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Implementing nonlocal unitary operators is an important and hard question in quantum computing and
cryptography. We show that any bipartite nonlocal unitary operator of Schmidt rank three on the (dA × dB )-
dimensional system is locally equivalent to a controlled unitary when dA is at most three. This operator can
be locally implemented assisted by a maximally entangled state of Schmidt rank r = min{d2

A,dB}. We further
show that stochastic-equivalent nonlocal unitary operators are indeed locally equivalent, and propose a sufficient
condition on which nonlocal and controlled unitary operators are locally equivalent. We also provide the solution
to a special case of a conjecture on the ranks of multipartite quantum states.
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I. INTRODUCTION

Implementing multipartite unitary operators is a fundamen-
tal task in quantum information theory. The operators are called
local when they are the tensor product of unitary operators
locally acting on subsystems, i.e., they have Schmidt rank one.
Otherwise, they are called nonlocal. It is known that the local
unitary can be implemented by local operations and classical
communication (LOCC) with probability one. Recent research
has been devoted to the decomposition of local unitaries into
elementary operations [1], and the local equivalence between
multipartite quantum states of fermionic systems under local
unitaries [2–4].

Nonlocal unitary operators have a more complex structure
and play a more powerful role than local unitaries in quantum
computing, cryptography, and so on. Nonlocal unitaries can
create quantum entanglement between distributed parties [5],
and their equivalence has been studied under LOCC [6].
Nonlocal unitaries cannot be implemented by LOCC only,
even if the probability is allowed to be close to zero [7].
The understanding of the forms and implementation schemes
of nonlocal unitary operators is still far from complete. The
simplest type of nonlocal unitary is the controlled unitary
gates, which are of the general form U = ∑m

j=1 Pj ⊗ Vj

acting on a bipartite Hilbert space HA ⊗ HB , where Pj are
orthogonal projectors on HA and Vj are unitaries on HB . They
can be implemented by a simple nonlocal protocol [8] using
a maximally entangled state of Schmidt rank m. In this sense
the implementation of controlled unitaries is operational. Some
other types of nonlocal unitaries are discussed in [8], but in
this paper we will focus on controlled unitaries. (Note that
entirely different implementations are possible if the systems
are deemed to be near enough so as to allow direct quantum in-
teractions between them, e.g., multiqubit controlled gates can
be decomposed into certain elementary gates [9].) Recently,
an interesting connection between nonlocal and controlled
unitaries was found: they are locally equivalent when they have
Schmidt rank two [10]. In this case their implementations are
the same. So it is important to strengthen this connection for
operationally implementing more nonlocal unitaries.

In this paper we show that any bipartite unitary operation U

of Schmidt rank three on dA × dB system is locally equivalent
to a controlled unitary when dA = 2,3; see Theorems 3 and 6.
This is illustrated in Fig. 1. They not only imply the method
of implementing U but also simplify the structure of U . We

also propose an operational method of explicitly decomposing
U into the form of controlled unitaries in the end of Sec. III.
As an application we can simplify the problem of deciding the
stochastic local equivalence, namely SL equivalence of two
bipartite unitaries of Schmidt rank three with dA = 2,3. This
is based on Theorem 7 that any two SL-equivalent nonlocal
unitary operators are locally equivalent. Using this theorem
we provide a sufficient condition by which a bipartite unitary
is locally equivalent to a controlled unitary in Corollary 8.
Next we show that U can be implemented by LOCC and a
maximally entangled state |�r〉 = 1√

r

∑r
i=1 |ii〉, where r =

min{d2
A,dB} in Lemma 9. Next, we apply our result to solve

a special case of a conjecture on the ranks of multipartite
quantum states; see Conjecture 10.

Controlled unitary operators are one of the most easily
accessible and extensively studied quantum operators. For
example, the controlled NOT (CNOT) gate is essential to con-
struct the universal quantum two-qubit gate used in quantum
computing [9]. Experimental schemes of implementing the
CNOT gates have also been proposed, such as cavity QED
technique [11] and trapped ions [12]. Recently, CNOT gates
have been proved to be decomposed in terms of a two-qubit
entangled gate and single qubit phase gates, which could be
implemented by trapped ions controlled by fully overlapping
laser pulses [13]. Next, multiqubit graph states for one-way
quantum computing are generated by a series of controlled-Z
gates [14]. Third, controlled phase gates have been used
to construct the mutually unbiased bases (MUBs) [15] and
graph states for which the violation of multipartite Bell-type
inequalities have been experimentally demonstrated [16].
These applications (and those not mentioned above) could be
improved by the strengthened connection between nonlocal
and controlled unitaries presented in this paper.

The rest of this paper is organized as follows. In
Sec. II we introduce the preliminary knowledge, and propose
Conjecture 1 as the main question in this paper. In Sec. III
we prove Conjecture 1 when dA = 2,3, and we propose its
applications on general nonlocal unitaries in Sec. IV. Finally,
we conclude in Sec. V.

II. PRELIMINARIES

LetH = HA ⊗ HB be the complex Hilbert space of a finite-
dimensional bipartite quantum system of Alice and Bob. We
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FIG. 1. Any bipartite unitary U on dA × dB system of Schmidt
rank three is locally equivalent to a controlled unitary when
dA = 2,3, where the controlling side may be A or B. This is
expressed as U = (Q ⊗ I )(

∑dA

k=1 |k〉〈k| ⊗ Vk)(R ⊗ I ) or U = (I ⊗
Q)(

∑dB

k=1 Vk ⊗ |k〉〈k|)(I ⊗ R), where Vk , Q, and R are local unitaries.
The output systems A′ and B ′ are assumed to be of the same size as
A and B, respectively.

denote by dA,dB the dimension of HA and HB , respectively.
It is known that H is spanned by the computational basis
|i,j 〉,i = 1, . . . ,dA and j = 1, . . . ,dB . We shall denote Ik =∑k

i=1 |i〉〈i|. For convenience, we denote IA = IdA
, IB = IdB

,
and I = IdAdB

as the identity operator on spaces HA,HB , and
H, respectively. Let d = dAdB , and U,V ∈ U(d) be two uni-
tary matrices on the space H. We say that U,V are equivalent
under stochastic local operations, or SL equivalent when there
are two locally invertible matrices S1,S2 ∈ GL(dA) × GL(dB)
such that U = S1V S2. In particular, we say that U,V are
locally equivalent when S1,S2 are unitary.

A unitary matrix U onH has Schmidt rank n if there is a de-
composition U = ∑n

j=1 Aj ⊗ Bj where the dA × dA matrices
A1, . . . ,An are linearly independent, and the dB × dB matrices
B1, . . . ,Bn are linearly independent. Such decomposition will
be called Schmidt expansion in this paper, but note that the
same term may sometimes imply the additional requirement
that Aj (and Bj ) are orthogonal under the Hilbert-Schmidt
inner product. We say that U is a controlled unitary gate, if U

is locally equivalent to
∑dA

j=1 |j 〉〈j | ⊗ Uj or
∑dB

j=1 Vj ⊗ |j 〉〈j |.
To be specific, U is a controlled unitary from the A or B

side, respectively. Clearly the matrices Uj ,Vj are unitary. We
further say that system A (or B) controls with n terms if
U = ∑n

i=1 Pi ⊗ Ui (or
∑n

i=1 Ui ⊗ Pi), where the U1, . . . ,Un

are unitaries and the Pi are orthogonal projectors, i.e., PiPj =
δijPi .

It is known that any multipartite (i.e., nonlocal) unitary gate
of Schmidt rank two is a controlled unitary [10]. However,
there are bipartite unitaries of Schmidt rank four, e.g., the
two-qubit SWAP gate [10], that are not controlled unitaries.
It is then an interesting question to characterize the bipartite
unitaries of Schmidt rank three. Formally, we investigate the
following conjecture in the next section.

Conjecture 1. Any bipartite unitary operator of Schmidt
rank three is a controlled unitary operator.

To approach this conjecture, we generalize the concept of
controlled unitary gate; see an example in the next paragraph.
We split the space into a direct sum: HA = ⊕m

i=1Hi , m >

1, DimHi = mi , and Hi ⊥ Hj for distinct i,j = 1, . . . ,m.
We say that U is a block-controlled unitary (BCU) gate
controlled from the A side, if U is locally equivalent to∑m

i=1

∑mi

j,k=1 |uij 〉〈uik| ⊗ Vijk , where |uij 〉 ∈ Hi for j,k =
1, . . . ,mi , and m > 1. Note that the Vijk are not necessarily
unitary. For simplicity we denote the decomposition as ⊕AVi

where Vi = ∑mi

j,k=1 |uij 〉〈uik| ⊗ Uijk , and we denote |Vi |A =

mi . We have UU † = ∑m
i=1 Pi ⊗ IB = I , where Pi is the

projector on the space Hi . So the BCU from the A side can
be understood as the direct sum of nonlocal unitaries on the
spaces Hi ⊗ HB , i = 1, . . . ,m. In particular, if mi = 1 for all
i, then U degenerates to a controlled unitary gate from the
A side. So a BCU has more general properties than those a
controlled unitary gate has. One may similarly define the BCU
gate controlled from the B side.

Although the controlled unitary gate is a BCU gate, the con-
verse is wrong. An example is the following qutrit-qubit uni-
tary gate: U = 1

2 (I2 ⊗ I2 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) +
|3〉〈3| ⊗ I2, where σx,σy,σz are the standard Pauli operators
acting on the two-dimensional subspace of HA spanned by
|1〉,|2〉. They can be regarded as qutrit operators by letting
σi |3〉 = 0 for i = x,y,z. By definition U is a BCU gate from
A side with m = 2, H1 = span{|1〉,|2〉}, and H2 = span{|3〉}.
If U is a controlled unitary from A or B side, then it has
Schmidt rank at most three or two. It is a contradiction with
the fact that U has Schmidt rank four. So U is not a controlled
unitary.

Since a nonlocal unitary and controlled unitary may be
not locally equivalent, one may ask when they are locally
equivalent. The question has been addressed in [10, Lemma
2], which says the Aj in the Schmidt expansion of U have
simultaneous singular value decomposition, i.e., they are
simultaneously diagonal under the same two local unitaries
before and after them. However, the lemma is not very
operational in practice. Below we present an operational
criterion based on [17, Corollary 5] and [10, Lemma 2]. Note
that [18] also cited some related work of the authors of [17],
and made implicit use of the same lemma below, in studying the
entanglement cost of more general types of bipartite unitaries.

Lemma 2. Let U = ∑r
j=1 Aj ⊗ Bj be a nonlocal unitary

of Schmidt rank r . Then U is a controlled unitary from the
A side if and only if AiA

†
j , i,j = 1, . . . ,r are all normal and

commute with each other, and A
†
i Aj , i,j = 1, . . . ,r are all

normal and commute with each other.
Proof. The assertion immediately follows from [17, Corol-

lary 5] and [10, Lemma 2]. �
Note that the matrices Aj (Bj ) are not necessarily orthog-

onal to each other.

III. PROVING CONJECTURE 1 FOR dA = 2,3

Conjecture 1 trivially holds for dA = 1. In this section we
show that Conjecture 1 holds when one of the systems A,B

is a qubit or a qutrit. The first case is demonstrated by the
following theorem.

Theorem 3. Any bipartite unitary on 2 × dB of Schmidt
rank three is locally equivalent to a controlled unitary con-
trolled from the B side.

Proof. Let U be a bipartite unitary on 2 × dB of Schmidt
rank three. Suppose U has an operator Schmidt expansion U =∑3

j=1 Ej ⊗ Fj . Using the orthogonality under the Hilbert-
Schmidt inner product, there is a 2 × 2 matrix E4 orthogonal
to E1,E2,E3. Let the non-negative real numbers a, b be the
singular values of E4. Up to local unitaries we may assume
E4 = a|0〉〈0| + b|1〉〈1|. Since U has Schmidt rank 3, U is
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locally equivalent to the unitary U1 = ∑3
j=1 Aj ⊗ Bj , where

A1 = |0〉〈1|, A2 = |1〉〈0|, and A3 = b|0〉〈0| − a|1〉〈1|.
Let HB = ⊕k

i=1Vi be an orthogonal decomposition and
the diagonal matrix Pi the projector on the subspace Vi ,
∀i. So PiPj = δijPi and

∑k
i=1 Pi = IB . Up to local unitaries

on HB we may assume the orthogonal decomposition B3 =∑k
i=1 ciPi , where the diagonal entries ci > cj � 0 for all

i < j . Since U1 is unitary, we have

b2B
†
3B3 + B

†
2B2 = B

†
1B1 + a2B

†
3B3 = IB, (1)

b2B3B
†
3 + B1B

†
1 = B2B

†
2 + a2B3B

†
3 = IB. (2)

Taking the trace in Eqs. (1) and (2), we have a = b > 0. Since
U1 is unitary, we have

B
†
3B1 = B

†
2B3, B1B

†
3 = B3B

†
2. (3)

Since B3 = B
†
3 = ∑k

i=1 ciPi , it follows from (3) that B2
3B1 =

B1B
2
3 = B3B

†
2B3. So B1 commutes with B2

3 . One can similarly
show that B2 commutes with B2

3 . Since ci > cj � 0 for all i <

j , we have B1 = ⊕k
i=1Gi and B2 = ⊕k

i=1Hi , where the square
blocks Gi,Hi act on the space Vi , ∀i. By (3) we have G1 =
H

†
1 , . . . ,Gk−1 = H

†
k−1 and ckGk = ckH

†
k . It follows from (1)

and (2) that

B
†
1B1 = B1B

†
1 = B

†
2B2 = B2B

†
2 = IB − a2B3B

†
3. (4)

So the matrices G1, . . . ,Gk−1 and H1, . . . ,Hk−1 are normal.
If ck > 0, then B1 = B

†
2 and Gk is also normal by (4). So B1

is normal, and B1,B2,B3 are simultaneously diagonalizable
under unitary similarity transform. So U1 is locally equivalent
to a controlled unitary controlled from the B side. Since U,U1

are locally equivalent, the assertion follows. On the other hand,
if ck = 0, by (4) we have GkG

†
k = HkH

†
k = Pk , i.e., both

Gk,Hk are unitary. So B1,B2,B3 are simultaneously locally
equivalent to diagonal matrices, and the assertion follows. This
completes the proof. �

No controlled unitary on 2 × dB of Schmidt rank three can
be controlled from the A side; otherwise, the Schmidt rank
would be decreased. Below we construct a controlled unitary
on 3 × 3 of Schmidt rank three which is not controlled from
the A side. Let U = ∑3

i=1 Vi ⊗ |i〉〈i|, where Vi = Ui ⊕ |3〉〈3|,
i = 1,2,3 and the Ui are linearly independent unitaries acting
on the space span{|1〉,|2〉}. One can verify that U is a controlled
unitary of Schmidt rank three controlled from the B side. If it
is also controlled from the A side, then the three-dimensional
subspace H spanned by the Vi is also spanned by three matrices
of rank one. This is a contradiction with the fact that there is
no matrix of rank one in H . So U is not controlled from the
A side. Next let U ′ = ∑3

i=1 Vi ⊗ Pi be a controlled unitary
on 3 × dB and B control with three terms. Using a similar
argument above, we can show that U ′ is not controlled from
the A side.

It is known that [10, Theorem 6] shows two facts. Any
bipartite unitary U of Schmidt rank two (i) is controlled from
both A and B sides, and (ii) has at least one of the two systems
A,B controlling with two terms. Can these two statements be
generalized to unitaries of Schmidt rank three? The bipartite
unitary in Theorem 3 and U,U ′ in the last paragraph have

Schmidt rank three and violate statement (i). Next we show that
statement (ii) cannot be generalized to that one side controls
with three terms. Consider the controlled unitary

V = I2 ⊗ |1〉〈1| + σx ⊗ |2〉〈2| + σz ⊗ |3〉〈3|
+ σx + σz√

2
⊗ |4〉〈4| (5)

of Schmidt rank three on a 2 × 4 system. Evidently, the A

side cannot control with three terms. If the B side controls
with three terms, then V is locally equivalent to V ′ =∑3

i=1 Ui ⊗ Pi , where Pi are pairwise orthogonal projectors. In
any expansion of the Schmidt-rank-three unitary V of the form
V = ∑3

j=1 Aj ⊗ Bj , the subspace span{Bj } is well defined in
the sense that it is determined solely by V and is independent
of the form of the expansion (as long as the expansion has
only three terms), so for this particular V this subspace is
the three-dimensional subspace S1 spanned by the matrices
|1〉〈1|,|2〉〈2| + 1√

2
|4〉〈4|,|3〉〈3| + 1√

2
|4〉〈4|, because we can

choose Aj to be I2, σx , and σz. The corresponding subspace
for V ′ is span{Pi}, which contains two linearly independent
matrices of rank one. As V and V ′ are locally equivalent, the
subspace S1 also contains two linearly independent matrices
of rank one. This is impossible and hence the B side cannot
control with three terms. Therefore, the statement (ii) cannot
be directly generalized to the case of Schmidt rank three.

It is known [19, proposition 3] that a two-qubit unitary
cannot have Schmidt rank exactly three. Theorem 3 implies
an alternative proof for this fact. If a two-qubit unitary has
Schmidt rank three, then from Theorem 3 it must be controlled
from the B side which is two-dimensional; hence the unitary
has Schmidt rank at most two, a contradiction with the
assumption that it has Schmidt rank three.

In the paragraph below proposition 3 in [19], it was
conjectured that a unitary operator on dA × dB system of
Schmidt rank k exists if and only if k divides dAdB . In the
same paragraph there was an alternative conjecture. They are
both false as the V in Eq. (5) is a counterexample.

To investigate Conjecture 1 with a qutrit system, we present
two preliminary lemmas.

Lemma 4. Assertion (i) implies assertion (ii): (i) any bipar-
tite unitary on dA × dB system of Schmidt rank three is locally
equivalent to a controlled unitary; (ii) any bipartite BCU (see
the definition in the paragraph following Conjecture 1) from
the A side on (dA + 1) × dB system of Schmidt rank three is
locally equivalent to a controlled unitary.

Proof. Let U be a bipartite BCU from the A side on (dA +
1) × dB of Schmidt rank three. We may assume U = U1 ⊕A

U2. Since U has Schmidt rank three, U1,U2 have Schmidt
rank at most three. Since both |U1|A,|U2|A � dA, it follows
from (i) and [10] that both of them are equivalent to controlled
unitaries. If both of them are controlled from the A side, then
(ii) holds. If one of them is controlled from only the B side, then
it has Schmidt rank three [10]. Suppose it is U1; then it has
Schmidt expansion U1 = ∑3

j=1 Aj ⊗ Bj , where Aj and Bj

are operators on HA and HB , respectively. As U1 is controlled
from the B side, from [10, Lemma 2], Bj can be simultaneously
diagonalized under local unitaries. Since U also has Schmidt
rank three, it can be expanded in three terms with the same
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Bj on the B side. Again using [10, Lemma 2], U is also a
controlled unitary from the B side. Thus (i) → (ii) holds. �

An open problem is whether the converse is true, i.e., (ii) →
(i).

Lemma 5. Any bipartite operator on H of Schmidt
rank at most dA is locally equivalent to another operator∑dA

i,j=1 |i〉〈j | ⊗ Uij such that Uij = 0 for some pair of sub-
scripts (i,j ).

Proof. Let V = ∑dA

i,j=1 |i〉〈j | ⊗ Vij be an arbitrary bipartite
operator of Schmidt rank at most dA. Using the row and
column operations, we only need to show that we can always
realize V11 = 0. First this is evidently true when the blocks
Vi,1, . . . ,Vi,dA

are linearly dependent for some i. Next suppose
they are linearly independent for i = 1, . . . ,dA. Since the
Schmidt rank of V is at most dA, it becomes exactly dA now.
So V1,1, . . . ,V1,dA

are in the dA-dimensional subspace spanned
by V2,1, . . . ,V2,dA

. There is a unit vector (x,y) such that
the following dA matrix pencils xV1,1 + yV2,1, . . . ,xV1,dA

+
yV2,dA

are linearly dependent. Let W be a unitary matrix of
the first row (x,y,0, . . . ,0). Then the dA top blocks of size
dB × dB in (W ⊗ I )V are exactly the above matrix pencils, so
they are linearly dependent. Now the claim follows from the
first case. This completes the proof. �

The assertion of this lemma can be easily generalized to
the case in which the bipartite operator V is replaced by an
isometry mapping the space Cn ⊗ Cq to Cm ⊗ Cp, i.e., V =∑m

i=1

∑n
j=1 |i〉〈j | ⊗ Vij , where Vij is of size p × q. Now we

are in a position to prove Conjecture 1 with dA = 3. We shall
denote A ∝ B for two linearly dependent matrices A,B.

Theorem 6. Any bipartite unitary on 3 × dB of Schmidt
rank three is locally equivalent to a controlled unitary.

Proof. Let U be a bipartite unitary on 3 × dB of Schmidt
rank three. For dB = 2 the assertion follows from Theorem 3.
The overall proof strategy is by induction over dB . The
inductive assumption is that the assertion holds for dB =
2, . . . ,k − 1. Then, for dB = k, we prove by considering the
cases that U is a BCU and not a BCU, respectively.

We claim that, under the inductive assumption above, the
assertion for dB = k holds for BCUs. If U is a BCU controlled
from the A side, then the claim follows from Lemma 4 and
Theorem 3. Let U be a BCU controlled from the B side.
We have U = U1 ⊕B U2, where the unitaries Ui act on HA ⊗
Hi , i = 1,2, and H1 ⊕ H2 = HB . Since U has Schmidt rank
three, U1,U2 have Schmidt rank at most three. It follows from
U = U1 ⊕B U2 that both dimensions |U1|B,|U2|B < k. So the
induction hypothesis and [10] (for Schmidt rank three and two,
respectively) imply that U1,U2 are controlled unitaries. If both
U1,U2 are controlled from the B side, then the claim follows.
Suppose one of them, say U1, is controlled from the A side
only. So U1 has Schmidt rank three [10]. Since U also has
Schmidt rank three, it is a controlled unitary from the A side
(by the same argument as in the proof of Lemma 4), so the
claim follows. From now on we assume that U is not a BCU.

By Lemma 5 we may assume the bipartite unitary U =∑3
i,j=1 |i〉〈j | ⊗ Uij , with Uij of size dB × dB and U13 = 0.

Since U is unitary, the rows of submatrix (U11,U12) are orthog-
onal to the rows of another submatrix

∑3
i=2

∑2
j=1 |i〉〈j | ⊗ Uij .

Since the former has rank dB , the latter has rank at most dB .
So the space spanned by the rows of two matrices (U21,U22)

and (U31,U32) has dimension at most dB . It implies that there
is a unit vector (x,y) such that the matrix pencil x(U21,U22) +
y(U31,U32) has rank at most dB − 1. Let V1 be a 3 × 3 unitary
with the bottom row (0,x,y), and U ′ = (V1 ⊗ IB)U . The
bottom left 2dB × 2dB submatrix of U ′ consisting of four
dB × dB blocks is exactly the above-mentioned matrix pencil.
So U ′ is locally equivalent to W = ∑3

i,j=1 |i〉〈j | ⊗ Wij , where
the bottom row of W is (0, . . . ,0,1). To obtain this form
we have used W = (IA ⊗ SB)U ′(IA ⊗ TB), where the local
unitaries SB and TB are for obtaining the first 2dB and last
dB elements of the bottom row, respectively. As W is unitary,
W33 is block diagonal with a (dB − 1) × (dB − 1) block and
a 1 × 1 block. Since W is not a BCU, the three blocks
W31,W32,W33 are linearly dependent (otherwise, all the nine
blocks Wij would be spanned by these three blocks and hence
are block diagonal, so U is a BCU controlled from the B

side). This implies W31 ∝ W32. So W is locally equivalent to
W ′ = ∑3

i,j=1 |i〉〈j | ⊗ W ′
ij with W ′

13 = W ′
31 = 0. Since W ′ is

unitary, the ranks of W ′
23 and W ′

32 are equal. The first big row
(W ′

11,W
′
12,W

′
13) being orthogonal to the last big row implies the

sum of ranks of W ′
12 and W ′

32 is not greater than dB . Similarly,
the sum of ranks of W ′

21 and W ′
23 is not greater than dB . Thus

under local unitaries on HB , W ′ is equivalent to V = (
v1 v2 0
v3 v4 v5
0 v6 v7

),

where the dB × dB blocks vi have the expression vi = (vi1 vi2
vi3 vi4

),
i = 1, . . . ,7, and v22 = v24 = v33 = v34 = v42 = v43 = v51 =
v52 = v61 = v63 = 0, where the equations v42 = v43 = 0 are
natural consequences of the other equations, and the choices
of the local unitaries on HB before and after W ′ are such
that the other equations hold. The blocks vi1 are of size
(dB − r) × (dB − r), vi2 of size (dB − r) × r , vi3 of size
r × (dB − r), and vi4 of size r × r . Since W is not a BCU,
none of v1,v2,v3,v5,v6,v7 is zero. So r ∈ [1,dB − 1], and
v2,v6 are linearly independent. Let H be the space spanned
by v2,v3,v5,v6. Since the Schmidt rank of V is three, we have
Dim H = 2 or 3.

Suppose Dim H = 2, so v3,v5 ∈ H = span{v2,v6}. We
have two cases (1) v23 = 0, v64 = 0, and (2) v23 = 0, v64 = 0.
In case (1), we have v32 = v53 = v62 = 0, v21 ∝ v31, and
v54 ∝ v64. If v4 ∈ H , then v21 and v64 are both invertible.
Since V is unitary, we have v12 = v13 = v72 = v73 = 0. Then
V becomes a BCU which gives us a contradiction with the
assumption. So v4 ∈ H . The space spanned by the vi is
spanned by v3,v4,v5. Again V becomes a BCU and we have
a contradiction. In case (2), we have v31 = v21 = v54 = 0,
v32 ∝ v62, and v23 ∝ v53. If v4 ∈ H , then v4 = 0. Since V

is unitary, we have r = dB − r and v23,v32 are unitary, and the
only nonzero blocks in v1 and v7 are v11 and v74, respectively.
So V has Schmidt rank four and we have a contradiction. So
v4 ∈ H . Since V has Schmidt rank three, we have vi3 ∝ v23

and vi2 ∝ v32 (i = 1, . . . ,7, same below). Since V is unitary,
we have v12 = v13 = v72 = v73 = 0. Since V has Schmidt
rank three, the three blocks v1,v4,v7 are pairwise linearly
dependent. So V is locally equivalent to a matrix S the same
as V , except that v11,v14 are replaced by scalar matrices, and
hence v71,v74 are also scalar. It follows from V V † = I that
r = dB − r . As v23 = 0,v12 = v21 = 0, and the rows of V are
normalized, we have that the singular values of v11 are larger
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than those of v14. As the blocks v1 and v7 are proportional,
the singular values of v71 are larger than those of v74, but this
contradicts with that v62 = 0,v64 = v73 = 0 and that the rows
of V are normalized. Thus this case does not exist. So the case
Dim H = 2 is excluded.

Let Dim H = 3. Up to local unitaries we may assume that
H is spanned by v2,v3,v6. Since V has Schmidt rank three,
we have v1,v4,v5,v7 ∈ H . Hence vi3 ∝ v23 and vi4 ∝ v64.
We now prove v23 = 0 and v64 = 0. Suppose v23 = 0, then
v53 = v73 = 0, so that the submatrix formed by v44,v54,v64,v74

has rows orthogonal and normalized, so it is unitary and
hence its columns are normalized; therefore, v62 = v72 = 0.
Similarly from v13 = v23 = 0, we get that v12 = v32 = 0. So
U is a BCU controlled from the B side, a contradiction. So
we have proved v23 = 0. Now suppose v64 = 0; we have
v44 = v54 = v74 = 0, so v53 and v73 are the only possibly
nonzero blocks on their respective rows, so they are nonzero,
and vi3 ∝ v23 implies v53 ∝ v73, so the corresponding rows are
not orthogonal, violating that V is unitary. This proves v64 = 0.

Next, we prove two statements: v32 ∝ v62 and v21 ∝ v31.
Suppose v32,v62 are linearly independent. It follows from
v4,v5 ∈ H that v4 = 0, v21 = v54 = 0, and v23 ∝ v53. Since
V is unitary, by looking at the rows and columns that v23

and v53 are in, we have r = dB − r , and hence v13 = v14 =
v71 = v73 = 0. By v1 ∈ H and v32 = 0, v64 = 0, we have
v1 ∝ v3, and as v21 = v41 = 0, the rows containing v11,v12 are
proportional to the rows containing v31,v32, a contradiction
with that V is unitary. Hence v32 ∝ v62. Next suppose v21,v31

are linearly independent. Since v5 ∈ H , we have v53 = v62 =
0. And because V is unitary, the submatrix formed by
v44,v54,v64,v74 is unitary; hence v72 = v73 = 0. Since v7 ∈ H ,
we have v32 = 0. From v1 ∈ H , we have v12 = 0; hence v14 is
unitary, which contradicts v23 = 0. So v21 ∝ v31.

From the results in the previous paragraph and that vi ∈ H ,
we have vi1 ∝ v21 and vi2 ∝ v32. Therefore, we may assume
vi1 = aiA, vi2 = biB, vi3 = ciC, and vi4 = diD with nonzero
blocks A,B,C,D for i = 1, . . . ,7. Since we have proved v23 =
0, v64 = 0, we have c2 = 0, d6 = 0. Since V is unitary, we have

(|a1|2 + |a2|2)AA† + |b1|2BB† = IdB−r , (6)

(|a3|2 + |a4|2)AA† + |b3|2BB† = IdB−r , (7)

(a1a
∗
3 + a2a

∗
4 )AA† + b1b

∗
3BB† = 0, (8)

(|c1|2 + |c2|2)CC† + |d1|2DD† = Ir , (9)

|c5|2CC† + (|d4|2 + |d5|2)DD† = Ir , (10)

|c7|2CC† + (|d6|2 + |d7|2)DD† = Ir , (11)

c5c
∗
7CC† + (d4d

∗
6 + d5d

∗
7 )DD† = 0. (12)

Since V is unitary and c2 = 0, at least one of b1,b3 is nonzero.
If one of them is zero, then (6) and (7) imply that A is
proportional to a unitary. If both b1,b3 are nonzero, then (6)
and (8) imply that A is proportional to a unitary. So we have

proved A is always proportional to a unitary. It follows from
(6) and (7) that BB† is proportional to IdB−r . Next, if one of
c5,c7 is zero then (10) and (11) imply that D is proportional to
a unitary. If both c5,c7 are nonzero, then (11) and (12) imply
that D is proportional to a unitary. So we have proved D is
always proportional to a unitary. It follows from c2 = 0 and
(9) that CC† is proportional to Ir . So V is locally equivalent
to the following matrix:

V ′=

⎛
⎜⎜⎜⎜⎜⎝

a1IdB−r b1B a2IdB−r 0 0 0
c1C d1Ir c2C 0 0 0

a3IdB−r b3B a4IdB−r 0 0 0
0 0 0 d4Ir c5C d5Ir

0 0 0 b6B a7IdB−r b7B

0 0 0 d6Ir c7C d7Ir

⎞
⎟⎟⎟⎟⎟⎠ ,

(13)

where we still use the complex numbers ai,bi,ci,di and blocks
B,C, since there is no confusion. By adjusting the coefficients
for the B blocks, we may assume that BB† = IdB−r , and
similarly we may assume CC† = Ir . Since V ′ is unitary, we
have

(|a1|2 + |a2|2)IdB−r + |b1|2BB† = IdB−r , (14)

(|a3|2 + |a4|2)IdB−r + |b3|2BB† = IdB−r , (15)

|d1|2Ir + (|b1|2 + |b3|2)B†B = Ir . (16)

Recall that one of b1,b3 is nonzero. As B†B and BB† have the
same rank, from the three equations above we have dB − r =
r . Hence B and C are square matrices and are unitaries. Next
we apply local unitaries to V ′ to turn the B into Ir , while
preserving the other identity blocks in V ′. The transform is
given by V ′′ = [IA ⊗ (Ir ⊕ R)]V ′[IA ⊗ (Ir ⊕ R†)], where Ir

and R are r × r unitaries acting on subspaces of HB , and
R = B. So when V ′′ is expressed in the form of Eq. (13), the
B becomes Ir , while all the coefficients are unchanged. The
C becomes a unitary matrix C ′ = RC after the transform, and
thus diagonalizable under a unitary similarity transform. So the
C ′ blocks in V ′′ can be diagonalized with the following overall
transform X = [IA ⊗ (S ⊕ S)]V ′′[IA ⊗ (S† ⊕ S†)], where S is
a r × r unitary, and it can be verified that other blocks in X are
still Ir with coefficients. So V ′ is locally equivalent to a matrix
X, which is still of the form (13) but B and C are replaced by
diagonal matrices. So X is a BCU from the B side, and we
have a contradiction. This completes the proof. �

Let U be a bipartite unitary on dA × dB of Schmidt
rank three and dA = 2,3. It follows from Theorems 3 and
6 that U is a controlled unitary. We can further decide the
side from which U is controlled by Lemma 2. To find out
the explicit decomposition of U into a controlled unitary,
we refer to an efficient algorithm constructed in [17] and
references therein. The algorithm is proposed for finding
the finest simultaneous singular value decomposition for
simultaneous block diagonalization of square matrices under
unitary similarity.
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IV. CHARACTERIZATION OF NONLOCAL UNITARY
OPERATORS

In this section we propose a few applications of our results
on general nonlocal unitary operators. First we characterize the
equivalence of nonlocal unitaries and relate them to the con-
trolled unitaries. In Theorem 7 we show that the SL-equivalent
multipartite unitary operators are indeed locally equivalent.
Using it and Theorem 6 we can simplify the problem of
deciding the SL equivalence of two bipartite unitaries of
Schmidt rank three with dA = 2,3. Using Theorem 7 we
provide a sufficient condition by which a bipartite unitary
is locally equivalent to a controlled unitary in Corollary 8.
Next we propose an upper bound on the quantum resources
implementing bipartite unitaries of Schmidt rank three with
dA = 2,3; see Lemma 9. We also show that this upper bound is
saturated for some bipartite unitary. Third we apply our results
to a special case of Conjecture 10 on the ranks of multipartite
quantum states. This conjecture is to construct inequalities
analogous to those in terms of von Neumann entropy such as
the strong subadditivity [20].

A. Equivalence of nonlocal unitary operators

We start by presenting the following observation on the SL

equivalence of general nonlocal unitary operators.
Theorem 7. Suppose U and V are multipartite unitaries

acting on H1 ⊗ H2 ⊗ · · · ⊗ Hp, and they satisfy U = (S1 ⊗
S2 ⊗ · · · ⊗ Sp)V (T1 ⊗ T2 ⊗ · · · ⊗ Tp) for invertible operators
Si and Ti acting on H1,H2, . . . ,Hp, respectively. Then
U = (Q1 ⊗ Q2 ⊗ · · · ⊗ Qp)V (R1 ⊗ R2 ⊗ · · · ⊗ Rp), where
Qi and Ri are unitaries acting onH1,H2, . . . ,Hp, respectively.
In particular, when Si and Ti are identity operators on any party
i, we can choose Qi and Ri to be identity operators.

Proof. Suppose Si and Ti have singular value decomposi-
tions of the form Si = EiCiFi , Ti = GiDiHi , where Ei , Fi ,
Gi , and Hi are unitaries, and Ci and Di are real diagonal
matrices with the diagonal elements sorted in nonincreasing
order. The diagonal elements of Ci and Di are the singular
values of Si and Ti , respectively. Since Si and Ti are invertible,
all the diagonal elements of Ci and Di are positive.

Let U ′ = (E†
1 ⊗ E

†
2 ⊗ · · · ⊗ E

†
p)U (H †

1 ⊗ H
†
2 ⊗ · · · ⊗ H

†
p),

and let V ′ = (F1 ⊗ F2 ⊗ · · · ⊗ Fp)V (G1 ⊗ G2 ⊗ · · · ⊗ Gp);
then U ′ and V ′ are unitaries and satisfy

U ′ = (C1 ⊗ C2 ⊗ · · · ⊗ Cp)V ′(DA ⊗ D2 ⊗ · · · ⊗ Dp). (17)

Using U ′U ′† = I , where I is the identity operator on the entire
space, we have

I = U ′U ′† = (C1 ⊗ C2 ⊗ · · · ⊗ Cp)V ′(D2
A ⊗ D2

2 ⊗ · · ·
⊗ D2

p

)
V ′†(C1 ⊗ C2 ⊗ · · · ⊗ Cp) (18)

and, using V ′† = V ′−1, we get

V ′ = (
C2

1 ⊗ C2
2 ⊗ · · · ⊗ C2

p

)
V ′(D2

1 ⊗ D2
2 ⊗ · · · ⊗ D2

p

)
. (19)

And since Ci and Di are diagonal, C̃ := C2
1 ⊗ C2

2 ⊗ · · · ⊗ C2
p

and D̃ := D2
1 ⊗ D2

2 ⊗ · · · ⊗ D2
p are diagonal. Consider any

nonzero element in the matrix V ′, and let us suppose it is on
row j and column k of V ′. Then Eq. (19) implies C̃jj D̃kk = 1,
where C̃jj means the j th diagonal element of C̃, and D̃kk is

similarly defined. And since C̃ and D̃ only contain positive
elements on their diagonals, we have

√
C̃jj

√
D̃kk = 1. This

holds for any 2-tuple (j,k) satisfying that the element on row j

and column k of V ′ is nonzero, and since C1 ⊗ C2 ⊗ · · · ⊗ Cp

and D1 ⊗ D2 ⊗ · · · ⊗ Dp are diagonal, this implies

V ′ = (C1 ⊗ C2 ⊗ · · · ⊗ Cp)V ′(D1 ⊗ D2 ⊗ · · · ⊗ Dp). (20)

Together with Eq. (17), we get U ′ = V ′; hence

U = (E1F1 ⊗ E2F2 ⊗ · · · ⊗ EpFp)V (G1H1

⊗ G2H2 ⊗ · · · ⊗ GpHp), (21)

where EiFi and GiHi are unitaries by construction. From the
proof above we see that when Si and Ti are identity operators
on any party i, we can choose Ei , Fi , Gi , and Hi to be identity
operators. This completes the proof of Theorem 7. �

The theorem implies that two SL-equivalent multipartite
unitary operators are indeed locally equivalent to each other.
Such two unitaries can be viewed as the same nonlo-
cal resource in quantum information processing tasks. In
contrast, two stochastic LOCC (SLOCC)-equivalent pure
states may be not locally equivalent, and generally they
can only probabilistically simulate each other in quantum
information processing tasks. For example, the three-qubit W
state | W〉 = 1√

3
(|001〉 + |010〉 + |100〉) [21] and W-like state

| W′〉 = 1
2 |001〉 + 1

2 |010〉 + 1√
2
|100〉 are SLOCC equivalent

but not locally equivalent, as the bipartition of them gives rise
to a nonmaximally entangled state and a maximally entangled
state, respectively.

It is known that the classification of multipartite states
under LOCC and SLOCC are different, because they are
realized with probability one and less than one, respectively.
So the former is more coarse grained than the latter. For
example, the three-qubit pure states have infinitely many orbits
under LOCC [22], while there are only two kinds of fully
entangled states under SLOCC, namely the GHZ and W states
[21]. In contrast, Theorem 7 implies that the classification of
multipartite unitary operations under local unitaries and SL
are essentially the same; the latter does not give any additional
advantage the former does not have. There are other ways
of classifying nonlocal unitaries, such as the LO, LOCC,
and SLOCC equivalences discussed in [6], which implicitly
assume the use of ancillas.

Based on the previous results we can simplify the decision
of SL equivalence of two bipartite unitaries U,V of Schmidt
rank three and dA = 2,3. In practice, this is motivated by the
simulation of one of them by the other, and the implementation
of them. Using Theorem 7 we only need to study the
equivalence under local unitaries. It follows from Theorem 6
that both U,V are controlled unitaries. They are not locally
equivalent if they are not controlled from the same side, which
can be decided by the algorithm in [17]. Nevertheless, deciding
the equivalence of two controlled unitary controlled from the
same side remains unknown.

Below we characterize the controlled unitaries using
Theorem 7.
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Corollary 8. If a unitary U on H = HA ⊗ HB is SL
equivalent to

V =
m∑

j=1

Rj ⊗ Vj , (22)

where Rj are operators on HA satisfying

PjRjPj = Rj , ∀j, (23)

with {Pj } being a set of mutually orthogonal projectors on HA,
and Vj are arbitrary operators on HB , then U is equivalent
under local unitaries to the block diagonal form

U ′ =
m∑

j=1

Pj ⊗ V ′
j , (24)

where V ′
j are unitary operators on HB .

In particular, if a unitary U on H is SL equivalent to∑dA

j=1 |j 〉〈j | ⊗ Uj for nonzero matrices Uj , then U is a
controlled unitary gate controlled from the A side.

Proof. Note that the general case is reducible to the
particular case by first doing singular value decompositions
of Rj , and at the end noting that the final local unitaries V ′

j

on HB corresponding to the same Rj are the same. Hence we
only need to prove the particular case in the last paragraph of
the assertion.

By hypothesis, U is locally equivalent to a unitary W =∑dA

j=1 |αj 〉〈βj | ⊗ Wj . The states |α1〉, . . . ,|αdA
〉 ∈ HA are lin-

early independent, and the states |β1〉, . . . ,|βdA
〉 ∈ HA are nor-

malized (by absorbing constant factors into the corresponding
|αj 〉) and are also linearly independent. Let |γ 〉 ⊥ P , and P =
IA − |γ 〉〈γ | the projector on the hyperplane of HA spanned by
|α2〉, . . . ,|αdA

〉. Since W is unitary, we have 〈γ |AWW †|γ 〉A =
|〈γ |α1〉|2W1W

†
1 = IB . So the matrix W1 is proportional to a

unitary matrix. We may replace |α2〉, . . . ,|αdA
〉 by any dA − 1

states of |α1〉, . . . ,|αdA
〉 in the above argument, and similarly

obtain that the Wi’s are proportional to unitary matrices,
i = 2, . . . ,dA. So U is SL equivalent to a controlled unitary
from the A side. The assertion then follows from Theorem 7.
This completes the proof. �

An explanation of Corollary 8 is as follows: if the effect
of a unitary is to stochastically implement a controlled type
operation of the form in Eq. (22), then the unitary must be a
controlled unitary.

B. Entanglement cost of implementing a bipartite unitary

Computing the entanglement cost of implementing a non-
local unitary is an important question in quantum information
[6]. For this purpose a few protocols have been constructed. For
example, one can use teleportation [23] twice to implement a
nonlocal unitary by using LOCC and two maximally entangled
states |�dA

〉 (dA � dB), which contains 2 log2 dA ebits [8]:
Alice teleports her input system to Bob, and Bob does the
unitary locally, and teleports back the part of the output system
belonging to Alice to her. In Ref. [8], another protocol has
been proposed to implement any bipartite controlled unitary
controlled from the A side by LOCC and the maximally
entangled state |�dA

〉. Using these protocols, and Theorems 3
and 6, we have the following.

Lemma 9. Let dA = 2,3 � dB . Any bipartite unitary of
Schmidt rank three can be implemented by using LOCC and
the maximally entangled state |�k〉, where k = min{d2

A,dB}.
From this lemma, log2 dB ebits is an upper bound of the

amount of entanglement needed to implement a bipartite uni-
tary of Schmidt rank three. In the following we show that this
upper bound can be saturated for some unitary with dA = 2,
dB = 3. Let U = I2 ⊗ |1〉〈1| + σx ⊗ |2〉〈2| + σy ⊗ |3〉〈3| be
on the space HA ⊗ HB , A′ be the ancilla qubit system, and the
bipartite space K = HAA′ ⊗ HB . Let the product state |ψ〉 =

1√
2
(|11〉 + |22〉) ⊗ 1√

3
(|1〉 + |2〉 + |3〉) ∈ K. Then U |ψ〉 ∈ K

is a uniformly entangled state of Schmidt rank three. That
is, U creates log2 3 ebits and therefore implementing U must
cost at least so much entanglement [7]. On the other hand,
Lemma 9 implies that U can be implemented using log2 3
ebits and LOCC.

We leave as an open question whether there is a Schmidt-
rank-three unitary on 2 × 4 system that needs more than
log2 3 ebits to implement using LOCC. Similar questions
can be asked about Schmidt-rank-three unitaries on 3 × dB

systems with dB � 4. This is a question about the lower
bound of the entanglement cost of unitaries, and there are
a few results in the literature: Soeda et al. [24] proved
that one ebit of entanglement is needed for implementing a
two-qubit controlled unitary by LOCC when the resource is
a bipartite entangled state with Schmidt number two. It is
proved in Stahlke et al. [25] that if the Schmidt rank of the
resource state is equal to the Schmidt rank of the bipartite
unitary, and the unitary can be implemented by the state using
LOCC or separable operations, then the resource state must
be uniformly entangled, i.e., with equal nonzero Schmidt
coefficients, and higher Schmidt rank resource states may
require less entanglement to implement the same unitary. From
these results we see that there are two branches to consider:
using a resource state of Schmidt rank equal to that of the
unitary or a state of higher Schmidt rank.

C. Conjecture for the ranks of quantum states

The following conjecture is proposed in [20]. In the
following T denotes the matrix transpose.

Conjecture 10. Let R1, . . . ,RK be m1 × n1 complex ma-
trices, and let S1, . . . ,SK be m2 × n2 complex matrices. Then

rank

(
K∑

i=1

Ri ⊗ ST
i

)
� K × rank

(
K∑

i=1

Ri ⊗ Si

)
. (25)

Note that rank(
∑K

i=1 RT
i ⊗ Si) = rank(

∑K
i=1 Ri ⊗ ST

i )
holds generally. The motivation of this conjecture is to
construct basic inequalities in terms of ranks of multipartite
quantum states, and some of them have been constructed in
[20]. They are analogous to the inequalities in terms of von
Neumann entropy such as the strong subadditivity. Using the
basic inequalities one can constrain the relation of the ranks of
different marginals and quantify the multipartite entanglement
dimensionality.

The conjecture with K = 1 is trivial, as the transpose does
not change the rank of a matrix. Next, Conjecture 10 with
K = 2 has been proved in [20]. However, the conjecture
with K � 3 is still an open problem and is considered to
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be highly nontrivial in matrix theory. Nevertheless, the results
in the last section shed some light on the conjecture with
K = 3. Let U = ∑3

i=1 Ri ⊗ Si be a 3 × dB unitary matrix.
Let U	 = ∑3

i=1 Ri ⊗ ST
i be the partial transpose of U [26]

with the B side transposed. If U is of Schmidt rank three,
Theorems 3 and 6 imply that U is locally equivalent to a
controlled unitary; if the Schmidt rank of U is less than three,
U is also locally equivalent to a controlled unitary, according
to [10]. The controlled unitary could be controlled from either
side, and in either case we have rank U	 = rank U . Hence
rank U	 � 3 × rank U , which is Conjecture 10 with K = 3.
Evidently, if Theorem 6 can be generalized to any dA > 3,
Conjecture 10 would hold for all Schmidt-rank-three unitaries
U = ∑3

i=1 Ri ⊗ Si .

V. CONCLUSIONS

We have shown that the nonlocal unitary operator of
Schmidt rank three on the dA × dB system is locally equivalent
to a controlled unitary when dA � 3. Using this result we
have shown that LOCC and the r × r maximally entangled
state of r = min{d2

A,dB} are sufficient to implement such
operators. We also have shown that SL-equivalent nonlocal

unitary operators are indeed locally equivalent. In addition we
have verified a special case of Conjecture 10 on the ranks of
multipartite quantum states, when the argument in the bracket
of (25) is a bipartite unitary of Schmidt rank three and dA � 3.

Unfortunately, we are not able to prove Conjecture 1 when
dA > 3, as the proof of Theorem 6 cannot be easily general-
ized. We believe that the generalization of this theorem will
prove Conjecture 1 and verify more cases of Conjecture 10.
Otherwise, the first counterexample to Conjecture 1 might exist
when dA = dB = 4. The next interesting question is to find
generalizations of Lemma 4. Finally, apart from the Schmidt
rank, is there another physical quantity which describes the
local equivalence between a nonlocal unitary and a controlled
unitary? It remains to investigate the connection between
nonlocal and controlled unitaries of arbitrary Schmidt rank.
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arXiv:1301.3421.
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