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Charge transfer in time-dependent density-functional theory:
Insights from the asymmetric Hubbard dimer
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We show that propagation with the best possible adiabatic approximation in time-dependent density-functional
theory fails to properly transfer charge in an asymmetric two-site Hubbard model when beginning in the ground
state. The approximation is adiabatic but exact otherwise, constructed from the exact ground-state exchange-
correlation functional that we compute via constrained search. The model shares the essential features of charge-
transfer dynamics in a real-space long-range molecule, so the results imply that the best possible adiabatic
approximation, despite being able to capture nonlocal ground-state step features relevant to dissociation and
charge-transfer excitations, cannot capture fully time-resolved charge-transfer dynamics out of the ground state.
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I. INTRODUCTION

Charge-transfer (CT) dynamics are increasingly impor-
tant in biology, chemistry and physics, underlying critical
processes in photovoltaics, vision, photosynthesis, molecular
electronics, and the control of coupled electron-ion dynamics
(see, e.g., Refs. [1–5]). Yet an accurate theoretical description,
capturing correlated electron motion, is notoriously difficult
especially over large distances. For most applications, a time-
resolved picture is crucial, and the systems are large enough
that time-dependent density-functional theory (TDDFT) is
the only calculationally feasible approach [6–8]. Standard
functional approximations underestimate CT excitations, but
improved functionals have been developed [9]. Still, a truly
time-resolved description must go beyond a calculation of
the excitation spectrum: electron transfer between regions of
space is clearly nonperturbative. TDDFT certainly applies in
the nonlinear regime and has given useful predictions in many
cases, including CT dynamics [10]. At the same time, there
is a dearth of alternative accurate practical methods to test
TDDFT calculations. Results on simplified exactly solvable
model systems are not always optimistic [11–14].

Almost all nonperturbative TDDFT calculations
utilize an adiabatic exchange-correlation potential:
vA

XC[n; �0,�0](r,t) = v
g.s.
XC [n(t)](r). Errors arise from two

distinct sources: one is the choice of the ground-state
(g.s.) functional approximation, the other is the adiabatic
approximation itself. To separate these the adiabatically exact
(AE) approximation [15] is defined: the instantaneous density
is input into the exact g.s. functional, vAE

XC [n; �0,�0](r,t) =
vAE

XC [n](r,t) = v
exact g.s.
XC [n(t)](r). This approximation neglects

memory effects (dependence on the density’s history and
true and Kohn–Sham initial states �0 and �0) but is
fully nonlocal in space. Finding vAE

XC [n](r,t) requires an
iterative density-inversion scheme to find interacting and
noninteracting g.s.’s of a given density, and it has been done
just for a few model systems [13–15]. Usually one evaluates
the AE potential on the exact density n(t), vAE

XC [n(t)](r), and
compares with the exact potential vXC[n,�0,�0](r,t) at that
time to analyze how good the approximation is. A more useful
assessment however, would be to self-consistently propagate
the Kohn–Sham (KS) orbitals with it, using at each time step
the AE potential evaluated on the self-consistent instantaneous

density. This clearly requires much more numerical effort,
because many iterations need to be performed at every time
step to find the potential to propagate in; it has only been
done in a few examples [15–17]. For CT it is particularly
challenging to converge the iterations, due to the very low
density between the atoms.

For a model molecule composed of closed-shell atoms and
driven at the CT resonance, a step associated with the CT
process gradually builds up over time in the exact correlation
potential [14]. The AE approximation fails to capture the
dynamical step of Refs. [13,18] but, when evaluated on the
exact density, does show a CT step, although of a smaller size
than the exact. Available approximations do not yield any step
structure whatsoever, and the dismal failure of several adiabatic
functionals to transfer any charge was shown in Refs. [14,19].
We expect some blame must go to the adiabatic approximation
itself, but is the partial step of the AE approximation enough
to give a reasonable description of the CT dynamics? If yes,
this would greatly simplify the ongoing search for accurate
functionals for nonperturbative CT. To answer the question, we
must propagate with the AE self-consistently but, as discussed
above, this procedure is numerically very challenging for CT
dynamics. We show here that the answer is no, by studying CT
in a two-fermion asymmetric Hubbard dimer, which shares the
essential features of CT dynamics in real-space molecules. Due
to the small Hilbert space of the dimer the exact g.s. functional
can be found and used in vAE

XC (t) to self-consistently propagate
the system. We can then assess errors in the adiabatic approx-
imation for CT dynamics independently of those due to the
g.s. approximation used. We find the adiabatic approximation
is inherently poor and analyze the potentials to explain why.

II. THE ASYMMETRIC HUBBARD MODEL

The Hamiltonian of the two-site interacting Hubbard model
with on-site repulsion U and hopping parameter T [20–27] is

Ĥ = −T
∑

σ

(ĉ†Lσ ĉRσ + ĉ
†
Rσ ĉLσ ) + U (n̂L↑n̂L↓ + n̂R↑n̂R↓)

+ �v(t)

2
(n̂L − n̂R), (1)

where ĉ
†
L(R)σ and ĉL(R)σ are creation and annihilation operators

for a spin-σ electron on the left (right) site L (R), respectively,
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FIG. 1. (Color online) Exact EHXC[�n] (red dashed), g.s. poten-
tial �v

g.s.
HXC[�n] (black solid), and scaled g.s. kernel �f

g.s.
HXC[�n]/25

(blue dotted) for T/U = 0.05. The inset shows the correlation
potential �v

g.s.
C [�n] for T/U = 0.05 (black solid), T/U = 0.1 (pink

dashed), and the HX potential �v
g.s.
HX [�n] (independent of T , orange

dotted). All functionals are in units of U .

and n̂L = ∑
σ=↑,↓ ĉ

†
Lσ ĉLσ and n̂R = ∑

σ=↑,↓ ĉ
†
Rσ ĉRσ are the

site-occupancy operators. The dipole 〈n̂L − n̂R〉 = �n is the
main variable [25]; the total number of fermions is fixed at
two. A static potential between the sites, �v0 = ∑

σ (v0
Lσ −

v0
Rσ ), renders the Hubbard dimer asymmetric. The external

potential �v(t) is given by �v(t) = �v0 + 2E(t). The long-
range molecule is modeled by T/U → 0: for fixed U , T → 0
corresponds to a large separation between the sites (equivalent
to the strongly correlated limit U → ∞). We choose T =
0.05, use � = e = 1 throughout, and energies are given in
units of U .

The singlet sector of the vector space is three-dimensional,
enabling an exhaustive search over all wave functions to
find the exact Hartree-exchange-correlation (HXC) energy
functional, EHXC[�n], plotted in Fig. 1. This follows the
procedure of Ref. [25].

As T/U decreases the energy becomes sharper at �n =
0 (Fig. 1), while the potential �v

g.s.
HXC[�n] approaches a step

function there, contained in the correlation potential (see inset
of Fig. 1). This indicates the derivative discontinuity of the one-
electron site, as will be discussed shortly. Note that �vHXC =
�vHX + �vC where �vHX = U�n/2 [25].

The KS Hamiltonian has the form of Eq. (1) but
with U = 0 and �v(t) replaced by �vS[�n,�g.s.](t) =
vHXC[�n,�g.s.,�g.s.](t) + �v(t), defined such that the inter-
acting density �n(t) is reproduced. A self-developed code in
second quantization, using a Crank–Nicolson propagator and
a 0.01 time step, was used for the propagations.

To model closed-shell to closed-shell (cs-cs) CT in a real
molecule, we focus on the �v0 = −2.0U problem where
the g.s. has �ng.s. = 1.9901 and study the transition to the
CT excited state with �nCT = 0.0090 and frequency ωCT =
1.0083U ; we take E(t) = 0.1 sin(1.0083Ut)U . For open-shell
to open-shell (os-os) CT in a real molecule, we instead
take �v0 = −0.4U , resulting in a slightly asymmetric g.s.
�ng.s. = 0.021 37, and study the transition to the CT excited
state where �nCT = 1.9734 and ωCT = 0.6199U ; here we

take E(t) = 0.09 sin(0.6199Ut)U . In either case the field E(t)
is resonant with magnitude weak enough such that only
the ground and above-mentioned CT states are significantly
occupied during the dynamics. We also will briefly consider
the results of propagation under different static potential
differences and under detuned conditions.

A. Closed-shell to closed-shell charge transfer

The dipoles are shown on the left panel of Fig. 2; the CT
excited state is reached at around t = 224/U . The similarity
of the exact dipole with the real-space dynamics of Fig. 4
of Ref. [14] and the CIS/CISD dynamics of Figs. 3 and 4 of
Ref. [19] is evident; also the adiabatic exact-exchange (AEXX)
dipole on the left of Fig. 2 drastically fails to complete the CT,
resembling the real-space AEXX and HF cases. Propagating
the KS system with the AE functional, obtained at each time
step by inserting the instantaneous density �nAE

sc into the exact
g.s. HXC potential �v

g.s.
HXC[�nAE

sc ] of Fig. 1, we obtain �nAE
sc

on the left of Fig. 2. �nAE
sc follows the exact for a longer time

than the AEXX but ultimately fails to complete the CT.
In Fig. 3 the exact and AE dipole moments for the cs-cs

CT problem for different values of the external potential �v(t)
and detuning are shown. In the left panel we show the results
of resonant dynamics for different static potential differences
�v0. The breakdown of the adiabatic approximation occurs in
a similar way in all cases, with the AE dipole following the
exact for some period of time but then turning back towards
the ground-state value before much charge transfer occurs.
The time that the AE dipole begins to deviate from the exact is
earlier in the Rabi cycle for larger |�v0| (which has a larger CT
resonant frequency) although the absolute value of this time is
later since the Rabi period is also greater for greater |�v0|.

In the right panel of Fig. 3 the static potential difference is
kept fixed at �v0 = −2.0U but the frequency ω of the applied
laser, E(t) = 0.1 sin(ωt)U , is varied. In the upper panel the
laser is resonant ω = ωCT, whereas the lower panels show
the results for detuned Rabi oscillations. Note that for the
chosen parameters, the AE linear response resonance is only
shifted by 0.001 U from the interacting resonance ωCT [28].
Interestingly the AE propagation shows an increased amount
of transferred charge in the detuned cases. We conclude from
these graphs that the performance of adiabatic TDDFT is
also poor to describe off-resonant CT. The AE propagation
shows that one must go beyond the adiabatic approximation
to correctly describe CT when beginning in the ground state.

We next consider the behavior of the HXC potentials.
The exact and AE potentials are shown on the left of Fig. 4.
The top-left panel shows the exact KS potential alongside
the applied field. The middle-left panel shows the exact HXC
potential �vHXC[�n](t), the AE potential evaluated on the
exact density �vAE

HXC[�n](t), and the AE potential evaluated
on the self-consistent density �vAE

HXC[�nAE
sc ](t). The exact

�vHXC[�n](t) is found by inserting the exact density �n(t)
into [21,24]

�vHXC[�n]=− �̈n + 4T 2�n√
4T 2(4 − �n2) − ˙�n2

− �v0 − 2E(t), (2)

This starts at its g.s. value �vHXC[�n0 = 1.9901,�̇n = �̈n =
0] ≈ 1 but soon increases sharply and makes very large
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FIG. 2. (Color online) Exact dipole �n (black solid), AE dipole �nAE
sc (red dashed), and the AEXX dipole �nAEXX

sc (pink dotted). Left
panel is for cs-cs CT. Right panel is for os-os CT. Time is in units of 1/U .

oscillations, which appear to be related to maintaining
noninteracting v-representability [21,24,26,28]: at the times
of the first sharp changes, the denominator in the first term of
Eq. (2) approaches zero, and the direction of the sharp potential
change is such to prevent the denominator from actually
becoming zero. Averaging through the oscillations, we see that
the exact �vHXC goes to −�v0 at t ≈ 224/U , i.e., the exact
�vS becomes zero, aligning the two sites (top panel). This is
completely analogous with the real-space case: there, a step in
the HXC potential in the intermolecular region develops such
that when the CT state is reached, the atomic levels of the donor

(D) ion and acceptor (A) ion are “realigned,” i.e., the step has
size |IND−1

D − I
NA+1
A | in the large-separation limit [14]. In both

real-space and Hubbard cases, it is the correlation potential
(lower-left panel of Fig. 4) that contains this feature. The
oscillations in the exact �vHXC around its average value near
when the excited CT state is reached almost exactly cancel the
oscillations in the external field, as reflected in the decreasing
oscillations in the KS potential shown. This field-counteracting
effect is a feature of the correlation potential. In the real-space
case this effect is related to the absence of polarization due to
truncation to a few-level system [13,18].

FIG. 3. (Color online) Left panel: Exact dipole �n (black solid) and AE dipole �nAE
sc (red dashed) for different values of the static potential

difference �v0 and resonant driving. Right panel: Same quantities but for fixed value of the static potential �v0 = −2.0U and different
detunings ωdet = ω − ωCT of the laser frequency ω with respect to the interacting resonance ωCT = 1.0083U . In all cases the amplitude of the
laser is 0.1U . Time is in units of 1/U .
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FIG. 4. (Color online) (Upper panel) Exact KS potential �vS [black solid; first term on right-hand side of Eq. (2)] and the field E(t) (pink
dashed). (Middle panel) Exact HXC potential Eq. (2) (black solid), the AE HXC potential �vAE

HXC[�n] (blue dashed), and the AE HXC potential
�vAE

HXC[�nsc] (red dotted) with self-consistent �nsc = �nAE
sc . (Lower panel) Correlation potentials. The left panels show cs-cs CT. The right

panels show os-os CT. Time is in units of 1/U .

We now turn to the AE potentials. Consider first
�vAE

HXC[�n](t). In the real-space case of Ref. [14], as the
CT state is reached, the analogous AE correlation potential
developed a step whose size, in the limit of large separation,
approached �D

c (N − 1) ≡ IN−1
D − AN−1

D , the derivative dis-
continuity of the (N − 1)-electron donor. The same occurs in
the Hubbard model. First observe that �vAE

HXC[�n](t) shown
in Fig. 4 can be obtained by simply reading off the potential
from Fig. 1, using the exact instantaneous value of �n(t)
of Fig. 2. So the shape of �vAE

HXC[�n](t) just tracks that
of the �v

g.s.
HXC curve of Fig. 1, moving from right to the

center, gently oscillating around it. Now, �n plays the role of
the density variable as well as directly giving the particle
number on each site, nL,R = 1 ± �n

2 . As a consequence, in
the isolated-site limit T/U → 0, a variation δn near �n = 0
can be thought of as adding (subtracting) a fraction of charge
δn to the one-fermion site on the left (right):

2
dEC[�n]

d(�n)

∣∣∣∣
�n=0+

− 2
dEC[�n]

d(�n)

∣∣∣∣
�n=0−

= �vg.s.
C [�n = 0+] − �vg.s.

C [�n = 0−] ≡ 2�1 site
C (N = 1),

(3)

where EC = EHXC − U
8 (4 + �n2) [25,27]. The difference in

the correlation potential on either side of �n = 0 therefore
coincides with the derivative discontinuity of the one site with
(N − 1) electrons. From Fig. 1, this approaches the value
�1 site

C (N = 1) ≈ 0.7 for T/U = 0.05. Returning to Fig. 4,
as we approach the CT state �nCT → 0, the exact �vC[�n]
approaches −�v0 such that �vS → 0 and the levels of the
two sites get aligned; instead, the �vAE

C [�n] approaches

−�vAE[�nCT], i.e., the potential difference for which �nCT

is a ground state. �vAE
C [�n] thus tracks the approaching

discontinuity in Fig. 1; as T/U → 0, this change becomes
sharper and larger, occurring over an ever smaller region. Note
that the factor 2 on the right of Eq. (3) results from expressing
the energy functional in terms of the variable �n = nL − nR ,
i.e.,

�vC[�n] = vL
C [�n] − vR

C [�n]

= dEC[�n]

d(�n)

d�n

dnL

− dEC[�n]

d(�n)

d�n

dnR

.

So, in the limit, in both the real-space molecule and the
Hubbard dimer, the AE correlation potential in the CT state
shifts the donor upwards relative to the acceptor by an amount
equal to the derivative discontinuity of the (N − 1)-electron
donor; in both cases, this underestimates the shift provided by
the exact correlation potential.

We now turn to �vAE
HXC[�nsc](t) and �vAE

C [�nsc](t) in
Fig. 4. Initially, �vAE

HXC[�nsc](t) follows the exact potential but
very soon deviates from it: it makes small oscillations near its
initial value, hardly noticeable on the scale of the changes of the
exact �vHXC[�n](t). The dipole �nAE

sc is affected significantly
only later (red dashed line on left side of Fig. 2); the relatively
large external potential seems to carry the dipole oscillations
with it for a while, before the effect of the incorrect correlation
potential is felt. Certainly, the two sites never get anywhere
close to being realigned; a stable CT state that has one electron
on each therefore cannot be approached.

Finally, we note that the failure to transfer the charge is not
due to the error that the AE approximation makes for the CT
excitation energy. In fact, as shown in Ref. [28] ωAE ≈ ωCT.
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Reproducing accurately the excitation spectrum is not enough
for a functional to be able to model time-resolved resonant CT
dynamics.

B. Open-shell to open-shell charge transfer

The os-os AE dipole fails miserably even after a very short
time, as shown in the right panel of Fig. 2; one electron more
or less always hovers on each site, while the exact propagation
reaches the CT state at about 153/U . The KS, HXC, and
correlation potentials are shown on the right-hand side of
Fig. 4. The initial exact �vC(t = 0) precisely cancels the static
external potential: �vS(t = 0) aligns the two sites, completely
analogous to the real-space case, where the correlation poten-
tial of a heteroatomic diatomic molecule has a step that aligns
the highest-occupied molecular orbital (HOMO) energies on
each atom [29–31]. As charge transfers, the exact �vS(t) starts
to oscillate on the optical scale, and there is a drop soon
before the CT excitation is reached. The drop is related to the
denominator of �vS(t) approaching zero as discussed before;
in fact, the shape resembles that of the cs-cs starting at the
CT excited state. The value of the exact �vHXC[�nCT] can be
obtained by taking �̇n = �̈n = 0 in Eq. (2); note that it is dif-
ferent from that obtained from its AE counterpart �vAE

HXC[�n =
1.9734] (middle-right panel in Fig. 4). This reflects the fact
that the exact state is an excited state, not a g.s. of any
potential.

The AE potential starts correctly, as it should for ground
states, capturing the alignment of the two sites, just as
in the real-space case where vAE

C (r) captures the initial
intermolecular step. However, �vAE

HXC[nsc](t) rapidly becomes
a poor approximation, hardly resembling the exact at all. The
site alignment creates a near degeneracy in the KS g.s., unlike
in the interacting system. The true interacting system has a
Heitler–London form in the g.s. and the CT excited state has
a finite frequency. This vanishing of the KS gap implies that
strong nonadiabaticity is required to open the gap to the finite
one of the interacting system [32]: double-excitations are near-
degenerate and critical to incorporate, and nonadiabaticity is
required. The nature of the states and arguments above are the
same as the real-space case, and so we expect that, also for
real molecules, a self-consistent AE propagation will lead to
a very poor dipole. As for �vAE

HXC[�n](t), it tracks v
g.s.
HXC[�n(t)]

of Fig. 1 moving from near the center out to the right, with
gentle oscillations reflecting the oscillations in �n(t). Again
we note that its value when the CT state is reached is the HXC
potential of a g.s. of density �n = 1.9734 as opposed to the
exact HXC potential which is that for an excited state of the
same density.

A further similarity can be drawn between the real-
space and Hubbard models considering the static HXC ker-
nel, �f

g.s.
HXC [�n] = d2EHXC[�n]/d(�n)2 (Fig. 1). The sharp-

peaked structure at �n = 0 becomes proportional to a δ

function in the T/U → 0 limit. The static kernel for real os-os
molecules at large separation [33,34] also diverges. The exact
nonadiabatic kernel �fHXC[�n](ω) must also diverge to open
the gap, but there is a large nonadiabatic correction to the static
kernel in this case, and the AE frequencies are significantly
different from those of the true system [28].

III. CONCLUDING REMARKS

In both cases of CT presented, the form of the interacting
state undergoes a fundamental change: in the cs-cs case, from
approximately a single Slater determinant initially to two
determinants of Heitler–London type in the CT state, while
the reverse occurs for the os-os case. The KS state, however,
always remains a single determinant. This gives the underlying
reason for the development or loss of the CT step structure in
the exact potential in real-space; the step is reflected in the
Hubbard model by the realignment of the two sites, signifying
strong correlation. An AE approximation captures this strong
correlation effect perfectly when it occurs in the g.s. (os-os
case), but even so our results show it fails to propagate well
even at short times due to the near degeneracy in the KS system.
In the cs-cs case, on the other hand, the AE propagation begins
accurately but ultimately fails to develop the needed shift
between donor and acceptor. The failure to charge transfer seen
here and in the previous works [14,19] holds for the case where
the charge transfer occurs from the ground state, either of a
molecule consisting of closed-shell fragments, or consisting of
open-shell fragments, and where the system undergoes the fun-
damental change to open-shell fragments in the first case and
closed-shell fragments in the second case, once the CT excited
state is reached. If, instead, the charge-transfer occurs from an
already-excited state, for example, as modelled by the compu-
tation in Ref. [10] where the initial state is the photoexcited
carotenoid triad, the situation is quite different, since there
is not necessarily the fundamental change in the form of the
interacting state described above. For example, in the case of
closed-shell fragments, an initial local excitation on one frag-
ment breaks the double occupation of the HOMO on the donor
and, if the KS initial state is chosen appropriately, it could more
naturally model the transfer of one electron from the donor
to the acceptor, reducing the correlation effects. What the
significance of nonadiabatic effects is in this case remains to be
explored, including the generic “dynamical step” of nonlinear
dynamics [13], but the analysis above suggests results of an
adiabatic propagation might be better, given there is not as
great a fundamental change in the form of the interacting state.

In summary, the asymmetric Hubbard dimer captures es-
sential elements of CT dynamics across a real-space molecule,
enabling a decisive verdict on the adiabatic approximation
for time-resolved long-range CT dynamics. While previous
work has shown the drastic performance of the usual adiabatic
approximations [14,19], the present work shows that even
propagating with the best possible adiabatic approximation,
i.e., adiabatically exact, fails when modeling charge transfer
beginning in the ground state, both in the resonant and in
slightly-off-resonant cases. Accurately reproducing the CT
frequency is not enough to model fully time-resolved CT. This
suggests an urgent need to develop nonadiabatic approxima-
tions for CT dynamics. The step feature in the correlation
potential, with nonlocal dependence on the density in both
space and time, must be modeled; improved ground-state
functionals are not adequate. The decomposition of the exact
exchange-correlation potential into kinetic and interaction
components [18] may offer a starting point for developing
such nonadiabatic approximations and will be explored in our
future work. Finally, we note that, clearly, there are aspects
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of CT in real molecules not captured by our model: the
effect of many electrons, three dimensions, and coupling to
ionic motion. These likely buffer the impact of the step;
however, there is no reason to expect it will still not have
significant consequences. This hypothesis is supported by
similar failures found when modeling time-resolved CT within
adiabatic TDDFT in three-dimensional molecules [19].
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[16] M. Thiele and S. Kümmel, Phys. Rev. A 79, 052503 (2009).
[17] R. Requist and O. Pankratov, Phys. Rev. A 81, 042519 (2010).

[18] K. Luo et al., J. Chem. Phys. 140, 18A515 (2014).
[19] S. Raghunathan and M. Nest, J. Chem. Theory Comput. 7, 2492

(2011).
[20] F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B 66, 165119

(2002).
[21] Y. Li and C. Ullrich, J. Chem. Phys. 129, 044105 (2008).
[22] C. Verdozzi, Phys. Rev. Lett. 101, 166401 (2008).
[23] D. J. Carrascal and J. Ferrer, Phys. Rev. B 85, 045110 (2012).
[24] M. Farzanehpour and I. V. Tokatly, Phys. Rev. B 86, 125130

(2012).
[25] J. I. Fuks, M. Farzanehpour, I. V. Tokatly, H. Appel, S. Kurth,

and A. Rubio, Phys. Rev. A 88, 062512 (2013).
[26] R. Baer, J. Chem. Phys. 128, 044103 (2008).
[27] K. Capelle and V. L. Campo, Jr., Phys. Rep. 528, 91 (2013).
[28] J. I. Fuks and N. T. Maitra, Phys. Chem. Chem. Phys.,

doi:10.1039/c4cp00118d.
[29] J. P. Perdew, in Density Functional Methods in Physics, edited

by R. M. Dreizler and J. da Providencia (Plenum, New York,
1985).

[30] O. V. Gritsenko and E. J. Baerends, Phys. Rev. A 54, 1957
(1996).

[31] D. G. Tempel, T. J. Martı́nez, and N. T. Maitra, J. Chem. Theory
Comput. 5, 770 (2009).

[32] P. Elliott, S. Goldson, C. Canahui, and N. T. Maitra, Chem. Phys.
391, 110 (2011).

[33] O. V. Gritsenko, S. J. A. van Gisbergen, A. Görling, and E. J.
Baerends, J. Chem. Phys. 113, 8478 (2000).

[34] N. T. Maitra and D. G. Tempel, J. Chem. Phys. 125, 184111
(2006).

062502-6

http://dx.doi.org/10.1146/annurev.physchem.58.052306.144054
http://dx.doi.org/10.1146/annurev.physchem.58.052306.144054
http://dx.doi.org/10.1146/annurev.physchem.58.052306.144054
http://dx.doi.org/10.1146/annurev.physchem.58.052306.144054
http://dx.doi.org/10.1038/nmat3500
http://dx.doi.org/10.1038/nmat3500
http://dx.doi.org/10.1038/nmat3500
http://dx.doi.org/10.1038/nmat3500
http://dx.doi.org/10.1038/nature09346
http://dx.doi.org/10.1038/nature09346
http://dx.doi.org/10.1038/nature09346
http://dx.doi.org/10.1038/nature09346
http://dx.doi.org/10.1126/science.1081572
http://dx.doi.org/10.1126/science.1081572
http://dx.doi.org/10.1126/science.1081572
http://dx.doi.org/10.1126/science.1081572
http://dx.doi.org/10.1038/nature09084
http://dx.doi.org/10.1038/nature09084
http://dx.doi.org/10.1038/nature09084
http://dx.doi.org/10.1038/nature09084
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1021/ja8087482
http://dx.doi.org/10.1021/ja8087482
http://dx.doi.org/10.1021/ja8087482
http://dx.doi.org/10.1021/ja8087482
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
http://dx.doi.org/10.1038/ncomms2603
http://dx.doi.org/10.1038/ncomms2603
http://dx.doi.org/10.1038/ncomms2603
http://dx.doi.org/10.1038/ncomms2603
http://dx.doi.org/10.1103/PhysRevLett.102.233001
http://dx.doi.org/10.1103/PhysRevLett.102.233001
http://dx.doi.org/10.1103/PhysRevLett.102.233001
http://dx.doi.org/10.1103/PhysRevLett.102.233001
http://dx.doi.org/10.1103/PhysRevB.84.075107
http://dx.doi.org/10.1103/PhysRevB.84.075107
http://dx.doi.org/10.1103/PhysRevB.84.075107
http://dx.doi.org/10.1103/PhysRevB.84.075107
http://dx.doi.org/10.1103/PhysRevLett.109.266404
http://dx.doi.org/10.1103/PhysRevLett.109.266404
http://dx.doi.org/10.1103/PhysRevLett.109.266404
http://dx.doi.org/10.1103/PhysRevLett.109.266404
http://dx.doi.org/10.1021/jz302099f
http://dx.doi.org/10.1021/jz302099f
http://dx.doi.org/10.1021/jz302099f
http://dx.doi.org/10.1021/jz302099f
http://dx.doi.org/10.1103/PhysRevLett.100.153004
http://dx.doi.org/10.1103/PhysRevLett.100.153004
http://dx.doi.org/10.1103/PhysRevLett.100.153004
http://dx.doi.org/10.1103/PhysRevLett.100.153004
http://dx.doi.org/10.1103/PhysRevA.79.052503
http://dx.doi.org/10.1103/PhysRevA.79.052503
http://dx.doi.org/10.1103/PhysRevA.79.052503
http://dx.doi.org/10.1103/PhysRevA.79.052503
http://dx.doi.org/10.1103/PhysRevA.81.042519
http://dx.doi.org/10.1103/PhysRevA.81.042519
http://dx.doi.org/10.1103/PhysRevA.81.042519
http://dx.doi.org/10.1103/PhysRevA.81.042519
http://dx.doi.org/10.1063/1.4867002
http://dx.doi.org/10.1063/1.4867002
http://dx.doi.org/10.1063/1.4867002
http://dx.doi.org/10.1063/1.4867002
http://dx.doi.org/10.1021/ct200270t
http://dx.doi.org/10.1021/ct200270t
http://dx.doi.org/10.1021/ct200270t
http://dx.doi.org/10.1021/ct200270t
http://dx.doi.org/10.1103/PhysRevB.66.165119
http://dx.doi.org/10.1103/PhysRevB.66.165119
http://dx.doi.org/10.1103/PhysRevB.66.165119
http://dx.doi.org/10.1103/PhysRevB.66.165119
http://dx.doi.org/10.1063/1.2955733
http://dx.doi.org/10.1063/1.2955733
http://dx.doi.org/10.1063/1.2955733
http://dx.doi.org/10.1063/1.2955733
http://dx.doi.org/10.1103/PhysRevLett.101.166401
http://dx.doi.org/10.1103/PhysRevLett.101.166401
http://dx.doi.org/10.1103/PhysRevLett.101.166401
http://dx.doi.org/10.1103/PhysRevLett.101.166401
http://dx.doi.org/10.1103/PhysRevB.85.045110
http://dx.doi.org/10.1103/PhysRevB.85.045110
http://dx.doi.org/10.1103/PhysRevB.85.045110
http://dx.doi.org/10.1103/PhysRevB.85.045110
http://dx.doi.org/10.1103/PhysRevB.86.125130
http://dx.doi.org/10.1103/PhysRevB.86.125130
http://dx.doi.org/10.1103/PhysRevB.86.125130
http://dx.doi.org/10.1103/PhysRevB.86.125130
http://dx.doi.org/10.1103/PhysRevA.88.062512
http://dx.doi.org/10.1103/PhysRevA.88.062512
http://dx.doi.org/10.1103/PhysRevA.88.062512
http://dx.doi.org/10.1103/PhysRevA.88.062512
http://dx.doi.org/10.1063/1.2822124
http://dx.doi.org/10.1063/1.2822124
http://dx.doi.org/10.1063/1.2822124
http://dx.doi.org/10.1063/1.2822124
http://dx.doi.org/10.1016/j.physrep.2013.03.002
http://dx.doi.org/10.1016/j.physrep.2013.03.002
http://dx.doi.org/10.1016/j.physrep.2013.03.002
http://dx.doi.org/10.1016/j.physrep.2013.03.002
http://dx.doi.org/10.1039/c4cp00118d
http://dx.doi.org/10.1039/c4cp00118d
http://dx.doi.org/10.1103/PhysRevA.54.1957
http://dx.doi.org/10.1103/PhysRevA.54.1957
http://dx.doi.org/10.1103/PhysRevA.54.1957
http://dx.doi.org/10.1103/PhysRevA.54.1957
http://dx.doi.org/10.1021/ct800535c
http://dx.doi.org/10.1021/ct800535c
http://dx.doi.org/10.1021/ct800535c
http://dx.doi.org/10.1021/ct800535c
http://dx.doi.org/10.1016/j.chemphys.2011.03.020
http://dx.doi.org/10.1016/j.chemphys.2011.03.020
http://dx.doi.org/10.1016/j.chemphys.2011.03.020
http://dx.doi.org/10.1016/j.chemphys.2011.03.020
http://dx.doi.org/10.1063/1.1318750
http://dx.doi.org/10.1063/1.1318750
http://dx.doi.org/10.1063/1.1318750
http://dx.doi.org/10.1063/1.1318750
http://dx.doi.org/10.1063/1.2387951
http://dx.doi.org/10.1063/1.2387951
http://dx.doi.org/10.1063/1.2387951
http://dx.doi.org/10.1063/1.2387951



