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Tree size (TS) is an interesting measure of complexity for multiqubit states: not only is it in principle
computable, but one can obtain lower bounds for it. In this way, it has been possible to identify families of
states whose complexity scales superpolynomially in the number of qubits. With the goal of progressing in the
systematic study of the mathematical property of TS, in this work we characterize the tree size of pure states
for the case where the number of qubits is small, namely, 3 or 4. The study of three qubits does not hold great
surprises, insofar as the structure of entanglement is rather simple; the maximal TS is found to be 8, reached
for instance by the |W 〉 state. The study of four qubits yields several insights: in particular, the most economic
description of a state is found not to be recursive. The maximal TS is found to be 16, reached for instance by a
state called |� (4)〉 which was already discussed in the context of four-photon down-conversion experiments. We
also find that the states with maximal tree size form a set of zero measure: a smoothed version of tree size over
a neighborhood of a state (ε-TS) reduces the maximal values to 6 and 14, respectively. Finally, we introduce a
notion of tree size for mixed states and discuss it for a one-parameter family of states.
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I. INTRODUCTION

It is likely that the origin of the “speedup” quantum
computers offer over classical computers lie in the quantum
states. There are many evidences that if the state in a quantum
computation is simple, it can be simulated efficiently with
classical computers. Examples are quantum circuits where
the states at every step have polynomial Schmidt rank [1],
and measurement-based quantum computation on resource
states with logarithmically bounded Schmidt-rank width [2]
or polynomial tree size [3]. States that are useful for quantum
computing must also be realizable by a quantum circuit
of polynomial size. So for quantum computation to have
an advantage over its classical counterpart, a state must
be sufficiently complex in some sense but can be prepared
efficiently. Thus, studying the complexity of states is important
because it is not only a fundamental concept of nature but also
a relevant aspect in quantum computing.

Among the different measures of complexity, quantum
Kolmogorov complexity is the attempt to quantify complexity
of states in the most general way [4–6]; however, this measure
suffers from the setback that it is not computable and only
upper bounds can be given. Therefore it is possible to certify
that a state is not complex, but it is impossible to certify
that a state is complex. Things are better defined when we
restrict consideration to some particular representations. If
we restrict our attention to the most common description of
quantum states, Dirac’s bra-ket notation, it is possible to prove
superpolynomial lower bounds [7,8]. The cost of expressing
a state with bra-ket notation gives rise to the definition
of tree-size complexity. A state with a very long bra-ket
representation is hard to generate with classical computers, so
tree size is a “classical complexity” measure as it indicates the
difficulty of simulating a state using classical means. We must
stress that bra-ket notation is not the only possible classical
description of states; another well-known one is the matrix
product representation (MPS) in which the cost is associated

with the size of the matrices [9]. In Ref. [3], we obtained a
relation between tree size and the size of the matrices in a
MPS, which shows that tree size is only a polynomial in the
number of qubits when the matrix size in a MPS is bounded.

While lower bounds on tree size can be obtained by utilizing
Raz’s theorem on multilinear formulas [7,8], finding the exact
tree size of a given state remains to be investigated. In this
paper, we use an exhaustive procedure to compute the tree
size and find the most complex state for three and four qubits.
From now on when we mention the “most complex” state we
mean the state with maximal tree size. Our approach relies on
entanglement classification by stochastic local operation and
classical communication (SLOCC) for three and four qubits
[10–12].

We fist give a brief description of tree-size complexity
in Sec. II before reviewing relevant results in entanglement
classification in Sec. III A. We then show in Sec. III B that
the most complex class of three-qubit states is the W class
with tree size 8. However, the tree size of these states is not
“stable” in the sense that an arbitrarily small perturbation in
the states leads to a decrease in the tree size to 6. The TS of
mixed states, particularly that of the generalized Werner states,
is also considered. The case of four qubits is discussed in Sec.
IV: We find that the most complex class is an entanglement
class which had been overlooked in the previous works on
inductive classification of entanglement [11,12]. One example
of this class is the state

|�(4)〉 =
√

1

3

[
1

2
(|0110〉 + |0101〉 + |1001〉 + |1010〉)

− |0011〉 − |1100〉
]
. (1)

II. TREE-SIZE COMPLEXITY

The most obvious way to write down a state is using bra-ket
notation. Any multiqubit state written in its bra-ket form can
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FIG. 1. Rooted trees of two-qubit entangled states.

be described by a rooted tree of ⊗ and + gates; each leaf vertex
is labeled with a single-qubit superposition α|0〉 + β|1〉 (this
state need not be normalized) [7]. For example, the Bell state
(|00〉 + |11〉)/√2 can be described by the rooted tree TE of
entangled two-qubit states in Fig. 1 by assigning appropriate
single-qubit states to each leaf. The size of a rooted tree is
defined as the number of leaves. A quantum state may be
represented by different rooted trees each with a different size.
For example, the state (|00〉 + |01〉 + |10〉 + |11〉) /2 whose
size is 8 can also be written as |+〉|+〉 with size 2. The tree
size of a state is taken as the minimum size over all possible
trees. It can be understood as the length of the shortest bra-ket
representation of a state.

Going to the example of three qubits, any pure state can be
written as [13]

|�〉 = cos θ |000〉 + sin θ |1〉(cos ω|0′0′′〉 + sin ω|1′1′′〉), (2)

where the prime and double prime indicate different bases.
Thus, the tree size is at most 8 for three qubits. We see below
that there are indeed states with tree size 8, that is, these states
do not have a simpler decomposition.

A more physical measure of complexity which allows for
deviations over a neighborhood is the ε-approximate tree size
of a state. Given a positive ε < 1, the ε-approximate tree size
TSε (|�〉) of the state |�〉 is the minimum tree size over all
states |ϕ〉 such that |〈�|ϕ〉|2 � 1 − ε [7]. Under a distance
error of ε, the state |�〉 is not distinguishable from |ϕ〉 and
hence can be approximated by the latter.

An important property of tree size which we use extensively
in this work is that it is invariant under SLOCC. More
specifically, we have the following proposition:

Proposition 1 [3]. If there exist invertible local operators
(ILOs) Ai such that

|ψ〉 = A1 ⊗ · · · ⊗ An|φ〉, (3)

then TS (|ψ〉) = TS (|φ〉).
The reader may refer to Ref. [3] for a proof of this

proposition. This is a very useful observation because if we
know the tree size of a given state, we know the tree size of all
states in its class. Also, entanglement classification by SLOCC
has been studied with great detail in the literature.

For a given number of qubits n and a size S, the number
of trees with size at most S is finite. For example, all the
trees of three qubits with at most eight leaves are listed in
Fig. 2 according to their depth. A reader who is familiar

FIG. 2. Rooted trees with size at most 8 for three qubits.

with entanglement classification may immediately recognize
that these trees correspond to the product, biseparable,
Greenberger-Horne-Zeilinger (GHZ), and W families of states,
respectively.

Our procedure to find the most complex pure states is as
follows: First, we find a decomposition that can describe a
particular set of n-qubit states and denote the size of this
decomposition S. Next, we show that these states cannot be
described by the trees with size smaller than S, but the other
states that are not in this particular set can be. It follows that
the maximal tree size is S and the set of states mentioned above
are the most complex states.

Tree size can also be extended to mixed states. A mixed
state can be decomposed into an ensemble of pure states
|ψi〉 as

ρ =
∑

i

pi |ψi〉〈ψi |. (4)

Following the approach of Ref. [14], we define the TS of mixed
states as

TS(ρ) = min
{

max
i

[TS(ψi)]
}
, (5)

where the minimization is taken over all possible decomposi-
tions of ρ. The TS of a mixed states is equal to the TS of the
most complex pure state in its decomposition. The motivation
behind this definition is that, if in a preparation procedure a
pure state |ψi〉 is realized with nonzero probability, then the
prepared state is at least as complex as this pure state.

III. THREE QUBITS

A. Tool: SLOCC classification of three qubits

Given the central role of Proposition 1 in this work, we start
by reviewing the SLOCC entanglement classification of three
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qubits. These are mostly known results, but we recast them in
a form useful for this work.

The inequivalent classes of a state can be inferred from its
coefficient matrix. Let us first start with a two-qubit state

|�〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉 (6)

with the coefficient matrix

C =
(

c00 c01

c10 c11

)
.

It is straightforward to check that this state is a product state if
and only if (iff) det(C) = 0, that is, c00c11 = c01c10. And it is
entangled iff det(C) �= 0. These are the only two inequivalent
SLOCC classes of two qubits.

For the case of three qubits, there are six different classes:
product, biseparable, GHZ, and W classes [10,11]. Permutation
of qubits lead to three inequivalent biseparable classes. The
most common examples of states in these classes are

|P 〉 = |000〉,
|B〉 = 1√

2
|0〉 (|01〉 + |10〉) ,

(7)

|GHZ〉 = 1√
2
|000〉 + |111〉,

|W 〉 = 1√
3

(|001〉 + |010〉 + |100〉) .

A state |�〉 is said to be in the W class, for example, if and
only if there exist invertible local operators A1,A2,A3 such
that |�〉 = A1 ⊗ A2 ⊗ A3|W 〉. The product, biseparable, and
GHZ classes are defined similarly.

Again, one can determine which class a state belongs to by
studying its coefficient matrix. The state is first expressed in a
basis expansion,

|�〉 = c000|000〉 + c001|001〉 + c010|010〉 + c011|011〉
+ c100|100〉 + c101|101〉 + c110|110〉 + c111|111〉

= |0〉|φ0〉 + |1〉|φ1〉, (8)

where the two-qubit states are

|φ0〉 = c000|00〉 + c001|01〉 + c010|10〉 + c011|11〉,
(9)

|φ1〉 = c100|00〉 + c101|01〉 + c110|10〉 + c111|11〉
with the coefficient matrices

C
1|23
0 =

(
c000 c001

c010 c011

)
, C

1|23
1 =

(
c100 c101

c110 c111

)
, (10)

where the superscript 1|23 indicates the partition of qubits.
Since it will be clear from the context which partition is
considered, this superscript will be dropped from the text
below. In this work we are more concerned with the states
in the GHZ and W classes because they have larger tree size.
We now state the conditions that the matrices C0 and C1 must
satisfy for |�〉 to be in the GHZ or W class, which is derived by
Lamata et al. in Ref. [11]. The theorem is stated in a slightly
modified but equivalent form which we think is easier to work
with.

Proposition 2 [11]. Let |�〉 be a three-qubit pure state. Then
(1) |�〉 is a GHZ state iff one of the following conditions

holds:
(a) There is a partition i|jk for which C0 and C1 are

linearly independent, det(C0) �= 0, and C−1
0 C1 has two

distinct eigenvalues.
(b) The same as (a) but with C0 and C1 interchanged.
(c) For all partitions i|jk C0 and C1 are linearly

independent, and there is a partition such that det(C0) =
det(C1) = 0.
(2) |�〉 is a W state iff one of the following conditions

holds:
(a) There is a partition i|jk for which C0 and C1 are

linearly independent, det(C0) �= 0, and C−1
0 C1 has only one

eigenvalue.
(b) The same as (a) but with C0 and C1 interchanged.

Note that the eigenvalue equation of a 2 × 2 matrix M is

λ2 − tr(M)λ + det(M) = 0; (11)

hence it has only one eigenvalue when the discriminant
vanishes, which yields [tr(M)]2 = 4 det(M); otherwise it has
two distinct eigenvalues.

A generic state of three qubits almost always obeys (1a) or
(1b) of Proposition 2. The other constraints are equations that
only a specific set of matrix coefficients satisfy. Thus, most of
the states in the Hilbert space of three qubits are in the GHZ
class.

The states in the W class have a special property that is
important for finding their ε-approximate tree size: For every
state in the W class, there is a GHZ state that is arbitrarily close
to it [15]. It is straightforward to verify that the coefficient
matrix of the |W 〉 state satisfies condition (2a) of Proposition
2. But if we introduce a small fluctuation

|W 〉 → |W 〉 + μ|111〉, (12)

then the coefficient matrix satisfies condition (1a) of Proposi-
tion 2 and hence the perturbed state belongs to the GHZ class.
Not only |W 〉 but every state in its class is “unstable” under
an arbitrarily small fluctuation. For a state |φW 〉 in this class,
there exist invertible local operators A1,A2,A3 such that

|φW 〉 = A1 ⊗ A2 ⊗ A3|W 〉. (13)

We have

|φW 〉 + μA1 ⊗ A2 ⊗ A3|111〉
= A1 ⊗ A2 ⊗ A3 (|W 〉 + μ|111〉) , (14)

which is a state in the GHZ class for arbitrarily small μ.

B. Maximal tree size

It follows from Eq. (2) that the tree size of a three-qubit
state cannot exceed 8. It turns out that all the states in the W
class have tree size of exactly 8.

Proposition 3. The most complex states of three qubits are
the states in the W class, and they have tree size 8.

Proof. This is done by ruling out the smaller trees in Fig. 2
as possible representations of the |W 〉 state. First, we observe
that the tree TP is a special case of TB . Indeed, if one branch
of the + gate in TB vanishes we get TP . Similarly, TB is a
special case of TGHZ because if we expand the + gate in TB we
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obtain the form of TGHZ. Let us denote by |T 〉 the set of states
describable by the tree T , so |TGHZ〉 can be a GHZ, biseparable,
or product state. We can parametrize |TGHZ〉 as

|TGHZ〉 =
3⊗

i=1

(xi |0〉 + yi |1〉) +
3⊗

i=1

(x ′
i |0〉 + y ′

i |1〉) (15)

with complex coefficients xi, yi, x ′
i , and y ′

i . If |W 〉 = |TGHZ〉,
by equating coefficients of both sides we obtain a system of
equations for the variables xi,yi,x

′
i ,y

′
i . These equations can

be easily shown to have no solution. Therefore, the tree TGHZ

cannot describe the |W 〉 state. Now that all the smaller trees
have been ruled out, we conclude that the |W 〉 state has tree
size 8, which is maximal for three-qubit states. Proposition 1
then implies that all states in the W class have tree size 8. �

What is the tree size of the second most complex class? One
can also show in a similar way that the GHZ state cannot be
described by the tree TB . A reader familiar with entanglement
classification would find this obvious because there is no
genuine three-qubit entanglement in TB . Note that TP is a
special case of TB so need not be considered. Therefore, the
GHZ state, as well as all the states in its class, has tree size 6.

Since states are determined only up to a finite precision,
it is necessary to consider a more physical definition of the
tree size—the ε-approximate tree size. We see in Sec. III A
that adding an arbitrarily small perturbation to |W 〉 results in
a state in the GHZ class with tree size 6. Thus, TSε (|W〉) is
at most 6 for any positive ε. This is also true for all the states
in the W class, which means that the maximal tree size of
three-qubit states under nonvanishing perturbation is 6.

How large can ε be before |W 〉 can be approximated by the
tree TB with size 5? Any normalized state that is described by
TB must adopt the following form, up to permutation of qubits:

|TB〉 = |u〉(α|0〉|v〉 + β|1〉|v′〉), (16)

where |u〉, |v〉, and |v′〉 are normalized single-qubit states, and
|α|2 + |β|2 = 1. This is in general a biseparable state, but it is
a product state when |v〉 = |v′〉 up to a phase. The |W 〉 state
is particularly easy to work with since it is invariant under
permutation of qubits, so we do not need to consider the other
two partitions of qubits, 2|13 and 3|12, in |TB〉. It is known
that the squared overlap |〈W |TB〉|2 obeys the inequality

|〈W |TB〉|2 � 2
3 . (17)

The 2/3 upper bound is strict because the equality holds when,
for instance, |TB〉 = |B〉 given in Eq. (7). From the definition
of the ε-approximate tree size and the above inequality one
concludes that Tε (|W 〉) = 6 for 0 < ε < 1/3.

C. Mixed states

Computing the TS of mixed states of two qubits is
straightforward. The TS of a separable state is 2 and the TS
of an entangled state, which has at least one entangled pure
state in its decomposition, is 4. One can determine whether a
mixed state is separable or entangled using the positive partial
transpose criterion [16].

The case of three qubits is more difficult. The TS of
mixed states of three qubits can be computed based on the
entanglement classification of three qubits introduced by Acin

FIG. 3. Each SLOCC class of mixed three-qubit states forms a
convex set with extremal points representing the pure states in the
class. The boundaries of smaller sets are infinitesimally close to those
of the bigger sets since for every pure state in the former there is one
in the latter that is arbitrarily close to it. The vertical vector shows
qualitatively how the generalized Werner state transforms from one
set to the next when the parameter p is increased.

et al. [17]: A mixed state of three qubits belongs to the class
S of separable states if it can be expressed as a convex sum
of separable pure states, class B of biseparable states if it can
be expressed as a convex sum of separable and biseparable
pure states, class W if it can be expressed as a convex sum
of separable, biseparable, and W pure states, and class GHZ
if it can be expressed as a convex sum of all possible states.
It follows that S ⊂ B ⊂ W ⊂ GHZ (see Fig. 3). From the
definition of the TS for mixed states we see that TS = 3 for
the set S, TS = 5 for the set B\S, TS = 8 for the set W\B,
and TS = 6 for the set GHZ\W .

However, unlike in the case of two qubits, there is no
systematic way to determine the entanglement class of an
arbitrary mixed state. But it is possible to identify the class
of some states with the help of entanglement witnesses [17].
Let us consider the example of the generalized Werner state of
three qubits [18]

ρWS(p) = p|GHZ〉〈GHZ| + 1 − p

8
I8, (18)

where the parameter p ranges from 0 to 1. It is shown
that ρWS(p) belongs to the set S when p � 1/5, B\S when
1/5 < p � 3/7, W\B when 3/7 < p � pW , and GHZ\W
when pW < p � 1 where pW ≈ 0.695 542 7 [18]. Thus, the
generalized Werner state has the maximal TS = 8 when
3/7 < p � pW .

IV. FOUR QUBITS

In this section we use the same approach as in the previous
section to find the most complex four-qubit states. We find
that every state can be be described by a tree with at most
16 leaves only if the state is written in the form (37). This
form seems to preclude a recursive construction of the most
economic description in terms of tree size. Forms that look
recursive, like (19), do require 18 leaves for some states. In the
process, we find that the most complex four-qubit state belong
to a SLOCC class not described in previous classifications,
which we call “states with irreducible A|BCD form.” Finally,
as we did for three qubits, we describe the approximate tree
size.
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A. A|BC D form

We begin our search by the observation that any four-qubit
state |�〉 can be written as

|�〉 = |0〉|φ0〉 + |1〉|φ1〉 (19)

with some three-qubit states |φ0〉 and |φ1〉. We will refer to
it as the A|BCD form in the rest of the text. The size of the
above decomposition is at most 18 and reaches the maximal
value when both |φ0〉 and |φ1〉 are states in the W class. We
now define the irreducible A|BCD form as follows:

Definition 1. A state |�〉 has the irreducible A|BCD form
if for all A ∈ {1,2,3,4} and all ILOs A1 the A|BCD form of
A1|�〉 always has |φ0〉 and |φ1〉 in the W class.

In other words, both the three-qubit states |φ0〉 and |φ1〉
in the A|BCD form cannot be brought out of the W class
by switching to a different partition and applying ILOs. Note
that permuting qubits in the BCD part and applying ILOs on
these qubits do not bring |φ0〉 and |φ1〉 out of the W class.
Therefore, we come to a stronger statement that if a state
has the irreducible A|BCD form, then for all permutations
(A,B,C,D) of (1,2,3,4) and ILOs A1,A2,A3,A4 the A|BCD

form of A1 ⊗ A2 ⊗ A3 ⊗ A4|�〉 has |φ0〉 and |φ1〉 in the W
class. These states were overlooked in the original work on the
inductive classification of entanglement for four qubits [12].

It is shown in Sec. IV B that the states with irreducible
A|BCD form are indeed the most complex four-qubit states,
but let us first identify the set of these states. When both |φ0〉
and |φ1〉 are in the W class, first we use ILOs on the last three
qubits to transform |φ1〉 to the |W 〉 state. We denote the state
after this transformation by

|�〉 = |0〉|φW 〉 + |1〉|W 〉, (20)

where |φW 〉 is a state in the W class with the coefficient matrices

C0 =
(

c1 c2

c3 c4

)
, C1 =

(
c5 c6

c7 c8

)
. (21)

We can assume that c2 = 0 because if c2 �= 0 we can apply A1

on the first qubit such that A1|0〉 = |0〉,A1|1〉 = −c2|0〉 + |1〉.
After applying A1 the new state |φW 〉 has c2 = 0.

By applying a local invertible operator

A1 =
(

a11 a12

a21 a22

)
, (22)

with

det(A1) = a11a22 − a12a21 �= 0, (23)

on the first qubit, we have

A1|�〉 = |0〉 (a11|φw〉 + a12|W 〉)
+ |1〉 (a21|φw〉 + a22|W 〉) . (24)

Thus, we must find |φW 〉 such that (1) a11|φW 〉 + a12|W 〉
remains in the W class, and (2) a21|φW 〉 + a22|W 〉 remains
in the W class, for all aij obeying the invertibility condition.
This constraint makes sure that a11 and a12 are not both zero,
and neither are a21 and a22. If a11 = 0 then a12 �= 0, and
thus (1) is always satisfied. If a11 �= 0, let λ = a12/a11 and
(1) becomes finding |φW 〉 such that |φW 〉 + λ|W 〉 for all λ.
Similar arguments for the pair a21 and a22 result in the same
requirement.

Recalling that we can choose c2 = 0, the coefficient
matrices of |φW 〉 + λ|W〉 are

C0 =
(

c1 λ

c3 + λ c4

)
, C1 =

(
c5 + λ c6

c7 c8

)
. (25)

Now we refer to condition (2) of Proposition 2. Condition
(2a), which requires det C0 �= 0, cannot be satisfied with all
λ because det C0 = −λ2 − c3λ + c1c4 has at least one zero
regardless of the values of c1, c3, and c4. So we try (2b): We
have det C1 = (c5 + λ)c8 − c6c7, which is not zero for all λ if
and only if c8 = 0 and c6c7 �= 0; the equation [tr(C−1

1 C0)]2 =
4 det(C−1

1 C0) yields a quadratic equation,

a2λ
2 + a1λ + a0 = 0, (26)

where a0,a1,a2 are functions of c1,c3, . . . ,c7. This equation
is satisfied for all λ if all a0,a1,a2 vanish, which yields three
constraints.

(c6 + c7 − c4)2 = 4c6c7,

(c3c6 − c4c5)(c6 + c7 − c4) = 2c3c6c7, (27)

(c3c6 − c4c5)2 = −4c1c4c6c7.

And with these constraints, it is not difficult to show that C0

and C1 are linearly independent for all λ if and only if c4 �= 0.
In Ref. [12], the possibility of a0,a1,a2 being all zero was not
noticed; as a consequence, the authors missed the family of
states with irreducible A|BCD form. Indeed, as soon as one
of the coefficients is not zero, the quadratic equation has at
most two solutions: Then one can choose any λ not in the set
of solutions to transform at least one of |φ0〉 and |φ1〉 out of
the W class.

We need to carry out the same analysis for other partitions
A = 2,3,4. The algebra is lengthy but straightforward. As
it turns out, all additional equations and inequalities can be
derived from the already known constraints. Sothe state |�〉 in
Eq. (20) has the irreducible A|BCD form if the coefficients of
the three-qubit state |φW 〉 obey the following set of constraints:

c4,c6,c7 �= 0,

c2 = c8 = 0,

(c6 + c7 − c4)2 = 4c6c7,
(28)

(c3c6 − c4c5)(c6 + c7 − c4) = 2c3c6c7,

(c3c6 − c4c5)2 = −4c1c4c6c7.

These constraints can be greatly simplified when we consider
two possible cases: c1 = 0 and c1 �= 0. If c1 = 0 the above
constraints become

c4,c6,c7 �= 0, c1 = c2 = c3 = c5 = c8 = 0,
(29)

c4 = (
√

c6 ± √
c7)2,

where
√

z denotes the principal square root of the complex
number z. If c1 �= 0, by applying A1 on the first qubit such
that A1|0〉 = −|0〉/c1,A1|1〉 = |1〉 we get a new |φW 〉 with
c1 = −1. Substituting this into the set of equations we obtain

c4,c6,c7 �= 0, c1 = −1, c2 = c8 = 0,
(30)

c4 =
(c3

2

)2
, c6 =

(c5

2

)2
, c7 =

(
c3 − c5

2

)2

.
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The simplest example of the first case is c4 = 4,c6 = c7 =
1, which yields the state

|�〉 = |0〉 (4|011〉 + |101〉 + |110〉)
+ |1〉 (|001〉 + |010〉 + |100〉) . (31)

It is not difficult to find ILOs to transform |�〉 to the following
more symmetric state:

|�(4)〉 = 1√
2

(|0〉|W0〉 + |1〉|W1〉) , (32)

where

|W0〉 = 1√
6

(|110〉 + |101〉 − 2|011〉) ,

(33)

|W1〉 = 1√
6

(|001〉 + |010〉 − 2|100)〉) .

Or, explicitly,

|�(4)〉 =
√

1

3

[
1

2
(|0110〉 + |0101〉 + |1001〉 + |1010〉)

− |0011〉 − |1100〉
]
. (34)

Coincidentally, this state was already realized in experiments
by using photons from a down-conversion source [19,20];
and the genuine four photon entanglement was confirmed by
measuring a witness [19]. The state |�(4)〉 is similar to the
Dicke state with two excitations, that is,

|D2〉 = 1√
6

(|0011〉 + |0101〉 + |0110〉

+ |1001〉 + |1010〉 + |1100〉), (35)

except for the factors of −2. Despite this similarity, |D2〉 does
not have irreducible A|BCD form, as one can verify that
applying the ILO

A1 =
(

1 1
1 −1

)
(36)

on the first qubit gives the state |0〉|GHZ′〉 + |1〉|GHZ′′〉 where
|GHZ′〉 and |GHZ′′〉 belong to the GHZ class.

In the next section we show that a four-qubit state has
maximal tree size if and only if it has irreducible A|BCD

form. Moreover, while the maximal size of the A|BCD form
is 18, the maximal tree size is only 16, which means that the
A|BCD form is not the optimal decomposition for the most
complex four-qubit states.

B. Maximal tree size

First, we list all the four-qubit trees with a ⊗ gate at the
root as shown in Fig. 4. The subscript of each tree indicates
the number of its leaves. All the other trees (with a + gate at
the root) are combinations of these trees. Then we proceed to
prove that the tree size of the states with irreducible A|BCD

form is 16, which will later be shown to be the maximal tree
size of four-qubit states.

FIG. 4. Rooted trees for four qubits with a ⊗ gate at the root. The
subscript of each tree indicates the number of its leaves. The trees TE ,
TGHZ, and TW are used to label branches.

Proposition 4. A four-qubit state |�〉 with the irreducible
A|BCD form has the decomposition

|�〉 = |φ12〉|ϕ34〉 + |φ′
13〉|ϕ′

24〉, (37)

where |φ〉,|ϕ〉,|φ′〉, and |ϕ′〉 are two-qubit entangled states,
and the subscripts indicate the qubits assigned to each partition.

Here |φ12〉 is an entangled state of the first qubit and the
second qubit and so on. Since T8 is a tensor product of two
two-qubit entangled states (see Fig. 4), it is clear that the above
decomposition can be described by the tree T8 + T8. Note that
the orders of qubits assigned to each branch are not the same.
Hence, this decomposition is not similar to those usually seen
in entanglement theory. This “crossing” of qubits is required to
obtain the minimal tree for the states with irreducible A|BCD

form.
Proof. We show this by explicit constructions. For the first

case where the coefficients are given in Eq. (29), one can verify
that the explicit form is

|φ12〉 = (|10〉 ∓ √
c6

√
c7|01〉),

|ϕ34〉 = ∓
√

c6√
c7

|01〉 + |10〉,
(38)

|φ′
13〉 = √

c7(
√

c7 ± √
c6)|01〉 + |10〉,

|ϕ′
24〉 =

√
c7 ± √

c6√
c7

|01〉 + |10〉.

The above state is always well defined because the constraints
of Eq. (29) require that c7 �= 0.

For the second case of Eq. (30) the explicit form is more
complicated:

|φ12〉 = 4

c5(c5 − c3)
|10〉 + |0〉

[
2c3

c5(c5 − c3)
|0〉 + |1〉

]
,

|ϕ34〉 = c2
5

4
|01〉 +

[
c5

2
|0〉 + c5(c5 − c3)

4
|1〉

]
|0〉,

(39)

|φ′
13〉 = |0〉

[
c5

c3 − c5
|0〉 + c3

2
|1〉

]
+ 2

c3 − c5
|10〉,

|ϕ′
24〉 = c3 − c5

2
|10〉 + |0〉

[
|0〉 + c3

2
|1〉

]
,
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FIG. 5. Rooted trees of four qubits with 15 leaves. All the trees
with fewer than 15 leaves are special cases of these trees.

which is again always well defined since the constraints of Eq.
(30) make sure that c3 �= c5. �

The decomposition of Eq. (37) turns out to be optimal for
all states with irreducible A|BCD form. In other words, these
states do not possess decompositions with size smaller than
16.

Proposition 5. If |�〉 is a state with irreducible A|BCD

form, its minimal tree is T8 + T8. Thus, the tree size of these
states is 16.

Proof. First we need to draw the trees with 15 leaves or
fewer. There are a lot of them, but most are special cases of
others. Let us first consider the set of trees shown in Fig. 4.
We see that T4 is a special case of T6 because the two-qubit
product state is a special case of TE . We denote this relation
as T4 ⊂ T6. After examining the structures of these trees, one
can be convinced that T4 ⊂ T6 ⊂ T7 ⊂ T9, T6 ⊂ T8, and T7 ⊂
T4 + T4. From these relations we have T6 + T6 ⊂ T7 + T7 ⊂
T4 + T4 + T7 and so on. After listing the trees with at most 15
leaves we see that all of them are special cases of the set of
trees with exactly 15 leaves. This set is shown in Fig. 5.

We now prove Proposition 5 by showing that if a state is
described by a tree with at most 15 leaves, it cannot have the
irreducible A|BCD form. Only T6 + T9 is considered as the
arguments for the other trees are similar. For better clarity, we
draw T6 + T9 explicitly in Fig. 6. Let us denote by γ |u1〉 the
single-qubit state assigned to the leaf at the root of T9 with |u1〉
normalized. The same qubit may be assigned to any leaf on the

FIG. 6. Explicit drawing of T6 + T9 with its two main branches
T6 and T9.

T6 branch. There are two inequivalent cases. In the first, this
qubit is assigned to one of the two leaves at the root of T6. Its
state can be then expressed as α|u0〉 + β|u1〉 where |u0〉 is the
normalized state that forms a basis with |u1〉. The four-qubit
state described by T6 + T9 is

|ϕ〉 = (α|u0〉 + β|u1〉) |TB〉 + γ |u1〉|TW 〉
= α|u0〉|TB〉 + |u1〉 (β|TB〉 + γ |TW 〉) . (40)

Note that the tree states with letters as subscripts are three-qubit
states (see Fig. 2). The size of the three-qubit state β|TB〉 +
γ |TW 〉 is at most 8, so the size of the above A|BCD form is at
most 15 and hence cannot be maximal.

In the second case, the qubit assigned to the leaf at the root of
T9 is assigned to one of the leaves in the two-qubit entangled
subtree TE of T6. Then, we can express the two-qubit state
of TE as α|u0〉|v0〉 + β|u1〉|v1〉. After writing down |ϕ〉 and
grouping the terms with |u1〉 together, one sees that it has the
form of Eq. (40) with |TP 〉 instead of |TB〉. The size of this
A|BCD form is at most 13 and is again not maximal.

For the T7 + T8 tree, denote by γ |u1〉 the single-qubit state
assigned to the leaf at the root of T7. Using the same procedure
one can show that a state described by this tree has an A|BCD

form with size at most 15. Similarly, a state described by
T4 + T4 + T7 has an A|BCD form with size at most 16. Recall
that the maximal size of the A|BCD form is 18; all the trees
with 15 leaves cannot describe a state that has irreducible
A|BCD form. Since the trees with fewer than 15 leaves are
special cases of the trees with 15 leaves, we conclude that all
the trees with 15 leaves or fewer cannot describe the states
with irreducible A|BCD form. Therefore, the T8 + T8 tree is
the optimal decomposition for these states and their tree size
is 16. �

Now that the tree size of the states with irreducible A|BCD

form has been found, one still needs to prove that these
states are the most complex, that is, the other states (with
no irreducible A|BCD form) have smaller tree size.

Proposition 6. If a four-qubit state |�〉 does not have an
irreducible A|BCD form, it can be described by a tree with at
most 15 leaves.

Proof. If |�〉 does not have the irreducible A|BCD form,
there exists a partition A|BCD and an ILO A1 such that after
the application of this ILO we have

|�〉 = |0〉|φ0〉 + |1〉|φ1〉, (41)

where at least one of the three-qubit states, say |φ1〉, is not in
the W class. If |φ1〉 is a biseparable state, it is clear that |�〉
can be described by the tree T9 + T6 with 15 leaves. If |φ1〉
is in the GHZ class, we use ILOs on the last three qubits to
transform |�〉 to

|�〉 = |0〉|φw〉 + |1〉|GHZ〉. (42)

Consider the state |φW 〉 + λ|GHZ〉, a necessary condition for
this state to be in the W class is that C0C

−1
1 or C−1

1 C0 has only
one eigenvalue. Both cases yield the same equation

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0, (43)

where a0,a1,a2,a3 are functions of the coefficients of φW . This
equation has at most four distinct solutions. Thus, it is always
possible to find a value λ∗ �= 0 that is not in the set of solutions.
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Then, |φw〉 + λ∗|GHZ〉 is not in the W class and hence can be
described by TGHZ. Next, we apply on the first qubit an ILO
such that A1|0〉 = |0〉,A1|1〉 = λ∗|0〉 + |1〉, which is invertible
since λ∗ �= 0. After that the state becomes

|�〉 = |0〉(|φW 〉 + λ∗|GHZ〉) + |1〉|GHZ〉, (44)

which can be described by T7 + T7 with 14 leaves. �
A direct corollary of Propositions 5 and 6 is that the states

with irreducible A|BCD form are the states with the maximal
tree size, and vice versa. The maximal tree size of four-qubit
states is therefore 16. Note that for 2 � n � 4 the maximal TS
is 2n, which is the dimension of the Hilbert space. Whether
this relation holds for all n � 2 remains an open question.

C. Approximate tree size

What is the maximal ε-approximate tree size of four-qubit
states? Even in the worst-case scenario when |φ0〉 and |φ1〉 in
Eq. (19) are in the W class, we know from Sec. III A that they
can be approximated with arbitrary precision by two states in
the GHZ class. More concretely, for ε arbitrarily close to 0
there exists a state of the form

|ϕ〉 = |0〉|GHZ′〉 + |1〉|GHZ′′〉 (45)

such that |〈�|ϕ〉|2 � 1 − ε. Here |GHZ′〉 and |GHZ′′〉 are the
two states in the GHZ class. Because the tree size of |ϕ〉 is at
most 14, we conclude that the TSε (|�〉) is at most 14 for every
ε > 0. Thus, if fluctuation over a neighborhood is allowed, the
maximal tree size of four-qubit states is at most 14.

Proposition 7. The ε-approximate tree size of |�(4)〉 is 14
for 0 < ε < 1

12 .
Proof. We need to show that if |ϕ〉 is a state described by a

tree with fewer than 14 leaves, then |〈ϕ|�(4)〉|2 � 1 − 1/12 =
11/12. In other words, the states with smaller size are a finite
distance away from |�(4)〉. For this purpose we employ the
same elimination procedure used in Sec. III B to find the most
complex three-qubit state. First, we draw all the trees with 13
leaves or fewer. We observe that all of the trees in this set are
special cases of the four particular trees listed in Fig. 7. Thus,
Proposition 7 holds if we can show that the states described
by these four trees are a finite distance away from |�(4)〉.

Eliminating T4 + T8, T6 + T7, and T4 + T9. Using the
argument in the proof of Proposition 6 that leads to Eq. (40),
one can show that a state described by one of T4 + T8, T6 + T7,

FIG. 7. Rooted trees of four qubits with sizes 12 and 13.

and T4 + T9 has the form

|ϕ〉 = α|u0〉|TB〉 + β|u1〉|φ〉, (46)

where |α|2 + |β|2 = 1, |u0〉 and |u1〉 are two orthonormal
single-qubit states, |φ〉 is a three-qubit state, and |TB〉 is a
biseparable state (product states are treated as a special case
of biseparable states). In addition, |φ〉 and |TB〉 are both
normalized. One sees later that it is the biseparable component
|TB〉 of |ϕ〉 that keeps it away from |�(4)〉.

The state |ϕ〉 has the form of the bipartite cut A|BCD

where any of the four qubits can be assigned to part A. We first
consider the case when they are the states of the first qubit.
Complications due to permutation of qubits will be dealt with
later. As in the case for three qubits, we look at the overlap

|〈�(4)|ϕ〉|2 = |α〈�(4)|u0TB〉 + β〈�(4)|u1φ〉|2
� |〈�(4)|u0TB〉|2 + |〈�(4)|u1φ〉|2, (47)

where the last line follows from an application of Cauchy-
Schwarz inequality. Moreover, we have

|〈�(4)|u0TB〉|2 = 1
2 |〈0|u0〉〈W0|TB〉 + 〈1|u0〉〈W1|TB〉|2

� 1
2 (|〈W0|TB〉|2 + |〈W1|TB〉|2) (48)

and

|〈�(4)|u1φ〉|2 = 1
2 |〈0|u1〉〈W0|φ〉 + 〈1|u1〉〈W1|φ〉|2

� 1
2 (|〈W0|φ〉|2 + |〈W1|φ〉|2). (49)

Since |W0〉 and |W1〉 are two orthonormal states, we can
expand |φ〉 in a basis in which |W0〉 and |W1〉 are basis
vectors. From this observation we can conclude immediately
that |〈W0|φ〉|2 + |〈W1|φ〉|2 � 1. This and Eqs. (47)–(49) yield

|〈�(4)|ϕ〉|2 � 1
2 (|〈W0|TB〉|2 + |〈W1|TB〉|2 + 1). (50)

Thus, we need to maximize

f = |〈W0|TB〉|2 + |〈W1|TB〉|2 (51)

to find the largest overlap between |�(4)〉 and |ϕ〉.
As a biseparable state |TB〉 has the following form:

|TB〉 = (a|0〉 + b|1〉)
⊗ (c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉) (52)

with the constraints

|a|2 + |b|2 = |c00|2 + |c01|2 + ∣∣c2
10 + ∣∣c11

∣∣2 = 1. (53)

Substituting this in f we obtain

f = 1
6 [|b(c01 + c10) − 2ac11|2 + |a(c01 + c10) − 2bc00|2].

(54)

Maximizing f with respect to the constraints of Eq. (53) gives
us fmax = 2/3.

Let us now consider the situations when instead of qubit 1,
qubits 2, 3, and 4 are assigned to part A of the bipartite cut
A|BCD. Since we are concerned with the overlap |〈�(4)|ϕ〉|,
this is equivalent to keeping |ϕ〉 unchanged while permuting
the qubits in |�(4)〉. Under permutation |�(4)〉 still has the same
form as Eq. (32) but the factor 2 changes its place within |W0〉
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and |W1〉. Thanks to the high symmetry in the form of |�(4)〉,
there are only two different cases:

∣∣�(4)
1

〉 = 1√
12

[|0〉 (|110〉 − 2|101〉 + |011〉)

+ |1〉 (|001〉 − 2|010〉 + |100〉)],
∣∣�(4)

2

〉 = 1√
12

[|0〉 (−2|110〉 + |101〉 + |011〉)

+ |1〉 (−2|001〉 + |010〉 + |100〉)]. (55)

Following the same argument as for |�(4)〉, we arrive at the
same inequality as in Eq. (50) for |�(4)

1 〉 and |�(4)
2 〉 with

f1 = 1
6 [|ac11 + b(c10 − 2c01)|2 + |bc00 + a(c01 − 2c10)|2]

(56)

for |�(4)
1 〉, and

f2 = 1
6 [|ac11 + b(c01 − 2c10)|2 + |bc00 + a(c10 − 2c01)|2]

(57)

for |�(4)
2 〉. Since f1 becomes f2 after interchanging c01 ↔ c10,

they have the same maximum. And maximizing f1 with respect
to the constraints gives f1max = 5/6. Since f1max > fmax, we
have, for all permutations of qubits,

|〈�(4)|ϕ〉|2 � 1 + f1max

2
= 11

12
. (58)

Eliminating T4 + T4 + T4. The final step is to eliminate the last
tree, T4 + T4 + T4, which does not adopt the convenient form
of Eq. (46). Labeling the leaves of T4 + T4 + T4 by xi |0〉 +
x ′

i |1〉, i = 1, . . . ,4, for the first branch, yi |0〉 + y ′
i |1〉, i =

1, . . . ,4, for the second, and zi |0〉 + z′
i |1〉, i = 1, . . . ,4, for

the final one, we write down a state described by T4 +
T4 + T4 as

|ϕ〉 =
4⊗

i=1

(xi |0〉 + x ′
i |1〉) +

4⊗
i=1

(yi |0〉 + y ′
i |1〉)

+
4⊗

i=1

(zi |0〉 + z′
i |1〉), (59)

and find the maximal value of |〈�(4)|ϕ〉|2 subjected to
the constraint |〈ϕ|ϕ〉| = 1. Numerical optimization gives
|〈�(4)|ϕ〉|2 � 8/9 < 11/12. Comparing this with the in-
equality of Eq. (58), we conclude that |〈�(4)|ϕ〉|2 � 11/12
for all states |ϕ〉 described by a tree with at most 13
leaves, and Proposition 7 follows immediately from this
inequality. �

D. A witness for maximal tree size

The result of the previous section helps us construct the
following witness to detect the states with maximal tree size
of four qubits:

W = 11
12 I − |�(4)〉〈�(4)|. (60)

For a given state |ϕ〉, if 〈ϕ|W|ϕ〉 < 0 then |〈ϕ|�(4)〉|2 > 11/12
and therefore the tree size of |ϕ〉 must be 14. Thus, when the
average value of W is negative we know that the state has the
maximal ε-approximate tree size.

In the experiment described in Ref. [19] the state |�(4)〉 was
created and its multiparticle entanglement was confirmed with
the witness

W′ = 3
4 I − |�(4)〉〈�(4)|, (61)

which is then broken down to a sum of locally measurable
operators. We have

W = 1
6 I + W ′. (62)

From the experimental data the authors obtain 〈W′〉 =
−0.151 ± 0.01, which yields 〈W〉 = 0.02 ± 0.01. Thus, the
state created in this experiment does not lead to 〈W〉 < 0. In
other words, the fidelity is not high enough to confirm maximal
tree size.

V. CONCLUSION

In this paper we develop a procedure for computing the
tree size of a state when the number of qubits is 3 and 4. The
states with maximal tree size are identified; and it is shown that
these states form a set of zero measure. The family of four-
qubit states with maximal tree size is an entanglement class
not described in the previous works on the inductive method
of entanglement classification. The calculation is extended
to mixed states of three qubits and an example of a mixed
state with maximal tree size is given. Since our method of
finding the minimal tree and tree size is based on an exhaustive
elimination of smaller trees, it quickly becomes intractable as
the number of qubits increases. Numerical investigation is
probably needed if one hopes to find the states with maximal
tree size for more than four qubits.
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László Babai (ACM, New York, 2004), pp. 118–127.

[8] R. Raz, in STOC ’04: Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, 2004 (Ref. [7]),
p. 633.

[9] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,
Quantum Inf. Comput. 7, 401 (2007).

[10] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314
(2000).

[11] L. Lamata, J. León, D. Salgado, and E. Solano, Phys. Rev. A 74,
052336 (2006).

[12] L. Lamata, J. León, D. Salgado, and E. Solano, Phys. Rev. A 75,
022318 (2007).

[13] A. Acı́n, A. Andrianov, L. Costa, E. Jané, J. I. Latorre, and
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