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Detection of barium 6sng → 6snh, 6sni, and 6snk microwave transitions using selective
excitation to autoionizing states
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We use selective laser excitation to an autoionizing state to observe the microwave transitions of Ba from the
6sng Rydberg states to the 6snh, 6sni, and 6snk states for 15 � n � 18. We extract the dipole and quadrupole
polarizabilities of Ba+ from the measured �� intervals of the Ba 6sn� states of � � 5 using a nonadiabatic core
polarization model. The values we determine for the dipole and quadrupole polarizabilities are αd = 124.81(25)a3

0

and αq = 2478(50)a5
0 , respectively.
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I. INTRODUCTION

One of the largest frequency shifts in present-day atomic
clocks is the blackbody radiation shift [1–4]. Since 300 K
blackbody radiation is low in frequency, the blackbody shift
is predominantly determined by the static polarizability of the
atom or ion used in the clock. For many alkaline-earth-metal
ions used in atomic clocks, there are no measurements of
the ionic dipole and quadrupole polarizabilities to serve as
benchmarks for calculations of the blackbody shifts. It is
possible to extract these polarizabilities from the intervals
between high-� Rydberg states of the atom, states of high
enough � that the Rydberg electron does not penetrate the
ionic core [5–8]. We follow the usual convention that n and
� are the principal and orbital angular momentum quantum
numbers of the Rydberg electron. In these nonpenetrating
states, the energy shifts from the hydrogenic levels arise from
polarization of the core by the field from the Rydberg electron.
In Rydberg states of lower �, the electron comes closer to the
core at the inner turning point of its orbit, and the energy
shift is larger. Thus, measuring the �� intervals yields the
polarizabilities of the ionic core. An excellent recent summary
of core polarization analysis has been given by Lundeen [8].

Several methods have been employed to detect transitions
between the high-� states of alkaline-earth-metal atoms.
Selective field ionization has been used by Gentile et al. to
measure the 4sn� intervals in Ca [9]. Gallagher et al. and
Nunkaew et al. have used delayed field ionization to detect
the Ba 6sn� and Sr 5sn� intervals [10,11]. Snow and Lundeen
have used resonant excitation Stark ionization spectroscopy
(RESIS) to measure the Ba 6sn� and Mg 3sn� intervals
[12,13]. Field ionization is useful for states of n ∼ 20, and
RESIS can be used for states which can be populated by
driving transitions from n = 9 and 10 using a CO2 laser. Here
we point out that the optical excitation to an autoionizing
state by isolated core excitation (ICE) can be used to detect
�� intervals of alkaline-earth-metal atoms over a much wider
range of n [14]. The basis of this notion is that the rapid
increase in the ICE cross section with � allows the microwave
�� transitions between the bound states to be detected,
even when the ICE transitions for different � states occur at
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essentially the same wavelength. Here we report the use of this
technique to measure the Ba 6sng-6snh-6sni-6snk intervals
for 15 � n � 18. This technique should be applicable for all
Ba states of n � 30.

II. THE MICROWAVE �� TRANSITIONS
AND THEIR DETECTION USING ICE

The �� microwave transitions we observe are shown in
Fig. 1. The 6sng 1G4 state is populated by laser excitation,
and we drive the microwave transitions to the 6sn� states of
5 � � � 7. The higher-� states are not singlets and triplets.
Rather, the total angular momentum of the core �jc is coupled
to the orbital angular momentum �� of the Rydberg electron to
form �K . Explicitly,

�K = �jc + ��. (1)

We ignore the spin of the Rydberg electron. Since jc = 1/2,
K = � ± 1/2, and for each � state we observe two transitions,
as shown in Fig. 1. The splitting between the two K levels is
due to the indirect spin-orbit splitting [15,16].

Detection of the Ba 6sn� → 6sn�′ transitions (�′ > �) is
based on the difference in the optical cross sections of the
6sn�→ 6p1/2n� and 6sn�′ → 6p1/2n�′ ICE transitions. Pre-
viously, Cooke and Gallagher used the substantial difference
in the wavelengths of the Sr 5snd → 5pnd and 5snf → 5pnf

ICE transitions to detect the Sr 5s(n+ 2)d → 5snf microwave
transitions [17]. In ICE of the 6sn� state, the 6s electron
absorbs the photon while the n� electron is a spectator. The
6s → 6p1/2 transition of the inner electron is essentially the
Ba+ 6s → 6p1/2 transition, with an oscillator strength of 1/3.
The oscillator strength is spread over the spectral width of the
6p1/2n� state, which is determined by its autoionization rate.
In this case, the peak optical cross section is given by

σpeak = λ2A

8π�n�

, (2)

where A is the Einstein A coefficient for the Ba+ 6s → 6p1/2

transition, �n� is the autoionization rate of the 6p1/2n� state,
and λ is the wavelength of the transition, 493.5 nm in this case.
We have implicitly assumed that the autoionization rates of the
6p1/2n� states exceed their radiative decay rates, which is in
all cases simply the radiative decay rate of the Ba+ 6p1/2 state.
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FIG. 1. The Ba 6sn�, � � 4, states showing the microwave
transitions and the K splittings due to the indirect spin-orbit coupling
of the 6sn�, � � 5, Rydberg states.

For the 6p1/2n� states of interest this condition is easily met.
However, for n � 30 the autoionization rate of a 6p1/2n� state
of � = 7 is less than the radiative decay rate, and this method
of detection will no longer work [18].

The autoionization rates of the Ba 6p1/2n� states of � � 4
decrease by roughly a factor of 5 with each increase in �

of 1 [19]. Accordingly, the cross section for the 6sn� →
6p1/2n� ICE transition increases by a factor of 5 for each
increase in � of 1. Even if the center frequencies of the ICE
transitions are the same, approximately the ionic 6s → 6p1/2

frequency, it is possible to observe transitions between the
6sn� and 6sn�′ states, as shown in Fig. 2. Figure 2 is
drawn assuming the two ICE transitions occur at the ionic
frequency and that �′ = � + 1, so the ICE cross sections and
widths differ by a factor of 5. The linewidth of the laser
driving the ICE transition must be less than the width of
the 6p1/2n� state, and the power of the laser must also be
kept below saturation of the 6sn�′ → 6p1/2n�′ transition. If
the laser linewidth is less than the 6p1/2n�′ linewidth and the
6sn�′ → 6p1/2n�′ transition is not saturated, an atom in the
6sn�′ state is five times as likely as one in the 6sn� state to
undergo the ICE transition when the ICE laser is tuned to the
peak of the cross sections, at the ionic frequency. In short,
with the ICE laser tuned to the peak of the cross sections,
driving the 6sn�→ 6sn�′ microwave transition can result in a
fivefold increase in the autoionization signal at the 6sn�-6sn�′
microwave resonance. Alternatively, the ICE laser can be tuned
to the wing of the 6sn� → 6p1/2n� transition, in which case
the microwave 6sn� → 6sn�′ transition results in a decrease
in the autoionization signal.

FIG. 2. (a) The 6sn� → 6sn�′ microwave transition can be
detected using the difference in the two ICE cross sections. (b) The
ICE cross sections of the 6sn� → 6p1/2n� and 6sn�′ → 6p1/2n�′

transitions. With the ICE laser tuned to the peak of the cross sections,
driving the 6sn� → 6sn�′ microwave transition can result in a fivefold
increase in the autoionization signal at the 6sn�-6sn�′ microwave
resonance if �′ = � + 1.

FIG. 3. (Color online) The ICE cross sections for the 6s17g and
6s17h states. The wider ICE cross section is the 6s17g → 6p1/217g

transition. The narrower ICE cross section is the 6s17h → 6p1/217h

transition. The arrow shows the location of the 6s17i → 6p1/217i ICE
transition. The dashed line shows the location of the ionic 6s → 6p1/2

transition frequency.

In Ba, the 6sn� → 6p1/2n� transition frequencies depend
on both n and �. Figure 3 shows the � dependence of the
6s17� → 6p1/217�, � = 4 and 5, ICE cross sections. We
do not show the 6s17� → 6p1/217� ICE cross sections for
� > 5 since the peak cross sections are so much higher. We
do, however, show the location of the � = 6 ICE transition.
The higher-� ICE transitions lie closer to the ion 6s-6p1/2

transition at 20 261.56 cm−1. Since the 6s17g and 6s17h

ICE transitions are not superimposed, at the peak of the
6s17h ICE transition the ratio of the cross sections is not
5, but 10. While the increased selectivity is attractive, the
displacement of the ICE transitions with � does complicate
finding the ICE transitions for higher-� states. In this case
the most straightforward approach might be to set the ICE
laser to the high-frequency side of the 6s17g → 6p1/217g

transition and look for a decrease in the autoionization signal
to detect the 6s17g → 6s17� microwave transitions. However,
we have used a different approach. Since the frequencies of the
transitions from the Ba 6s18g state to the 6s18h, 6s18i, and
6s18k states are known [10], we set the microwave frequency
to the 6s18g → 6s18� resonance and scanned the ICE laser
to find the 6s18� → 6p1/218� ICE transition, which occurs at
the frequency ν�, given by

ν� = νion + δ�s
− δ�p

n3
, (3)

where νion is the Ba+ 6s-6p1/2 frequency, and δ�s
and δ�p

are the
quantum defects of the 6sn� and 6p1/2n� states, respectively.
When n is decreased by 1 the change in the ICE frequency,
�ν�, is given by

�ν� = 3
δ�s

− δ�p

n4
. (4)

For n = 18 and � = 5, �ν� = 2.5 GHz, which is small
compared to the 10 GHz width of the 6p1/218h state. In short,
knowing the � = 5, 6, and 7 ICE frequencies for n = 18 allows
us to predict them accurately enough to make the n = 17, 16,
and 15 measurements.
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FIG. 4. Laser excitation scheme of the experiment.

III. EXPERIMENTAL APPROACH

We prepare 6sng barium Rydberg states by exciting neutral
barium atoms in a beam with four laser pulses. The excitation
scheme from the ground state 6s2 to the 6sng state is shown in
Fig. 4. Photoions and electrons are produced, so the excitation
is performed in a small electric field, less than 100 V/cm, to
remove them.

As shown by the timing diagram of Fig. 5 after the four
laser pulses, we turn off the electric field and wait 200 ns for
any ringing from the electronics to dissipate. It is important that
there be no stray electric field on the Rydberg atoms during the
microwave pulse to avoid Stark shifts of our observed intervals.
To drive the 6sng → 6snh and 6sng → 6sni transitions, we
apply a single 1 μs pulse of microwaves; while for the 6sng →
6snk transitions, we use a continuous radio-frequency (rf) field
in addition to a 1 μs microwave pulse. When the microwave
pulse ends, we immediately apply a ∼493.5 nm frequency-
doubled, dye-amplified diode laser pulse, which excites the
6sn� atoms to the autoionizing 6p1/2n� states. The 6p1/2n�

atoms autoionize quickly, and we apply an electric field ramp
to drive the resulting ions to the microchannel plate detector.
The peak of the field ramp is high enough to ionize bound 6sn�

FIG. 5. (Color online) The timing sequence for the lasers, mi-
crowaves, and rf signals. (a) Small electric field to clear photoions.
(b) Four laser pulses to drive the 6s2 → 6sng transition. (c) 1 μs
microwave pulse. (d) ICE laser pulse (e) Electric field ramp.

atoms of n > 16, but the signal from bound-state atoms arrives
1 μs later than the signal from autoionizing atoms. The two
signals are temporally well resolved, and we set the gate of the
gated integrator on the autoionization signal. This excitation
and detection cycle is repeated every 50 ms, and our signals
are averaged over many laser shots.

IV. EXPERIMENTAL OBSERVATIONS

A. One-photon intervals

To obtain the single-photon intervals, we started from the
known 6s18g-6s18h transition. We used a high microwave
power at the 6s18g-6s18h resonance to equilibrate the
populations, and we swept the diode laser frequency to
find the frequency of the 6s18h → 6p1/218h ICE transition.
With the laser set to the ICE frequency we then attenuated
the microwave power and scanned the microwave frequency
to repeat the earlier measurements. To find the 6sng-6snh

transitions of n < 18, we changed the diode laser frequency
from its n = 18 value using Eq. (3) and scanned the microwave
frequency at high power to find a small resonance signal.
We then optimized the signal by adjusting the diode laser
frequency with the microwave frequency set to the 6sng-6snh

frequency. Once we found the optimal diode laser frequency,
we performed our microwave scans at reduced microwave
power.

Typical resonances, for n = 15, are shown in Fig. 6. There
are two resonances, corresponding to the two possible values
of K for the 6s15h state. The one-photon transition frequencies
for 6sng to 6snh, 15 � n � 18, are shown in Table I.

TABLE I. ng-nh observed frequencies and K splittings.

n K = 9/2 (MHz) K = 11/2 (MHz) K splitting (MHz)

18 40180.0(6) 41147.4(7) 967.4(9)
17 47367.4(6) 48547.2(6) 1179.8(8)
16 56489.4(6) 57959.0(5) 1469.6(8)
15 68185.8(5) 70063.6(5) 1877.8(7)
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FIG. 6. The single-photon 6s15g → 6s15h transitions. The two
peaks are separated by the K splitting.

B. Two-photon intervals

The procedure used for the two-photon transitions from
6sng to 6sni was similar to that used for the one-photon tran-
sitions. Using the known 6s18g-6s18i transition frequencies
we found the ICE wavelength for 6s18i, which could then be
adjusted for lower n using Eq. (3). The two-photon 6sng-6sni

transition occurs via a virtual intermediate state, and there is a
small but measurable ac Stark shift due to the microwave field.
To obtain the unshifted intervals, we took measurements at
multiple microwave powers and extrapolated our results to zero
microwave power. With the available microwave power the
maximum ac Stark shift was 1.65 MHz. The uncertainties are
those given by the statistical fits to the power extrapolations.
Typical two-photon resonances, for n = 15, are shown in
Fig. 7. The two-photon transition frequencies for 6sng to 6sni,
15 � n � 18 are shown in Table II.

C. Three-photon intervals

We located the 6snk → 6p1/2nk ICE transitions in es-
sentially the same manner used to find the 6snh → 6p1/2nh

FIG. 7. The two-photon transitions 6s15g → 6s15i. The two
resonances are separated by the K splitting of the 6s15i state.

TABLE II. ng-ni observed intervals and K splittings.

n K = 11/2 (MHz) K = 13/2 (MHz) K splitting (MHz)

18 51422.9(3) 51654.6(3) 231.7(4)
17 60667.8(6) 60926.7(8) 258.9(10)
16 72375.6(3) 72669.2(3) 293.6(4)
15 87359.8(4) 87691.3(3) 331.5(5)

and 6sni → 6p1/2ni ICE transitions. We do not have enough
microwave power to drive the three-photon 6sng-6snk tran-
sitions using a single microwave field. Instead, we use
two frequencies. One is close to the two-photon 6sng-6sni

microwave frequency, and the other is close to the 6sni-6snk

frequency, which, for clarity, we term a radio frequency (rf),
even though it can be as high as 8.3 GHz. In all cases, the
rf frequency was fixed and the microwave frequency swept.
We verified that if we changed the rf frequency the 6sng-6snk

intervals were given by twice the microwave frequency plus
the rf frequency, indicating that the resonance was due to two
microwave photons and one rf photon.

There are now two ac Stark shifts, due to the microwave
and rf fields. We performed microwave frequency sweeps at
different microwave powers and constant rf power, allowing
us to extrapolate the observed resonance frequencies to zero
microwave power for a given rf power. We repeated this
procedure for several different rf powers to extrapolate to
zero microwave and rf power. Our fit for the 6s17g → 6s17k,
K = 15/2, transition is shown in Fig. 8. As expected, the
rf power shift is more important since the rf field is nearly
resonant with a one-photon transition. In Table III we give the
measured intervals after extrapolation, as well as the approxi-
mate microwave and rf frequencies used. The uncertainties in
our reported intervals correspond to the uncertainties of the
power extrapolations.

V. CORE POLARIZATION ANALYSIS OF THE DATA

The adiabatic core polarization model of Mayer and Mayer
provides an instructive starting point for the analysis. In it,
the energy by which a Ba 6sn� Rydberg state lies below the
hydrogenic energy of −1/2n2 is given by [5]

Wpol,n� = − 1
2αd〈r−4〉n� − 1

2αq〈r−6〉n�, (5)

where αd and αq are the dipole and quadrupole polarizabilities
of the Ba+ ionic core, and 〈r−4〉n� and 〈r−6〉n� are the
expectation values of the squares of the n� Rydberg electron’s
field and field gradient at the core. The model is termed
adiabatic because it is based on the assumption that the
Rydberg electron is slowly moving compared to the electrons
in the core, providing an essentially static field.

For comparison to experimental data, it is convenient to use
Edlen’s form of Eq. (5) [7]:

Wpol,n� = −αdPn� − αqPn�Qn�, (6)

where

Pn� = R〈r−4〉n�, (7)

Qn� = 〈r−6〉n�

〈r−4〉n�

, (8)
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(a) (b)

FIG. 8. The extrapolation of the three-photon 6s17g → 6s17k, K = 15/2, transition to zero power. (a) Resonances were recorded for
multiple microwave powers at each rf power to determine the zero-microwave-power resonance frequency for each rf power. (b) These
zero-microwave-power frequencies were then extrapolated to find the zero-power interval, assuming a linear plus quadratic rf power shift, as
shown.

and R is the Rydberg constant for Ba; R = 109 736.88 cm−1.
Experimentally, we observe the �� energy intervals
�Wpol,n�′� = Wpol,n�′ − Wpol,n� between Ba 6sn� and 6sn�′
states of the same n, and we can express the observed intervals
in terms of Eq. (6) using

�Wpol,n�′�

�Pn��′
= αd + αq

�PQn��′

�Pn��′
. (9)

Here �Pn��′ =Pn� − Pn�′ , and �PQn��′ = Pn�Qn� − Pn�′Qn�′ .
The �� intervals are largely determined by the dipole
polarizability, and in Eq. (9) we have removed the variation
due to the dipole polarizability by dividing by �Pn��′ . Plotting
the left-hand side of Eq. (9) vs �PQn��′/�Pn��′ yields a
graph with intercept αd and slope αq . In Fig. 9, we have
plotted Eq. (9) for the Ba 6sn� � → � + 1 intervals of � � 5.
The experimental intervals are taken from Gallagher et al.
[10], Snow and Lundeen [12], and this work. The � → � + 1
intervals of � > 6, n = 17 and 20, the high-� intervals, at
�PQn��′/�Pn��′ < 0.002 fall on a line, as expected, but
the � = 6 → � = 7, ni-nk, intervals at �PQn��′/�Pn��′ ≈
0.0025 lie distinctly above the line, and the � = 5 → � = 6,
nh-ni, intervals, at �PQn��′/�Pn��′ ≈ 0.0053, lie well below
the line. The latter two sets of data are displaced from the line
due to the breakdown of the adiabatic assumption implicit in
Eq. (5).

Almost immediately after the appearance of the paper by
Mayer and Mayer, van Vleck and Whitelaw [6] pointed out
that Eq. (5) is valid only in the limiting case in which the
excited states of the ionic core are far above its ground state.
Furthermore, the polarization shifts are are not first-order
shifts, as implied by Eq. (5), but second-order shifts. To
understand their approach, it is useful to think of the Ba
atom as consisting of an inert, but polarizable, Ba++ core and
two valence electrons. In this case the dipole and quadrupole
polarization shifts of the 6sn� state are due to the dipole and
quadrupole couplings of the 6sn� state to the doubly excited
NLn�′ states. Here NL is the state of Ba+, and n�′ is the
state of the Rydberg electron. The energy shifts are readily
calculated in second-order perturbation theory by summing
the contributions of all the coupled NLn�′ states, including
continua. For example, the quadrupole polarization energy of
the Ba 6s20i state comes from the quadrupole couplings to
doubly excited Ba Ndn�′ states with �′ = 4, 6, and 8, as shown
schematically in Fig. 10. Summing over all the coupled Ndn�′
states yields the quadrupole polarization shift. As shown in
Fig. 10 for the specific case of N = 6, � is the energy range
spanned by the n�′ states associated with an Nd ion state,
and � is the energy difference between the Ba+ 6s and Nd

states. If � 	 � for all N , the sum reduces to αq〈r−6〉20i/2,
as in Eq. (5). Thus, a more precise statement of the adiabatic
requirement is � 	 � for all NL. For the Ba Ndn�′ states of

TABLE III. ng-nk frequencies and intervals.

Approximate rf Approximate microwave
n K frequency (MHz) frequency (MHz) Extrapolated interval (MHz)

18 13/2 4920 25750 56388.0(20)
15/2 4640 25895 56424.5(30)

17 13/2 5750 30390 66521.1(12)
15/2 5750 30400 66562.4(17)

16 13/2 7050 36125 79351.4(17)
15/2 7050 36150 79393.0(20)

15 13/2 8300 43720 95739.1(20)
15/2 8100 43875 95798.9(20)
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FIG. 9. The adiabatic plot of the measured �� intervals using
Eq. (9).

N > 5 the adiabatic requirement is reasonably well satisfied,
but for N = 5 it is not.

The most important quadrupole couplings by far are those
between the 6sn� and 5dn′�′ states. As an example we
consider the 6s20i state, which is coupled to the 5dng,
5dni, and 5dn� states. These states are not energetically
removed from the 6s20i state by the Ba+ 6s-5d interval of
∼5000 cm−1, as assumed in the adiabatic model, but by a
range of energies comparable to the ion interval. In this case
� ∼= �, and the adiabatic model fails, as shown graphically
in Fig. 9. Nonetheless, using hydrogenic wave functions it
is straightforward to calculate the energy shift due to the
quadrupole coupling to the 5dn�′ states and compare it to
that expected from the adiabatic model, yielding the ratio,
or correction factor, kq . Thus we can write the quadrupole
polarization shift of the 6s20i states due to the 5dn�′ states
as kqα

′
q〈r−6〉20i/2, where α′

q is the part of the quadrupole
polarizability due to the Ba+ 5d state. An analogous procedure
can be carried out for the dipole polarization shift, leading to
the correction factor kd . An important point to keep in mind is
that kd and kq correct for the nonadiabatic effects in the dipole
and quadrupole polarization energy shifts, respectively. They
are not corrections to the polarizabilities. Thus, for example,

FIG. 10. Energy level diagram showing the quadrupole coupling
of the 6s20i state to Ndn�′ states (�′ = 4, 6, and 8). The Ba+ 6s

ground-state energy is set to zero. � is the energy spread of the n�′

states, and � is the 6s-Nd ion energy spacing, shown here for N = 6.
The adiabatic requirement � 	 � is clearly not satisfied for N = 5.

the nonadiabatic effect in the dipole polarization energy affects
both αd and αq .

With the realization that the polarization energy shifts
are simply derived from second-order perturbation theory
we can understand why the ni-nk and nh-ni intervals are
displaced as they are in Fig. 9. A 6sni state has a very strong
quadrupole interaction with the low-lying 5d5g state which is
only ∼1000 cm−1 above the 6sni state. For this reason, the
quadrupole polarization energy shift is greater than expected
from the adiabatic model, and the ni-nk points lie above the
line in Fig. 9. The nh-ni intervals lie below the line in Fig. 9
because the 6snh states have a strong quadrupole interaction
with the 5d4f state which lies ∼1000 cm−1 below the 6s20h

state. The quadrupole interaction shifts the 6s20h state up in
energy, changing the sign of the quadrupole polarization shift.

The high-� points in Fig. 9 at �PQn��′/�Pn��′ < 0.001 fit
a straight line fairly well, and we can extract values for αd

and αq from the intercept and slope of the line through these
points, which we term the apparent polarizabilities. The values
we obtain are α

app
d = 123.67(6)a3

0 and α
app
q = 1047(63)a5

0 .
These values are too small, due to neglect of the nonadiabatic
corrections, and for this reason we term the extracted values
the apparent polarizabilities.

To extract the correct values of αd and αq for Ba+ from
the �� intervals of the Ba 6sn� states, we must account for
the nonadiabatic effects, which are prominent in Fig. 9. There
are several approaches, and we first describe our approach.
We start by noting that the contributions to the Ba+ 6s

polarizabilities from Ba+ states above the 6p and 5d states
are essentially adiabatic, as are those from Ba2+. We assume
the nonadiabatic effects to arise only from the 6p and 5d states
of Ba+, as done by Snow and Lundeen [13]. Accordingly, we
write the analog to Eq. (5) as

Wpol,n� = − 1
2 (α′

dkd + α′′
d )〈r−4〉n� − 1

2 (α′
qkq + α′′

q )〈r−6〉n�,

(10)

where α′
d is the part of the dipole polarizability due to the

6p state of the Ba+ ion, α′
q is the part of the quadrupole

polarizability due to the 5d state of the Ba+ ion, α′′
d is the

part of the dipole polarizability due to the higher-p states of
the Ba+ ion and the dipole polarizability of Ba2+, and α′′

q is
the part of the quadrupole polarizability due to the higher-d
states of the Ba+ ion and the quadrupole polarizability of Ba2+.
The nonadiabatic effects are taken into account by introducing
the correction factors kd and kq [10,13]. In principle, the kd

and kq factors completely eliminate the nonadiabatic effects.
It is straightforward to calculate kd and kq if we assume the
outer electron to be hydrogenic. Our calculated values of kd

are given in Table IV, and to three significant digits there is
no n dependence. The n-dependent kq values are presented in
Table V.

If we define the quantities P ′
n� and Q′

n� as follows:

P ′
n� = kdPn� (11)

and

Q′
n� = kq

kd

Qn�, (12)

062503-6



DETECTION OF BARIUM 6sng → 6snh, . . . PHYSICAL REVIEW A 89, 062503 (2014)

TABLE IV. kd calculated values.

n � = 5 � = 6 � = 7 � = 8 � = 9 � = 10 � = 11

15 0.955278 0.969324 0.979127
16 0.955326 0.969248 0.978992
17 0.955494 0.969194 0.978904 0.984568 0.987537 0.989361
18 0.955404 0.969168 0.978870
19 0.955470 0.969141 0.978841
20 0.955510 0.969136 0.978841 0.981743 0.984323 0.985240 0.987553
21 0.955543 0.969128 0.978847
22 0.955584 0.969126
23 0.955619

the energy difference between the � states of the same n can
be written as

�Wpol,n�′� = α′
d�P ′

n��′ + α′′
d�Pn��′

+α′
q�P ′Q′

n��′ + α′′
q�PQn��′ , (13)

where �Wpol,n�′�, �Pn��′ , and �PQn��′ are as defined earlier,
�P ′

n��′ = P ′
n� − P ′

n�′ and �P ′Q′
n��′ = P ′

n�Q
′
n� − P ′

n�′Q
′
n�′ . If

we group the α′′
d and α′′

q terms with the observed energy
intervals and divide Eq. (13) by �P ′

��′ , we obtain the following
expression:

�Wpol,n�′� − α′′
d�Pn��′ − α′′

q�PQn��′

�P ′
n��′

= α′
d + α′

q

�P ′Q′
n��′

�P ′
n��′

,

(14)

which is the nonadiabatic analog of Eq. (9).
If we know α′′

d and α′′
q , we can extract α′

d and α′
q from

their linear relationship with the measured �� intervals, using
the center of gravity of each 6sn� state. From Ref. [20], α′′

d =
10.15(53)a3

0 and α′′
q = 814(11)a5

0 . Figure 11(a) shows the fit of
the experimental data to Eq. (14) using our calculated �Pn,��′ ,
�PQn,��′ , �P ′

n,��′ , and �P ′Q′
n,��′ . In Fig. 11 and in all similar

plots, for the nh-ni and ni-nk intervals n increases from 15 to
21 as �P ′Q′/�P ′ increases. Unlike in Fig. 9, the experimental
data can be fitted reasonably well by a straight line, and from
Fig. 11(a), we obtain α′

d = 114.47(7)a3
0 and α′

q = 1725(14)a5
0 .

While Fig. 11(a) is an enormous improvement over Fig. 9, the
data clearly do not fit the model, as shown by the residuals in
Fig. 11(b).

Due to the obvious systematic variations of the residuals,
shown in Fig. 11(b), the uncertainties of the values of α′

d

TABLE V. kq calculated values.

n � = 5 � = 6 � = 7

15 −0.982 1.439 1.032
16 −0.889 1.473 1.039
17 −0.818 1.503 1.044
18 −0.761 1.531 1.050
19 −0.715 1.555 1.054
20 −0.678 1.577 1.058
21 −0.647 1.596 1.061
22 −0.620 1.614
23 −0.598

and α′
q are larger than the uncertainties from the fit. To

understand these uncertainties we have fitted the data in other
ways. The first is to remove the lower-� intervals, which have
larger nonadiabatic corrections, from the fit. In Fig. 12(a)
we show the fit obtained by removing the nh-ni intervals
from Fig. 11(a). The resulting values, α′

d = 114.66(12)a3
0 and

α′
q = 1664(36)a5

0 , are not very different from those extracted
from Fig. 11(a). The residuals are shown in Fig. 12(b). There
are several points to note about Fig. 12(b). First, we note
that there is a discontinuity between n = 18 and n = 19 in
the ni-nk points, which may be due to a perturbation of the
energy levels, which we cannot hope to fit. Second, we believe
the n = 20 � = 7 → � = 8 and � = 10 → � = 11 points to
be in error. We shall return to this point. Finally, if the two
n = 20 points and the discontinuity at n = 18 are ignored,
the systematic variation of the residuals is essentially gone.
If we remove the ni-nk intervals from Fig. 12(a), leaving
only the high-� intervals from Snow and Lundeen, we obtain
the plot of Fig. 13, which yields α′

d = 115.08(16)a3
0 and

α′
q = 1160(170)a5

0 . With this restricted set of data the scatter
is now clearly more important than any systematic variation.
Inspection of the � = 7 → � = 8 points of Fig. 13 shows
why we believe the n = 20 points to be suspect. The two
� = 7 → � = 8 points by themselves imply an impossible
negative quadrupole polarizability, as do the � = 10 → � = 11
and either of the � = 9 → � = 10 points.

An alternative approach is to fit the �� intervals for each
n state separately, and in Fig. 14 we show the values of α′

d

and α′
q extracted from the data shown in Fig. 11(a). Only for

n = 17 and 20 are there more than two �� intervals, so only
in those two cases can we show uncertainties for the fits. We
expect that if we had more points the uncertainties of the other
n states would be similar. If we disregard the obvious outliers
at n = 18 and 21, there is no monotonic increase or decrease
in the value of α′

d , and the average value, α′
d = 114.51(2)a3

0 ,
is similar to the value extracted from Fig. 11(a). The n = 18
intervals were measured in two different experiments, so we
do not think the n = 18 points are displaced from the others
due to an experimental problem, but for a physical reason.
As already noted, the ni-nk residuals of Fig. 12(b) exhibit
a discontinuity at n = 18, which might be a sign of a series
perturbation. The n = 21 points in Fig. 14 probably reflect
experimental error.

In contrast to the relatively constant values of α′
d shown in

Fig. 14, the extracted values of α′
q show a clear n dependence,

and we suspect that its origin lies in our calculation of kq ,

062503-7



E. G. KIM, J. NUNKAEW, AND T. F. GALLAGHER PHYSICAL REVIEW A 89, 062503 (2014)

(a) (b)

FIG. 11. (a) Graph of (�Wpol,n�′� − α′′
d�Pn��′ − α′′

q�PQn��′ )/�P ′
n��′ vs �P ′Q′

n��′/�P ′
n��′ . The symbols �, •, and � are the data points

presenting the nh-ni, ni-nk, and high-� intervals, respectively. For the nh-ni and ni-nk intervals n increases monotonically from 15 to 21 as
�P ′Q′/�P ′ increases. The high-� intervals are for n = 17 and 20. The linear fit yields the y intercept and the slope, which are the values of
α′

d and α′
q , respectively. From the graph, we obtain α′

d = 114.47(7)a3
0 and α′

q = 1725(14)a5
0 , and in (b) the plot displays the residuals relative

to the fit, which is the zero line.

especially for � = 5. There are several sources of error in
calculations of kd and kq . We have ignored the spin-orbit
splittings of the Ba+ 6p and 5d states, and we have assumed
the outer electron to be hydrogenic. The latter assumption
leads to incorrect energies, and, more important, incorrect
wave functions. For this problem, matrix elements of inverse
powers of r are required, which in turn requires wave functions
accurate at small r . Unfortunately, there is no simple method
to generate nonhydrogenic wave functions which are accurate
at small r .

Irrespective of the source of the variation in α′
q seen in

Fig. 14, it is clear that we cannot extract a value of α′
q from

these data, and the value of α′
d is also suspect. Accordingly,

we have fitted the ni-nk and higher-� intervals of Fig. 12(a)
for n = 17 and 20, the only n values for which we have more
than one �� interval. For n = 17 we obtain α′

d = 114.62(5)a3
0

and α′
q = 1640(23)a5

0 , and for n = 20 α′
d = 114.73(27)a3

0 and
α′

q = 1650(120)a5
0 . The n = 17 data lie almost perfectly on a

straight line, while the n = 20 data are more scattered. The
important point is that α′

q exhibits no n dependence. Thus we

conclude that the fit of Fig. 12(a) provides the best values for α′
d

and α′
q . The high-� data shown in Fig. 13 exhibit no systematic

problem, but the high-� intervals are more susceptible to Stark
shifts and are not as sensitive to the quadrupole polarizability
as are the lower-� intervals.

To account for possible systematic effects in the de-
termination of α′

d and α′
q we increase their uncertainties

from the fit shown in Fig. 12(a) to encompass the residuals
shown in Fig. 12(b) except the two n = 20 points men-
tioned previously. The results are α′

d = 114.66(25)a3
0 and

α′
q = 1664(50). Adding them to α′′

d and α′′
q we obtain the ionic

Ba+ dipole and quadrupole polarizabilities αd = 124.81(25)a3
0

and αq = 2478(50)a5
0 , respectively.

It is useful to compare our values to those obtained from
other measurements and theory. In Table VI we present the
values obtained for αd , and in Table VII, we present the values
for α′

q and αq . Our value for αd agrees with the theoretical
value to within the theoretical uncertainty, but our value for
αq is half the theoretical value. It is perhaps more interesting
to compare the experimental results. Two methods have been

(a) (b)

FIG. 12. (a) Plot obtained by removing the nh-ni intervals from the data in Fig. 11(a). For the ni-nk intervals n increases monotonically
from 15 to 21 as �P ′Q′/�P ′ increases. The high-� points are for n = 17 (•) and n = 20 (�). From the graph, we obtain α′

d = 114.66(12)a3
0

and α′
q = 1664(36)a5

0 . (b) The residuals of (a). There is far less systematic variation of the residuals than in Fig. 11(b).
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FIG. 13. Plot of high-� intervals from Fig. 11(a) for n = 17 (•)
and n = 20 (�). From the graph, we obtain α′

d = 115.08(16)a3
0 and

α′
q = 1160(170)a5

0 .

used to extract the polarizabilities, polarization analysis of
the �� intervals and analysis of the K splittings. Analysis
of the K splittings yields the Ba+ 6s-6p and 6s-5d radial
matrix elements, from which α′

d and α′
q are easily computed.

To the values of α′
d and α′

q given in Ref. [16] we have added
the theoretical values α′′

d = 10.15a3
0 and α′′

q = 814a5
0 yielding

the values of αd and αq given in Tables VI and VII. While it
is possible to make good measurements of the K splittings,
they arise completely from the nonadiabatic effects, and their
analysis is much more complicated than a polarization analysis
of �� intervals. For this reason, we choose to compare our
results to those of Snow and Lundeen, Ref. [21].

Using essentially the same data as we have used here, Snow
and Lundeen [21] arrived at a value of αd distinctly smaller
than ours and a value of αq almost twice ours. To understand
the origin of the differences it is useful to use four different
methods to analyze the data. Specifically, we consider ignoring
the nonadiabatic effects, using the adiabatic expansion method,
introducing kq and using the adiabatic expansion method to

u
n

it
s 

o
f

u
n

it
s 

o
f

FIG. 14. Graph showing the values of (a) α′
d and (b) α′

q extracted
from �� intervals for each n. Disregarding the obvious outliers at
n = 18 and 21, there is no monotonic increase or decrease in the
value of α′

d , and the average value is α′
d = 114.51(2)a3

0 . A value of
α′

q cannot be extracted from (b). Only n = 17 and 20 have more than
two data points (the nh-ni, ni-nk, and high-� intervals), and therefore
only their uncertainties can be shown.

TABLE VI. The Ba+ 6s dipole polarizability (αd ) obtained from
this work, and other theoretical and experimental results.

αd

(
units of a3

0

)

Core polarization
This work 124.81(25)
Expt. [10] 125.5(10)
Expt. [13] 124.30(16)
Expt. [21] 123.88(5)

K splitting
Expt. [16] 121.3(66)
Expt. [22] 123.88(5)
Theory [20] 124.15

account for nonadiabatic effects in the dipole polarization
energy, and finally introducing both kq and kd . For simplicity,
we label these methods I, II, III, and IV, respectively. Method
III is similar to that used by Snow and Lundeen, and IV is
similar to ours.

If we restrict our attention to only the high-� intervals, it is
not unreasonable to think that the data can be fitted by ignoring
the nonadiabatic effects, method I, and using Eq. (9). The
straight line through the high-� points of Fig. 9 is precisely this
fit. It yields αd = α

app
d = 123.67a3

0 and αq = α
app
q = 1047a5

0 .
In the adiabatic expansion method, method II, the polariza-

tion energy of Eq. (5) is replaced by

Wpol,n� = − 1
2αd〈r−4〉n� − 1

2 (αq − 6β1)〈r−6〉n� · · · , (15)

where the ellipsis indicates terms containing expectation
values of higher inverse powers of r . The most important
difference, from our present point of view, is the presence of
6β1 in the 〈r−6〉 term, which is due to the nonadiabatic effect
in the dipole polarization energy. It appears in the same way as
the quadrupole polarizability, and for Ba β1 = 605(25)a5

0 [21].
The higher inverse powers of r represent higher-order terms
due to the nonadiabatic effect in the dipole polarization energy,
the nonadiabatic effect in the quadrupole polarization energy,
and higher multipole terms. As Snow and Lundeen have
shown, these terms can be represented by higher-order terms
in 〈r−6〉/〈r−4〉, or equivalently, in �PQ/�P , so that the data
points of Fig. 9 no longer need to be fitted by a straight line.
Application of the adiabatic expansion method is based on
the assumption that the expansion is convergent. Inspection of
Fig. 9 suggests that very high-order terms in �PQ/�P will be

TABLE VII. The Ba+ 6s quadrupole polarizability (αq ) and the
contribution of the Ba+ 5d state (α′

q ) to it.

α′
q

(
units of a5

0

)
αq

(
units of a5

0

)

Core polarization
This work 1664(50) 2478(50)
Expt. [10] 2050(100)
Expt. [21] 1524(8) 4420(250)
Expt. [13] 1828(88) 2462(361)

K splitting
Expt. [16] 1562(93) 2376(93)
Expt. [22] 3606(250) 4420(250)
Theory [20] 3368(34) 4182(34)
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FIG. 15. Comparison between the use of method III to treat the
ni-nk and the high-� intervals (•) and method IV to treat the intervals
(�). Here we assume that α′′

d and α′′
q both vanish. The introduction of

kq in method III removes the nonadiabatic effect in the quadrupole
polarization energy, and all the data points fall on a line, unlike the plot
of Fig. 9. The intercept of the fit line gives αd = 123.33(11)a3

0 . Adding
6β1 from the nonadiabatic correction to the dipole polarization energy
to the slope of the fit line give the broken line, which has slope
αq = 5060a5

0 . The introduction of kd as well as kq in method IV both
raises the points and increases the slope of the fit line; the resulting
intercept and slope are αd = 125.28(8)a3

0 and αq = 2138(24)a5
0 .

required to fit the data, indicating that the adiabatic expansion
is almost certainly not convergent in this case. However, it
should be applicable if we again restrict our attention to the
high-� states. Fitting the high-� data of Fig. 9 to the first
two terms of Eq. (15) leads to αd = α

app
d = 123.67a3

0 and
αq = α

app
q + 6β1 = 4677a5

0 .
The deviation of the factors kd and kq from unity is

an indication of the severity of the nonadiabatic effects.
Inspection of Tables IV and V shows that 0.955 < kd < 0.990
while kq ranges from −0.0982 to 1.614, suggesting that the
nonadiabatic effect in the quadrupole polarization energy is by
far the worse problem. Accordingly, we treat the data using
method III, treating the nonadiabatic effects in the quadrupole
and dipole polarization energies by kq and an adiabatic
expansion, respectively. This approach is approximately that
used by Snow and Lundeen. It differs in that Snow and
Lundeen, and we as well, separated the polarizabilities into
two parts, for example, αq = α′

q + α′′
q . To display most clearly

the effect of introducing first kq and then kd we here assume
that α′′

d and α′′
q both vanish, so that α′

d = αd and α′
q = αq . Since

α′
d = 0.92αd , this approximation is excellent for αd , and it is

not unreasonable for αq . In Fig. 15 using solid circles (•) we
use method III to plot the high-� and ni-nk intervals using the
values of kq given in Table V. Since we are now introducing
kq , and later shall introduce kd , as the horizontal and vertical
axes, we use �P ′Q′

n�′�/�P ′
n�� and �Wpol,n�′�/�P ′

n��′ . From
the definitions of P ′ and Q′ it is evident that P and Q are simply
the special cases of P ′ and Q′ for kd = kq = 1. The dominant
effect of the introduction of kq is to move points horizontally
on the plot, which removes the glaring problem due to the
nonadiabatic effects, the seemingly random distribution of
points in Fig. 9. Now in Fig. 15 the solid circles (•) all lie
along a straight line. In method III the adiabatic expansion

TABLE VIII. The Ba+ 6s dipole (αd ) and quadrupole polarizabil-
ities (αq ) extracted from different methods of data analysis.

Analysis method αd

(
units of a3

0

)
αq

(
units of a5

0 )

Method I: ignore nonadiabatic 123.67(6) 1047(63)
Method II: adiabatic expansion 123.67(6) 4680(160)
Method III: kq and adiabatic 123.33(11) 5060(150)

expansion
Method IV: kd and kq 125.28(8) 2138(23)
Snow and Lundeen [21] 123.88(5) 4420(250)
This work 124.81(25) 2478(50)

needs to account only for the nonadiabatic effect on the dipole
polarization. Accordingly, we fit the solid circles (•) to

�Wpol,n�′�

�P ′
n��′

= αd + (αq − 6β1)
�P ′Q′

n��′

�P ′
n��′

. (16)

The intercept of the fit line is αd = 123.33(11)a3
0 , and the

slope sq = 1430(35)a5
0 . The quadrupole polarizability αq =

sq + 6β1 = 5060a5
0 is the slope of the broken line in Fig. 15.

To show the effect of using kd as well as kq , method IV, in
Fig. 15 we also plot, as solid squares (�), the high-� and ni-nk

intervals. The introduction of kd has two effects, both of which
are evident in Fig. 15. First, it raises all the points by 1%–3%,
since kd < 1 and �P ′ < �P . The effect is to raise the value
of αd ; αd = 125.28(8)a3

0 . Second, since kd falls further below
1 as � is decreased, the slope of the line through the points
is increased. In this method the slope (of the line through the
square points) is αq = 2138(23)a5

0 . The nonadiabatic effect in
the dipole polarization energy on αq is the difference between
the slopes of the lines through the squares and circles in Fig. 15,
708a5

0 , much less than 6β1 = 3630a5
0 .

In Table VIII we have collected the results from the four
analyses and presented them together with the values of
Snow and Lundeen and ourselves. Methods I, II, and III
yield essentially the same value of αd , which implies that the
adiabatic expansion method, or a modification which does not
introduce kd , has almost no effect on the value of αd extracted.
These values are also very close to the value obtained by
Snow and Lundeen. The introduction of kd , in method IV,
vertically displaces the points in Fig. 15 and increases the value
of αd extracted to very nearly match our value. The quadrupole
polarizabilities extracted by methods II and III are both much
larger than those obtained by methods I and IV, due to the
inclusion of 6β1 in the extracted value. These values are close
to the value obtained by Snow and Lundeen. Method IV yields
a value of αq similar to our value and much smaller than those
of methods II and III. From Table VIII it is evident that the
difference between the values of both αd and αq extracted by
Snow and Lundeen and ourselves is due almost entirely to the
treatment of the nonadiabatic effect in the dipole polarization.

VI. CONCLUSION

We have demonstrated that ICE laser excitation to au-
toionizing states can be used to detect microwave transitions
between high-angular-momentum Rydberg states of alkaline-
earth-metal atoms, even though the ICE transitions are badly
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overlapped. We have used this technique to measure �� in-
tervals between Ba 6sn� states of 15 � n � 18 and 5 � �� 7.
Combining these measurements with other measurements of
Ba �� intervals, we have extracted the Ba+ polarizabili-
ties αd = 124.81(25)a3

0 and αq = 2478(50)a5
0 . These values

disagree with recently reported experimental values due to
the difference in the treatment of the nonadiabatic effects.
In principle, the model we have used exactly accounts for
the nonadiabatic effects by the introduction of the correction
factors kd and kq , which are calculated numerically. The
calculations can be improved by better numerical techniques,
the inclusion of spin-orbit coupling, and the use of nonhydro-

genic wave functions where required. We hope this work will
stimulate theoretical activity along these lines.
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