is
not the only one. The other important factor which determines
the value of bv is the “nature” of the �v function. Functions
with “adiabatic nature”, whose main contribution has the form
of a product of an adiabatic nuclear function and monomers’
ground state functions, seem to be of the highest importance.

V. CONCLUSIONS

We have presented the nonadiabatic description of the
elastic hydrogen-antihydrogen scattering. The method used
here allowed us to provide the proper description of the
rearrangement region, i.e., the inner part of the wave function,
which caused the main difficulties in the previous calcu-
lations. The improvement was possible due to the use of
the four-body technique, where the inner part of the wave
function is described by explicitly coupling the two most
important arrangement channels (i.e., hydrogen-antihydrogen
and protonium-positronium channels). At the same time our
approach is tailored to assure the proper description of the
outer part of the wave function. This is achieved by the
matching procedure, whereby the inner part is matched to
the asymptotically correct wave functions. These functions
were obtained within the Born-Oppenheimer approximation
so as to properly account for the dispersion interactions in
the asymptotic region. It should be stressed that the Born-
Oppenheimer functions were used only in the region where
the nonadiabaticity of the system under consideration can be
neglected, and the total calculation is nonadiabatic in its nature.

The nonadiabaticity in the system under consideration can
be seen as originating from different sources. First of all the
rearrangement process (H + H̄ → Pn + Ps) by itself is strictly
nonadiabatic, since the nuclear motion cannot be decoupled
here from the leptonic motion. Of course the many-channel
calculations are needed in order to fully describe this process,
however, the rearrangement process is not the only source
of the nonadiabaticity in the H-H̄ system. In the normal
molecular systems, the nonadiabaticity usually occurs when
at least two electronic energy levels come close to each other
for a given nuclear geometry. In the case of the hydrogen
molecule the electronic ground state is well isolated from
all other electronic states and the rovibrational levels of
the ground state do not overlap with rovibrational levels
of excited states. For this reason the H2 molecule can be
considered as an adiabatic system. On the other hand, the
situation for the HH̄ quasimolecule is essentially different.
The Born-Oppenheimer potential energy curve for the leptonic
ground state as well as the energy curves for the leptonic
excited states are attractive for all internuclear distances and
tend to minus infinity when the distance between hadrons tends
to zero. Because of this feature of the adiabats, the ground
leptonic state is not isolated from other (excited) leptonic states
and the corresponding rovibrational spectra do overlap to some
extent. Therefore the hydrogen-antihydrogen system should be
considered nonadiabatic even when the rearrangement process
is not explicitly present in the calculations.

One of the benefits of our method is a possibility to improve
the accuracy of the four-body calculations for the S matrix
in a self-consistent way. We would also like to stress that
our method provides a better description of the inner (below

∼1 bohr) region than that in the Born-Oppenheimer picture,
where a simple Coulombic interaction between nuclei has
been adapted below the critical distance. In our procedure
no assumptions of this kind are made and forces between all
particles are explicitly taken into account.
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APPENDIX A: DERIVATION OF THE NACRC METHOD
EQUATIONS

We will discuss here the derivation of Eq. (18) in a more
detailed way. The nonlocal kernels W (cc′) introduced in (18)
can be conveniently written with the help of auxiliary functions
V given as

Vcv(Rc) = 〈
φ(c)

a (rc)φ(c)
b (qc)Y (c)(R̂c)

∣∣H
−E

∣∣�v(rc,qc,Rc)
〉
rcqcR̂c

. (A1)

Using the above quantity we can write the “diagonal” function
W (cc) as

W (cc)(Rc,R
′
c) = 2μcRcR

′
c

∑
v

Vcv(Rc)
1

E − Ev

Vcv(R′
c). (A2)

This quantity is obtained from (17) for c′ = c. Let us remark
that W (cc) can be also written in a form which resembles the
expression for the second-order correction in the perturbation
theory

W (cc) = 2μcRcR
′
c

〈
φ(c)

a φ
(c)
b Y (c)

∣∣(H − E)R(H − E)

× ∣∣φ(c)
a φ

(c)
b Y (c)

〉
rcqcR̂c

, (A3)

where

R =
∑

v

|�v〉 〈�v|
E − Ev

. (A4)

Therefore W (cc) can be interpreted as a term which introduces
the higher order corrections to the Uc potential.

Functions W (cc′), which are responsible for the coupling
between different physical channels, consist of two parts

W (cc′)(Rc,Rc′ ) = W
(cc′)
1 (Rc,R

′
c) + W

(cc′)
2 (Rc,Rc′ ), c′ �= c.

(A5)

The first part is defined in a similar way to W (cc) in Eq. (A2),
and is obtained from (17) for c′ �= c:

W
(cc′)
1 (Rc,Rc′ ) = 2μcRcR

′
c

∑
v

Vcv(Rc)
1

E − Ev

Vc′v(Rc′),

c′ �= c. (A6)
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The second part, i.e., W
(cc′)
2 , is derived from the middle term

in (14). When c and c′ are different physical channels and they
belong to different arrangement channels, the W

(cc′)
2 function

is given as

W
(cc′)
2 = 2μcRcRc′

〈
φ(c)

a (s,Rc′ ,Rc)φ(c)
b (s,Rc′ ,Rc)Y (R̂c)

∣∣H
−E

∣∣Jcc′φ(c′)
a (s,Rc′ ,Rc)φ(c′)

b (s,Rc′ ,Rc)Y (R̂c′)
〉
sR̂c′ R̂c

,

c′ �= c, (A7)

where s is rc or qc and Jcc′ is a Jacobian of the coordinates
transformation connecting channels c and c′,

drc dqc dR̂c = Jcc′ ds dRc′ dR̂c. (A8)

The explicit form of the transformation (A8) depends on the
particular choice of the coordinates used. Two of the new
coordinates need to be Rc and Rc′ ; as for the third vector s we
are free to choose one of the remaining coordinates, namely,
rc, qc, rc′ , or qc′ . For the case when c corresponds to the
H-H̄ channel and c′ to the Pn-Ps channel the most convenient
transformations are

drep drēp̄ drHH̄ = 8 drep drPnPs drHH̄ (A9)

and

drep drēp̄ drHH̄ = 8 drēp̄ drPnPs drHH̄. (A10)

Similarly for the case with c corresponding to the Pn-Ps
channel and c′ to the H-H̄ the most convenient coordinate
transformations are

dreē drpp̄ drPnPs =
(

mH

mp

)3

dreē drHH̄ drPnPs (A11)

and

dreē drpp̄ drPnPs = m3
H drpp̄ drHH̄ drPnPs, (A12)

where mH and mp denote hydrogen and proton masses,
respectively.

If two different physical channels (c �= c′) belong to the
same arrangement channel, then (rc,qc,Rc) and (rc′ ,qc′ ,Rc′ )
are the same coordinates and the derivations of Eq. (A7)
must be changed, leading to the following, somewhat simpler
expression:

W
(cc′)
2 (Rc,Rc′ ) = 2μcRc′

〈
φ(c)

a (rc)φ(c)
b (qc)Y (R̂c)

∣∣H
−h(c)

a − h
(c)
b

∣∣φ(c′)
a (rc)φ(c′)

b (qc)Y (R̂c)
〉
rcqcR̂c

× δ(Rc − Rc′). (A13)

APPENDIX B: CALCULATIONS OF THE FOUR-BODY
FUNCTIONS

To calculate the four-body functions �v the square-
integrable basis functions, constructed with the triple products
of the wave functions describing the Jacobi fragments and
their relative motions, were used. Let us denote a single basis
function used in the expansion of �v by

ζ cJM
{n}{l} = [

φnαlα
cα (rcα)φ

nβlβ
cβ (rcβ)φ

nγ lγ
cγ (rcγ )

]
JM

, (B1)

where c numbers the arrangement channels (H-H̄ or Pn-Ps),
and rcx (x = α,β,γ ) denotes the Jacobi coordinates for a

given channel c. Symbols {n} and {l} stand for {nα,nβ,nγ }
and {lα,lβ,lγ }, where nx and lx denote a “principal” quantum
number and angular momentum for coordinate rcx . The choice
of the functions entering expansions of functions φ is described
at the end of this section. Here it is sufficient to say that
they are constructed by means of expansion in Gaussian
and/or oscillating Gaussian functions. Note, however, that
since square-integrable functions are used to describe motion
in each Jacobi coordinate, all functions φ are characterized
by a discreet principal quantum number n, even when they
correspond to a scattering state.

Symbol [· · · ]JM in (B1) denotes that angular momenta of
the functions constituting a triple product are coupled to a total
angular momentum J and its projection M . In the present work
we are considering states with J = 0, so (B1) can be written
explicitly as

ζ c00
{n}{l} = [

φnαlα
cα (rcα)φ

nβlβ
cβ (rcβ)φ

nγ lγ
cγ (rcγ )

]
00

=
lα+lβ∑

λ=|lα−lβ |

∑
μ mγ

∑
mα mβ

(lαmα,lβmβ |λμ)(λμ,lγ mγ |00)

×φnαlα
cα (rcα)φ

nβlβ
cβ (rcβ)φ

nγ lγ
cγ (rcγ ), (B2)

where (lαmα,lβmβ |λμ) are Clebsch-Gordan coefficients.
Additionally the four-body basis functions (B2) for the H-H̄

channel were symmetrized using operator S :

S
[
φ

n1l1
H (rep)φn2l2

H̄ (rēp̄)φn3l3
HH̄ (rHH̄)

]
00

= 1√
2

([
φ

n1l1
H (rep)φn2l2

H̄ (rēp̄)φn3l3
HH̄ (rHH̄)

]
00

+ [
φ

n2l2
H (rep)φn1l1

H̄ (rēp̄)φn3l3
HH̄ (rHH̄)

]
00

)
, (B3)

for {l1,l2,l3} = {0,0,0} or {1,1,0}. This symmetrization is done
due to the fact that the system under consideration can be
symmetric or antisymmetric with respect to the electric charge
conjugation operation. Since the symmetric and antisymmetric
states do not couple, we are allowed to choose one type and do
not include the other. The symmetrization in the Pn-Ps channel
is easier to perform; the basis functions with {l1,l2,l3} =
{0,0,0} and {1,1,0} are already symmetric, whereas the func-
tions with {l1,l2,l3} = {1,0,1} and {0,1,1} are antisymmetric
with respect to the considered transformation. This means that,
in this case, the symmetrization is automatically ensured upon
the choice of the proper angular momenta configurations. After
the symmetrization the total size of the basis set used in the
present calculations was 16 320 functions of the form given
by (B2).

Finally the four-body wave function � is written as an
explicit sum of contributions from different rearrangement
channels:

� = �HH̄(rep,rēp̄,rHH̄) + �PnPs(reē,rpp̄,rPnPs), (B4)

where each part on the right-hand side of (B4) is represented
as a linear combination of symmetrized functions of the form
given by (B2):

�c =
∑
{n}{l}

Ac
{n}{l}S ζ c00

{n}{l}, (B5)
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where S is the symmetrization operator given by (B3) for
functions from the H-H̄ channel and by identity for functions
from the Pn-Ps channel. The expansion coefficients Ac

{n}{l} are
determined by solving the eigenvalue problem for the HP

Hamiltonian:

HP (�HH̄ + �PnPs) = E(�HH̄ + �PnPs). (B6)

Since both parts of the wave function (B4) are expressed in
different Jacobi coordinate systems, one needs to be able to
transform between them in order to solve (B6). The explicit
transformation between the H-H̄ and Pn-Ps channels is given
as ⎛

⎝rep
rēp̄

rHH̄

⎞
⎠ =

⎛
⎜⎝

1
2 − 1

2 1

− 1
2

1
2 1

1
mH

mp

mH
0

⎞
⎟⎠

︸ ︷︷ ︸
R

⎛
⎜⎝ reē

rpp̄

rPnPs

⎞
⎟⎠ . (B7)

Due to this transformation a function which has a form of
a product of three Gaussians in coordinates from the H-H̄
channel can be rewritten in the coordinates from the Pn-Ps
channel in the following manner:

exp
(−αr2

ep − βr2
ēp̄ − γ r2

HH̄

)
= exp

(−ar2
eē − br2

pp̄ − cr2
PnPs − 2f reērpp̄ − 2greērPnPs

− 2hrpp̄rPnPs
)
, (B8)

where

a = αR2
11 + βR2

21 + γR2
31,

b = αR2
21 + βR2

22 + γR2
32,

c = αR2
31 + βR2

32 + γR2
33,

f = αR11R12 + βR21R22 + γR31R32,

g = αR11R13 + βR21R23 + γR31R33,

h = αR12R13 + βR22R23 + γR32R33.

(B9)

Of course the transformation (B7) can be reverted and the
product of three functions in the Pn-Ps channel can be
represented in the H-H̄ channel.

1. Construction of basis functions for Jacobi fragments

The φnl
cx functions, constituting the basis functions (B2),

are obtained in the prediagonalization procedure as contracts
of the primitive Gaussian functions or oscillating Gaussian
functions [22]. To expand functions describing hydrogen and
positronium atoms, as well as the relative Pn-Ps motion the
primitive Gaussian functions of the following form were used:

gnlm(r) = Nnlr
le−νnr

2
Ylm(r̂), (B10)

where Nnl is a normalization constant, Ylm is a spherical
harmonics, and νn is calculated as

νn = 1

r2
min

(
rmin

rmax

)2(n−1)/(nmax−1)

(B11)

with nmax being the total number of the primitive Gaussian
functions and rmin,rmax being free parameters defining the basis

TABLE III. Basis sets used to expand the four-body �v functions.

Channel rα rβ rγ lα lβ lγ nmax
α nmax

β nmax
γ

HH̄ rpe rp̄ē rHH̄ 0 0 0 8 8 120
H-H̄ rpe rp̄ē rHH̄ 1 1 0 8 8 120
Pn-Ps reē rpp̄ rPnPs 0 0 0 8 8 120

set (see Table III). These parameters are chosen independently
for each degree of freedom for each physical channel.

Since both protonium wave functions and the wave func-
tions describing the relative motion of the H and H̄ atoms
oscillate rapidly for small interparticle distances, it was
necessary to use the oscillating Gaussian functions instead
of the plain Gaussians for the expansion purpose:

gc
nlm(r) = N c

nlr
le−νnr

2
cos(ανnr

2)Ylm(r̂),

gs
nlm(r) = N s

nlr
le−νnr

2
sin(ανnr

2)Ylm(r̂),
(B12)

with α = π
2 . The geometric progression (B11) of the nonlinear

parameter of the Gaussian functions (both standard and
oscillating) facilitates the “elasticity” of the description of the
inner part of the total wave function. The basis set parameters
for the primitive Gaussians are collected in Table IV. With
these parameters the accuracy in the description of the excited
states of protonium with N = 24 was better than one part
in 106. It should also be stressed that the prediagonalized
functions span the same space as the original Gaussian
functions.

APPENDIX C: SOLVING NACRC METHOD EQUATIONS

To solve Eq. (18) together with conditions (19) and (20)
the compact finite difference method (CFDM) is used [23].
To obtain numerical solutions of Eq. (18) we are using a
nonuniform grid {r (c)

k } in each coordinate Rc and the flowing
fifth-order finite difference scheme

p(k)v′′
k−1 + q(k)v′′

k + r (k)v′′
k+1 = a(k)vk−1 + b(k)vk + c(k)vk+1,

(C1)

where vk = χ (rk), v′′
k = χ ′′(rk), and parameters a, b, c, p, q,

and r are given in terms of the nearest grid steps h1 = rk − rk−1

TABLE IV. The basis set parameters defining Gaussian functions
used in the expansion of the four-body wave functions (γ max

1/2 is the
half width at half maximum of the broadest Gaussian in the given
basis set).

Coordinate Angular rmin (a.u.) rmax (a.u.) nmax γ max
1/2 (a.u.)

momentum

rep and rēp̄ 0 0.13000 7.2 8 5.99
rep and rēp̄ 1 0.80000 14.0 8 11.66
reē 0 0.35000 20.0 8 16.65
rpp̄ 0 0.00003 1.7 120 1.42
rHH̄ 0 0.00007 6.0 120 5.00
rPnPs 0 1.00000 6.6 8 5.49

062703-8



NONADIABATIC TREATMENT OF HYDROGEN- . . . PHYSICAL REVIEW A 89, 062703 (2014)

and h2 = rk+1 − rk:

a = 1, b = −1 − h1

h2
, c = h1

h2
,

p = 1

12

(
h2

1 + h1h2 − h2
2

)
,

q = 1

12h2

(
h3

1 + 4h1h2 + 4h1h
2
2 + h3

2

)
,

r = 1

12h2

(−h3
1 + h2

1h2 + h1h
2
2

)
.

(C2)

If the grid steps are uniform (h1 = h2) one is obtaining a
sixth-order CFDM scheme. In order to deal with the boundary
conditions the CFDM equations need to be modified. To
impose boundary conditions at R = 0 we are using the
following sixth-order formula with uniform grid around R =
0:

h

12
(14v′′

1 − 5v′′
2 + 4v′′

3 − v′′
4 ) = v0 − 2v1 + v2, (C3)

where v0 = χ (0). The boundary conditions for Rmax are a bit
more cumbersome. First we express v′

N = χ ′(Rmax) in terms
of vk (on a uniform grid):

v′
N =

5∑
k=0

ckvN−k + O(h6), (C4)

where

c0 = 137

60h
, c1 = − 5

h
, c2 = 5

h
,

c3 = − 10

3h
, c4 = 5

4h
, c5 = 1

5h
.

(C5)

Now let us rewrite Eq. (24) as

1

β
vN − 1

β ′ v
′
N = α

β
− α′

β ′ , (C6)

where α = u(−)(Rmax), β = u(+)(Rmax), α′ = u(−)′(Rmax), and
β ′ = u(+)′(Rmax). Including (C4) into (C6) one obtains the
following relation:

vN =
5∑

k=1

βck

β ′ − βc0
vN−k + αβ ′ − α′β

β ′ − βc0
. (C7)

A similar relation for boundary condition (25) can be easily
obtained from (C7) simply by setting α = 0 and α′ = 0. Now

we can use (C7) in the sixth-order CFDM scheme:

h

12
(−v′′

N−4 + 4v′′
N−3 − 5v′′

N−2 + 14v′′
N−1)

= vN−2 − 2vN−1 + vN, (C8)

which leads to the following relation:

h

12
(−v′′

N−4 + 4v′′
N−3 − 5v′′

N−2 + 14v′′
N−1) =

5∑
k=1

dkvN−k + γ,

(C9)
where

dk = βck

β ′ − βc0
− 2δk,1 + δk,2 (C10)

and

γ = αβ ′ − α′β
β ′ − βc0

. (C11)

Using Eqs. (C1), (C3), and (C9) we can write

MV ′′ = AV + H, (C12)

where V = (v1,v2, . . . ,vN−1)T , V ′′ = (v′′
1 ,v′′

2 , . . . ,v′′
N−1)T ,

H = (v0,0, . . . ,0,γ )T , and M,A are (N − 1) × (N − 1) ma-
trices of CFDM coefficients. Now let us rewrite Eq. (18) in the
following discretized way:

V (c)′′ + F(c)V (c) +
∑
c′

G(cc′)[V (c′)] = 0, (C13)

where

F
(c)
kk′ = 2μc

(
k2
c − J (J + 1)

r
(c)
k

− U (c)(r (c)
k

))
δk,k′ (C14)

and

G(cc′)[V (c)]k =
∫ ∞

0
Wcc′(

r
(c)
k ,P

)
χc′(P )dP. (C15)

Applying (C12) to (C13) one obtains the final expression for
V (c):

V (c) = −(A + MF(c))−1

(
H + M

∑
c′

G(cc′)[V (c′)]

)
.

(C16)
Since the right-hand side of Eq. (C16) depends on V (c) it needs
to be solved iteratively. Functions χc obtained in the previous
iteration are used to calculate vectors G(cc′) for the next step.
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