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In this paper, we analyze the performance of randomized benchmarking protocols on gate sets under a
variety of realistic error models that include systematic rotations, amplitude damping, leakage to higher levels,
and 1/f noise. We find that, in almost all cases, benchmarking provides better than a factor-of-2 estimate of
average error rate, suggesting that randomized benchmarking protocols are a valuable tool for verification and
validation of quantum operations. In addition, we derive models for fidelity decay curves under certain types of
non-Markovian noise models such as 1/f and leakage errors. We also show that, provided the standard error of the
fidelity measurements is small, only a small number of trials are required for high-confidence estimation of gate
errors.
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I. INTRODUCTION

The advancement of experimental quantum information
processing requires a method to benchmark errors on quantum
gates. These benchmarks provide straightforward methods for
comparing different experimental implementations and also
establish compliance with error thresholds for processes such
as error correction [1]. The standard method for characterizing
errors is quantum process tomography (QPT) [2,3], which
provides complete error reconstruction. Implementing QPT
comes at a significant price though, since its complexity scales
exponentially in order to determine the 16n real parameters
of the n-qubit quantum error process. In addition, QPT is
vulnerable to state preparation and measurement (SPAM)
errors, which are the errors associated with preparing and
measuring different states. Because these errors may be on
the same order as the error on the gate of interest, they can
cause significant inaccuracies in the reconstructed errors. A
recent study found that QPT overestimated small errors by
several orders of magnitude [4].

An alternative to QPT is randomized benchmarking (RB)
[5–11]. Because this method extracts specific parameters
of interest from the noise, as opposed to the complete set
of parameters obtained from QPT, it does not suffer from
exponential scaling. RB is also impervious to SPAM errors
since it examines fidelity decays over random gate sequences.
RB protocols have become an important tool for quantum
verification and validation, and have been used to bench-
mark one- and two-qubit gates in atomic ions [5,9,12–14],
nuclear magnetic resonance [15], and superconducting qubit
[8,10,11,16,17] experiments. RB protocols and their fidelity
decay models are provably valid in a wide variety of scenarios;
however, assumptions about the form of the fidelity decay
under complex noise models may introduce inaccuracies. As
well, there have been concerns about the convergence of the
estimate from finite-sampling effects since typical experiments
are performed with many fewer random sequences then
predicted using the Hoeffding bound [6]. For these reasons,
it is important to study and develop models in the limits where
analytic support for current RB methods may be lacking.

In this paper, we address many of these issues by providing
theoretical results on finite-sampling effects and modeling
decay curves for realistic types of noise. As well, we test the

performance of RB in different scenarios by implementing nu-
merical simulations of both standard [5,6] and interleaved [8,9]
RB protocols under several physically relevant single-qubit er-
ror models. Two main classes of noise were tested; Markovian
and non-Markovian. Markovian noise is memoryless and as
such is history independent, while non-Markovian noise is
history dependent, so the noise at one moment may depend
on previous gates in the sequence. The first type of Markovian
noise we investigated was systematic rotations represented by
both random and fixed unitary operators. These reflect the
effects of gate calibration errors and control field fluctuations.
The second type of Markovian noise was amplitude damping,
which can represent the process of spontaneous emission.
The non-Markovian noise we considered was 1/f noise and
leakage to higher levels outside the qubit manifold. 1/f noise
is ubiquitous in nature [18–20] and is present to some degree in
most physical implementations of qubits [21–25], although its
relative importance is implementation dependent. Leakage can
plague a variety of systems, including transmons [26], phase
qubits [27], and quantum dots [28]. We discuss models of the
fidelity decay curves for 1/f and leakage noise and perform
numerical simulations under these models.

The structure of our paper is as follows. In Sec. II we
introduce the RB protocols and in Sec. III we describe
the simulation methods used throughout the presentation.
Section IV provides a theoretical and numerical analysis of
finite-sampling effects in RB and results for simulations of
standard RB with Markovian noise. In Sec. V we describe the
model and simulation of 1/f noise and provide the results
of RB for this 1/f noise model. In Sec. VI we provide a
theoretical analysis for modeling fidelity decay under a leakage
noise model and present numerical results. In Sec. VII we
discuss interleaved RB and present results of different noise
simulations. We make concluding remarks in Sec. VIII.

II. RANDOMIZED BENCHMARKING PROTOCOLS

The underlying idea behind an RB protocol is to apply
sequences of randomly chosen gates from some group and
measure fidelity decay as a function of sequence length
[29]. Ideally, this allows one to extract average properties of
the errors associated with implementing these gates in real
quantum devices. The standard protocol [6,7], which extends

1050-2947/2014/89(6)/062321(12) 062321-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.062321


EPSTEIN, CROSS, MAGESAN, AND GAMBETTA PHYSICAL REVIEW A 89, 062321 (2014)

[5], chooses the gates from the Clifford group and gives an
estimate of the average gate fidelity Fg , or, equivalently, error
rate over the group. Interleaved benchmarking [8,9] extends
the standard protocol to estimate the average gate fidelity of
an individual gate.

For some group G of unitary operations, the general RB
protocol is as follows [6,7]:

(1) Choose gates from the group G = {Ui} to form K

sequences of each length m from some set {m} of sequence
lengths.

(2) For each sequence U1, . . . ,Um, determine the gate
Um+1 = (Um · · · U1)†.

(3) Apply each sequence U1, . . . ,Um+1 to some initial state
ρi , measure the output state ρf , and repeat several times to
determine the survival probability of some output state for
each sequence.

(4) Average this survival probability over all sequences of
the same length, and fit to a predetermined model.

(5) From this model determine the desired quantities of the
map.

Unless otherwise specified, quantum channels will be
expressed in the Pauli transfer matrix (PTM) representation
[30], in which a matrix corresponding to the quantum channel
R on the space of density operators on the d-dimensional
Hilbert space of an n-qubit system is defined such that ρ ′ =∑

i,j RijPi tr
(
Pjρ

)
/d, where P0 = I⊗n, P1 = I⊗n−1 ⊗ X,

P2 = I⊗n−1 ⊗ Y , etc. For dimension d = 2n, the represen-
tation is of dimension d2 × d2, as the density operators on
n qubits are spanned by the d2 n-qubit Pauli operators P =
{I,X,Y,Z}⊗n. We will use a calligraphic font to denote a quan-
tum channel (or map) and a standard math font for an operator.

The channel representing the average sequence of length m

can be written as

S (m) = 1

K

∑
i

S(m)
i , (2.1)

where the sum is over the K sequences i = (i1, . . . ,im) with

Si = Eim+1Uim+1

⎛⎝ m∏
j=1

EijUij

⎞⎠ . (2.2)

Here Eij is the noise on gate Uij implemented at time j with
history (i1, . . . ,ij−1). Since {Uij } is a group, the sequence can
be rewritten as [7]

Si = Eim+1

⎛⎝ m∏
j=1

ŨT
ij
Eij Ũij

⎞⎠ , (2.3)

where Ũij is another element of G and all sequences Ũ1, . . . ,Ũm

are uniformly distributed within the ensemble. In the limit
where Eij can be approximated by the average error Ē , the
average sequence can be represented by [7]

S (m) = Ē(ĒG)m. (2.4)

Here ĒG represents the twirl over the group G and is given by

ĒG = 1

|G|
∑
U∈G

UT ĒU, (2.5)

which is just a group average. Depending on the group G, this
channel can have a simple structure with a small number of
parameters which may be determined by fitting the measured
fidelities to the fidelity decay model (FDM)

F (m) = tr[ES (m)ρ] = ẽT (ĒG)mp, (2.6)

where ρ = pT P/d represents the initial state and Ẽ = ẽT P
represents the measurement (E) and the error in the final gate
(Ē).

From the above there are two important assumptions that
need to be addressed.

Assumption 1: Finite sampling. The sample average fidelity
converges to the average over all possible sequences for small
sample sizes. Because of the length of the sequences used, it
is infeasible to implement more than a very small fraction of
all possible sequences of each length.

Assumption 2: Noise homogeneity. The average variation of
the errors is weak so that most errors are close to the average. In
practice, this may not always be satisfied since the errors may
have strong gate dependence (calibration errors, etc.), time
dependence (control field power fluctuations, etc.), or history
dependence (leakage to higher levels, 1/f noise etc.).

A. Standard Clifford benchmarking

Standard Clifford randomized benchmarking (SRB) esti-
mates the average error rate of the errors on the members of
the full n-qubit Clifford group. The gates are chosen from
this group and Schur’s lemma tells us that Eq. (2.5) gives the
depolarizing channel

ĒG =

⎛⎜⎜⎝
1

α

. . .
α

⎞⎟⎟⎠, (2.7)

where the basis is ordered such that I is first. The system is
prepared in any initial state and the FDM, Eq. (2.6), becomes

F = Aαm + ẽ0, (2.8)

where the constants A = ∑
j �=0 ẽjpj and ẽ0 absorb all SPAM

errors. In the case that there are no SPAM errors ẽ0 = 1/d

and A = 1/d. As shown in Ref. [7] the average error rate is
estimated by r̂ = (1 − α) (d − 1) /d.

B. Interleaved randomized benchmarking

Interleaved randomized benchmarking (IRB) allows esti-
mation of the error on an individual gate Uint. The essential idea
is to perform two benchmarking experiments; one identical to
the standard method described above (which gives the average
error depolarizing parameter α for the Clifford gates {Ui}),
and one in which the gate of interest is inserted (interleaved)
between each randomly chosen gate in each sequence to give
the depolarizing parameter ᾱint for the gates {UintUi}.

Step 1. Perform Clifford benchmarking as described in the
previous section to obtain the average depolarizing parameter
α of the errors on the Clifford gates Ui .

Step 2. Repeat Step 1, but insert the gate of interest after each
of the randomly selected Clifford gates. Then the sequences
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may be expressed as

Si = Eim+1Uim+1

⎛⎝ m∏
j=1

UintEint,jEijUij

⎞⎠ (2.9)

for Eint,j the error on the interleaved gate at time j . As before,
the group structure permits the sequences to be rewritten as
Si = Eim+1 (

∏m
j=1 ŨT

ij
Eint,jEij Ũij ), which has the same form as

Eq. (2.3). The interleave estimate for the depolarizing param-
eter corresponding to the error on the gate of interest is αint =
ᾱint/α. The estimated error rate is r̂int = (1 − αint) (d − 1) /d

[8,9]. Note that this estimate is provably valid under the
following assumption.

Assumption 3: Product twirl. On average, the twirl of the
product of two channels is well approximated by the product of
twirls. This approximation is exactly correct in the case that at
least one of the factor gates is depolarizing, but not in general.
A pathological case is when the error on the interleaved gate
partially inverts the error on the prior Clifford gate, in which
case IRB can underestimate the error rate.

We note that, even when Assumption 3 is not satisfied, it is
possible to obtain bounds on the gate error of Uint [8,31].

III. SIMULATION METHODS

In the numerics we consider only single-qubit Clifford
groups, and in this case there are 24 different Clifford
operators. A convenient way to decompose these is to introduce
the Pauli group P = {1,X ,Y,Z}, the exchange group S =
{1,S,S2}, and the Hadamard group H = {1,H}. The Pauli
group is represented by the maps

X =

⎛⎜⎝1
1

−1
−1

⎞⎟⎠, Y =

⎛⎜⎝1
−1

1
−1

⎞⎟⎠,

Z =

⎛⎜⎝1
−1

−1
1

⎞⎟⎠, (3.1)

which just correspond to π rotations around the x, y, and z

axes, respectively. The exchange-axis group

S =

⎛⎜⎝1
1

1
1

⎞⎟⎠, S2 =

⎛⎜⎝1
1

1
1

⎞⎟⎠ (3.2)

exchanges (x,y,z) → (z,x,y) → (y,z,x) and the Hadamard
group

H =

⎛⎜⎝1
1

−1
1

⎞⎟⎠ (3.3)

exchanges (x,y,z) → (z,−y,x). The single-qubit Clifford
group is the group generated by all combinations of elements in
H, P, and S, and has size 2 × 3 × 4 = 24. It is worth noting that
the group formed by all combinations of elements in P and S

TABLE I. A list of the 24 Clifford operators and their decomposi-
tion into either physically relevant generators or simple mathematical
elements. The operators above the horizontal line form both a group
and a two-design. The − signifies application in time and the mean
number of physical generators per Clifford group is 1.875.

Clifford elements Physical decompostion

1 − 1 − 1 1
1 − 1 − S Yπ/2 − Xπ/2

1 − 1 − S2 X−π/2 − Y−π/2

X − 1 − 1 X
X − 1 − S Y−π/2 − X−π/2

X − 1 − S2 Xπ/2 − Y−π/2

Y − 1 − 1 Y
Y − 1 − S Y−π/2 − Xπ/2

Y − 1 − S2 Xπ/2 − Yπ/2

Z − 1 − 1 X − Y
Z − 1 − S Yπ/2 − X−π/2

Z − 1 − S2 X−π/2 − Yπ/2

1 − H − 1 Yπ/2 − X
1 − H − S X−π/2

1 − H − S2 Xπ/2 − Y−π/2 − X−π/2

X − H − 1 Y−π/2

X − H − S Xπ/2

X − H − S2 Xπ/2 − Yπ/2 − Xπ/2

Y − H − 1 Y−π/2 − X
Y − H − S Xπ/2 − Y
Y − H − S2 Xπ/2 − Y−π/2 − Xπ/2

Z − H − 1 Yπ/2

Z − H − S X−π/2 − Y
Z − H − S2 Xπ/2 − Yπ/2 − X−π/2

is a two-design consisting of 12 elements, and is the minimum
group that can fully depolarize any quantum operation.

In many experiments the fundamental operations are
exp[−iXθ/2] or exp[−iY θ/2], which represent rotations
around the X or Y axis by angle θ . In the PTM representation
these are represented by

Xθ =

⎛⎜⎝1
1

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

⎞⎟⎠, (3.4)

Yθ =

⎛⎜⎝1
cos(θ ) sin(θ )

1
− sin(θ ) cos(θ )

⎞⎟⎠. (3.5)

Choosing θ = π gives the Pauli maps X and Y , respectively,
and choosing θ = ±π/2 gives the standard X±π/2 and Y±π/2

Clifford generators. Table I lists the decompositions of all 24
Clifford elements in terms of both H − P − S and the simple
rotations by π and π/2.

For the benchmarking simulations, unless explicitly noted,
the parameter values used were K = 10 000 and Mmax =
4096, with m ∈ {1,2,4, . . . ,Mmax}. Exponential fits to the
FDM were performed with the MATLAB nlinfit function for
the model Aαm + ẽ0, and 90% confidence intervals were found
using the Jacobian option of the MATLAB nlparci function [32].
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Given a set of RB experiments on a gate set with exact
average error rate r and estimated average error rate {r̂}, we
can define the RB accuracy by

μ = log10 (r̂/r) , (3.6)

and the confidence C by the size of 90% confidence intervals
for the fits to the FDM. The definition of accuracy incorporates
logarithms to symmetrically weight multiplicative, rather than
additive, deviations of the estimate from the true value. The
average error rate r is defined by

r = 1 − Fg = d2 − Tr[Ē]

d2 + d
. (3.7)

Here, Fg is the gate fidelity, defined as the average of input-
state survival probabilities Psurvival (|ψ〉in) = Tr [ρout|ψ〉〈ψ |in]
over all pure input states. The gate fidelity of a gate � may
then be expressed as

Fg =
∫

dφ 〈φ| � (φ) |φ〉 . (3.8)

Changing variables so that the integration is over SU(2) (i.e.,
writing |φ〉 = Uφ |0〉) and defining Ē to be the PTM of the
twirled map of the gate �, Eq. (3.7) is recovered.

IV. SRB: MARKOVIAN ERRORS

In this section we consider Markovian errors, which are
errors where the error map at each time j is independent of
previous gates and errors in the sequence. Markovian error can
arise in a wide variety of scenarios, such as gate miscalibration
(over- or under-rotation or off-resonant driving), amplitude
damping, and control field fluctuations with correlation times
much shorter than the individual gate time.

In order to examine the limits of SRB, we work with
quantum error maps [completely positive and trace-preserving
(CPTP) maps] that are “as far away as possible” from those
on which SRB works best. Up to statistical errors resulting
from measurement, SRB exactly estimates the error rate
when each gate error is a depolarizing error. We consider
the diamond norm distance [33–35] between a gate and a
depolarizing channel of the same error rate to be a predictor
of benchmarking performance. We use a unitary error model
since unitary channels are far from depolarizing with respect
to the diamond norm distance (see below).

Random unitary channels of size N were generated by
choosing N × N matrices S and T from the Ginibre ensemble
[36] in which elements are chosen independently from the
normal distribution with mean zero and variance 1. The unitary
channel U = exp [−iHε] is defined with the normalized
Hermitian matrix H = (

G + G†) /
√

tr[(G + G†)2] for G =
S + iT and where ε is a parameter (found numerically)
that gives U the desired error rate r . Random CPTP maps
acting on density matrices of dimension d were generated by
creating a random unitary map of size d3 (with non-normalized
Hermitian H ) and defining a set of Kraus operators

Ki (j,k) = U [d2(i − 1) + j,k],

i = 1, . . . ,d2, (4.1)

j,k = 1, . . . ,d.

10-4 10-3 10-2 10-1

10-3
10-2
10-1
100

r

D

FIG. 1. (Color online) Distance of maps from a depolarizing
channel. For a range of error rates, unitary channels (red squares)
were farthest from and amplitude-damping channels (blue circles)
closest to depolarizing channels of the same error rate. Random maps
(green triangles) typically fell between these extremes. The distance
was measured using the diamond norm distance from a depolarizing
channel, and r is the average error rate.

A large number of random unitary and CPTP maps were
generated, as were amplitude damping maps (see Sec. IV B)
of the same error rates. For each map with error rate r , the
diamond norm distance from the depolarizing channel of error
rate r was calculated. As shown in Fig. 1, we found that
unitary channels were farthest from the depolarizing channels,
whereas amplitude-damping channels were particularly close.
Therefore, as mentioned above, we consider unitary channels
as an adequate worst-case test of SRB.

A. Finite-sampling effects

As shown in Ref. [7], the Hoeffding bound can be used to
obtain an estimate of the required number K of sequences for a
good estimate of the fidelity F (m) at each sequence length m.
If the trials at each sequence length correspond to independent
and identically distributed random variables with range [a,b]
then

K = ln (2/δ) (b − a)2

2ε2
. (4.2)

Here ε is the size of the confidence interval and 1 − δ the
confidence level. For a 90% confidence level (δ = 0.1) and a
confidence interval of ε = 10−4, we need as many as K = 108

trials for each data point. We will show that this value of K

is actually much larger than necessary. The reason for this
is that estimation of α (and thus r) from a process such
as least-squares (LSQ) estimation [37] simultaneously uses
the information from all data points, whereas the Hoeffding
bound analyzes the number of trials for each data point
independently. We first provide a simple numerical example
from which we see that K can be chosen quite reasonably.
Afterwards, we provide a general theoretical result whereby
we obtain confidence intervals for α and r using linearization
of the nonlinear regression model about the LSQ solution.
An implication of this result is that K can be chosen to be
significantly smaller than the Hoeffding estimate above of 108.

For our numerical analysis, we considered various time-
independent Markovian error models. Since essentially iden-
tical results were obtained for all models, we present the
results for the case of gate- and time-independent unitary error.
Figure 2(a) plots the size of the confidence interval C (at 90%
confidence level) on the parameter α for three different error
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-0.2
0
0.2
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0.6

K

(a)

(b)

C

μ

FIG. 2. (Color online) SRB with fixed unitary Markovian noise
for error rates r = 10−4 (red squares), r = 10−3 (green triangles),
and r = 10−2 (blue circles). (a) Convergence of the confidence C

(see text for details). The black line corresponds to the Hoeffding
bound method explained in the text. (b) Convergence of the accuracy
μ. Note the rapid convergence of the estimate to within a factor of 2
of the average error rate by K = 100.

rates: r = 10−4 (red squares), r = 10−3 (green triangles), and
r = 10−2 (blue circles).

From these results, we see that for K ∼ 10–100, the size
of the confidence interval is on the order of the underlying
errors, suggesting that fewer than 100 sequences are sufficient
to converge to the actual error rate r . This is further illustrated
in Fig. 2(b) where we plot the accuracy μ as a function of K .
This shows that r̂ converges (at some K ∼ 10–100) to within
a factor of 2 of r . Thus, smaller values of K than 108 suffice
for estimating r .

We now turn to a more general theoretical analysis based
on nonlinear regression methods [37]. The FDM Eq. (2.8) is
a nonlinear function with parameters {α,A,ẽ0}. In the case of
linear regression, constructing confidence intervals is exact;
however, for nonlinear regression, confidence intervals are
typically constructed via approximative methods. One of the
most widely utilized methods, and the approach we take here,
is to obtain the least-squares solution, linearize the model
around this solution, and construct confidence intervals for
the linearization.

In our model there is one predictor variable mi , three
parameters we want to estimate θ = (θ1,θ2,θ3) = (α,A,ẽ0),
and one dependent variable F (mi,θ ). Let yi represent the data
we acquire so that if Y represents the vector of yi values,

Y = F(̃θ ) + ξ̃ . (4.3)

Here, ξ̃ is the realization of the random noise process ξ

that produces the observed data, θ̃ is the exact value for the
parameters, and Fi (̃θ) = F (mi,̃θ ). We assume for simplicity
that each ξi is normally distributed with variance σ 2/K , where
σ is the single-shot standard deviation for estimating the
fidelity at each sequence length (for simplicity, we assume
σ is independent of the sequence length).

The LSQ estimator of θ̃ is the vector θ̂ that satisfies

θ̂ = argmin[S(θ )], (4.4)

where

S(θ ) = [Y − F(θ )]T [Y − F(θ )]. (4.5)

Assuming that the model in Eq. (2.8) is an accurate description
of the fidelity decay, a linearization of F (mi,̂θ ) around the LSQ
solution θ̂ produces a linear model from which we can obtain
confidence intervals.

In order to use a linearized model for computing confidence
intervals, we need to compute the covariance matrix of the
linearization at the estimator θ̂ . This is done by using the
Jacobian of the nonlinear model evaluated at θ̂ ,

V̂ = s2[J (̂θ)T J (̂θ)]−1. (4.6)

Here

s2 = S (̂θ )

N − D
∼ Nσ 2

(N − D)K
(4.7)

is the average estimated residual variance, D is the number of
parameters to be estimated, N − D is the number of degrees
of freedom in the model, and J (̂θ ) is the Jacobian of F(θ ) at θ̂

which has entries

Ji,j (̂θ ) = ∂F (mi ; θ )

∂θj

∣∣∣∣̂
θ

. (4.8)

Now that we have the linearization of the FDM about θ̂ , we
can use standard methods for constructing exact confidence
intervals for linear models. Indeed, for each j , with probability
1 − δ, the true value θ̃j of the parameter θj lies in the interval

θ̃j ∈ [
θ̂j − V̂

1/2
j,j tN−D,1−δ/2,θ̂j + V̂

1/2
j,j tN−D,1−δ/2

]
. (4.9)

Here tN−D,1−δ/2 is the (1 − δ
2 )th quantile of the Student’s t

distribution with N − D degrees of freedom. The Student’s
t distribution with k degrees of freedom is the symmetric
distribution given by

f (x) = �
(

k+1
2

)
√

kπ�
(

k
2

) (
1 + x2

k

)−(k+1)/2

, (4.10)

where �(·) is the standard � function. The (1 − δ
2 )th quantile of

the Student’s t distribution with k degrees of freedom, denoted
tk,1−δ/2, is just the value a that satisfies

Pr [X < a] = 0.95, (4.11)

where X is distributed according to the Student’s t distri-
bution with k degrees of freedom. Note that by symmetry
Pr [X < a] = 0.95 is equivalent to

Pr [−a < X < a] = 0.9. (4.12)

Now, R := J (̂θ)T J (̂θ ) is a 3 × 3 matrix and it is straight-
forward to calculate

Q = R−1, (4.13)

where we note that Q depends on the fixed parameters N and
{mi}Ni=1, and on the estimators Â, ê0, and α̂. Since we are
mainly interested in estimating α, let us focus on

Q1,1 := ([J (̂θ)T J (̂θ )]−1)1,1. (4.14)
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We have

(V̂1,1)1/2 = s
√

Q1,1 = σ
√

NQ1,1√
(N − D)K

, (4.15)

and so, since D = 3,

α̃ ∈
[
α̂ − tN−3,1−δ/2σ

√
NQ1,1√

(N − 3)K
,α̂ + tN−3,1−δ/2σ

√
NQ1,1√

(N − 3)K

]
.

(4.16)

That is, the confidence interval depends on the standard error
σ/

√
K of the experiment.

Let us now choose a set of parameters that could represent a
possible randomized benchmarking experiment. First, suppose
we want a 90% confidence so that δ = 0.1. As well, suppose
N = 7, the set of m correspond to {mi}7

i=1 = {2i}7
i=1, and, to

calculate Q1,1, we take θ̂ = (0.993, 1
2 , 1

2 ). This gives t4,0.05 ∼
2.132 and

√
Q1,1 ∼ 0.0476 so

α̃ ∈
[
α̂ − 0.134

σ√
K

,α̂ + 0.134
σ√
K

]
. (4.17)

We can now see how different values for σ and K affect the
confidence interval. Taking σ = 0.004 and K = 50 implies,
with confidence 90%,

α̃ ∈ [α̂ − 7.59 × 10−5,α̂ + 7.59 × 10−5]. (4.18)

Hence, we can see that small values of K (much smaller than
those dictated by Hoeffding bounds for each data point) will
still lead to robust estimates of the error rate r̂ .

B. Results and discussion

Here, we consider the performance of SRB with respect to
various Markovian noise models. The models that we consider
are as follows:

Gate-dependent random unitaries. A different random
unitary error is applied to each Clifford gate.

Fixed random unitary. The same random unitary error is
applied to all Clifford gates.

Generator-dependent unitaries. Each Clifford gate was
decomposed into a minimum number of generators X±π/2,
Y±π/2, X, and Y (Table I) which were each assigned a random
unitary error of strength r/1.875. Error maps were determined
from the decompositions. Note that the decomposition is not
unique but the results do not depend on this choice.

Amplitude damping. The generator gates X±π/2 and Y±π/2

are typically implemented via Rabi rotation about the X or
Y axis at rate � for time tg = π/2�. Amplitude-damping
noise of error rate r is characterized by the rate γ = 1/T1 =
4�ln[(1 + √

4 − 6r)/(3 − 6r)]/π and the noisy generator
maps are given by

X±π/2

=
M∏
l=1

⎛⎜⎝ 1
η

ηcos(π/2M) ∓ηsin(π/2M))
1 − η2 ±η2sin(π/2M) η2cos(π/2M)

⎞⎟⎠,

(4.19)

Y±π/2

=
M∏
l=1

⎛⎜⎝ 1
ηcos(π/2M) ±ηsin(π/2M)

η

1 − η2 ∓η2sin(π/2M) η2cos(π/2M)

⎞⎟⎠,

(4.20)

where η = [1/(
√

4 − 6r − 1)]−1/M (and similarly for X and
Y). These expressions are precise in the limit M → ∞,
but we take M to be a finite numerical parameter chosen
large enough so that further refinement does not significantly
improve the approximation and small enough that significant
numerical errors do not accumulate in MATLAB. We took
M = 2 000 000. With these approximate generator maps, we
used the decomposition given in Table I to approximate the
entire noisy Clifford group.

Gaussian noise (fast). The noise on all gates at time j

was Vj = Uεj for some fixed unitary channel U . The time-
dependent parameter εj was chosen such that Vj has error
rate rj that is normally distributed with mean r and standard
deviation r/4.

Slow drift. This is identical to the fixed unitary case except
that the fixed unitary depends on k so that Uk = Uε for
numerically determined ε such that rk increases linearly from
r/2 at k = 1 to 3r/2 at k = K .

For all noise models tested, SRB estimated the error rate
to within a factor of 2 of the actual average error rate (Fig. 3,
Table II). SRB performed best with amplitude damping noise,
supporting our hypothesis that SRB would work well for errors
near the depolarizing channel. Generator-dependent noise was
estimated most poorly. A possible cause of this, relative to
the other Markovian cases, is variation of the error rate over
different Clifford gates. This variation may lead to deviations
from the exponential FDM, a supposition supported by the
larger confidence intervals for this model compared to the
others.

10-4 10-3 10-2
-0.3
-0.2
-0.1
0
0.1
0.2

r

μ

FIG. 3. (Color online) The accuracy of several Markovian mod-
els with K = 10 000 sequences. Different random unitaries (blue cir-
cles), fixed random unitaries (black diamonds), generator-dependent
unitaries (orange six-pointed stars), amplitude damping (green
triangles), Gaussian unitaries (red squares), and slow drift (white
five-pointed stars). All errors except generator-dependent unitary
errors were estimated to within 25% of r , with amplitude-damping
noise determined significantly better. Generator-dependent unitary
noise was estimated to within 50% of r . The large horizontal spread
at low error rates is due simply to the precision of the procedure used
for generating random unitary channels of fixed error rate.
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TABLE II. For each noise model and each average error rate r , a set of n = 10 experiments (with the expection of 1/f noise, for which

n = 1), each using K = 10 000 benchmarking sequences was performed. Accuracy μ̄, standard error s = (
√

μ2 − μ̄2)/
√

n, and average
confidence C̄ are as defined in the text. The accuracies of the SRB estimates for Markovian errors are in most cases better by roughly an
order of magnitude than the accuracies for non-Markovian errors. The precision and fit confidence are not significantly different between the
two types of noise, except in the cases of amplitude-damping noise, in the presence of which SRB performs especially well. Square brackets
indicate multiplication by a power of 10, i.e., A[x] = A × 10x .

0.0001 0.001 0.01

Error rate μ̄ s C̄ μ̄ s C̄ μ̄ s C̄

Random unitary −1.3[−2] 5.9[−3] 4.3[−6] −7.3[−3] 1.1[−2] 2.2[−5] 2.2[−3] 7.6[−3] 3.9[−4]
Fixed unitary 6.6[−3] 1.1[−2] 4.5[−6] 2.2[−3] 7.5[−4] 2.3[−5] −1.2[−3] 1.2[−3] 3.5[−4]
Generator dependent 2.7[−2] 2.2[−2] 4.6[−6] −1.0[−1] 3.9[−2] 5.3[−5] 7.0[−3] 2.4[−2] 1.2[−3]
Gaussian 1.5[−2] 1.3[−2] 1.2[−5] 1.3[−3] 1.9[−3] 2.8[−5] 1.6[−2] 3.0[−3] 5.4[−4]
Slow drift 2.5[−2] 7.6[−3] 4.5[−6] −1.2[−2] 1.4[−3] 4.0[−5] −1.9[−2] 1.0[−3] 4.7[−4]
Amplitude damping 1.7[−4] 9.8[−5] 1.2[−7] 6.9[−6] 3.5[−5] 8.9[−7] −3.8[−5] 1.2[−4] 5.2[−5]
Leakage (random) 1.2[−3] 7.4[−3] 3.6[−6] −6.6[−3] 5.9[−3] 1.4[−5] 6.0[−4] 4.5[−3] 1.7[−4]
Leakage (fixed) 4.2[−2] 2.7[−2] 2.8[−6] 2.7[−2] 1.3[−2] 2.0[−5] −2.0[−4] 1.6[−2] 6.0[−4]
1/f 7.1[−2] N/A 7.9[−6] −1.3[−2] N/A 4.8[−5] −8.4[−2] N/A 8.5[−4]

V. SRB: 1/ f NOISE

We model a one-qubit system subject to semiclassical phase
noise by the Hamiltonian

H (t)/� = �X(t)

2
X + �Y (t)

2
Y + ξ (t)Z, (5.1)

where �X,Y (t) are real control fields and ξ (t) is a realization
of a real random noise process. The noise process ξ (t) can be
characterized by its power spectral density (PSD)

S(f ) =
∫ ∞

−∞
C(t)e−i2πf tdt, (5.2)

where

C(t) = lim
T →∞

1

T

∫ T/2

−T/2
ξ (s)ξ (s + t)ds (5.3)

is the autocorrelation function. The noise is said to be 1/f if
its PSD is given by S(f ) = A/f for some constant A.

A simple discrete model of 1/f noise is obtained by
summing a large number of random telegraph noise (RTN)
realizations with different switching rates [38]. A two-state
telegraph noise signal sk(t) switches between {+1,−1} with
constant rate fk , and interarrival times τ of switching events are
exponentially distributed with probability distribution p(τ ) =
fke

−fkτ . If the density of switching rates is proportional to 1/f

in the interval [fmin,fmax], then ξ (t) = A′ ∑
k sk(t) has PSD

S(f ) ∝ 1

πf

[
arctan

(
fmax

πf

)
− arctan

(
fmin

πf

)]
, (5.4)

which is proportional to 1/f if fmin � πf � fmax [39]. The
noise power is proportional to the square of A′ but also
depends on the cutoff frequencies and number of RTN signals
participating in the sum.

A. Simulated Ramsey experiments

This 1/f noise model produces Gaussian decay of coher-
ences [40–42]. By simulating Ramsey experiments, we verify
that the model reproduces this type of decay for several values

of noise power and relate the extracted values of T ∗
2 to average

gate fidelities.
Each realization of 1/f noise is constructed from 50 RTN

signals whose initial state is uniformly random. The low-
and high-frequency cutoffs are fmin = (10N�t)−1 and fmax =
(2�t)−1, respectively, where �t is the smallest time step
appearing in the simulation and N is the total number of time
steps in any noise realization.

In a simulated Ramsey experiment, each ξ (t) yields a pure-
state trajectory |ψ(t)〉 = e−i2πZ

∫ t

0 ξ (s)ds |ψ(0)〉 where |ψ(0)〉 =
(|0〉 + |1〉)/√2. Taking the ensemble average over 2000 noise
realizations, we obtain the mixed quantum state ρ(t) whose
coherence σ (t) = 2|ρ12(t)| exhibits Gaussian decay e−(t/T ∗

2 )2
,

as shown in Fig. 4(a) (see also Fig. 5). Taking d = 2 (one
qubit) and the gate � to be the phase-damping gate, the gate
fidelity defined in Eq. (3.8) is given by Fg = [2 + σ (tg)]/3
where tg is the gate time, here taken to be 20�t . Provided
that T ∗

2 > tg , 1/f noise leads to higher gate fidelities than
stochastic dephasing with the same value of T ∗

2 [see Fig. 4(b)].

B. Results and discussion

To perform a single RB experiment subject to 1/f noise, we
choose a sequence of random Clifford gates C1,C2, . . . ,CMmax .
For each subsequence C1, . . . ,Cm an inverting Clifford gate
ϒm = (Cm · · · C1)† is determined. The subsequences and
inverting gates are concatenated to form the total sequence
C1,ϒ1,C1,C2,ϒ2, . . . ,C1,C2, . . . ,CMmax ,ϒMmax for the RB ex-
periment. Next each Clifford gate is expressed in terms of
generators G±π/2 where G ∈ {X,Y }, and each generator G±π/2

is realized by a normalized Gaussian pulse with amplitude
±π/2 in the corresponding time interval of the control field
�G(t). The duration of the 1/f noise, ξ (t), is the same as the
duration of the total sequence, i.e., the noise has the correct
correlations over the entire duration of the RB experiment.

For each RB experiment, we generate subsequences of
lengths m = 1,2, . . . ,2n, . . . ,Mmax up to Mmax = 4096. A
time step �t was chosen such that each normalized Gaussian
pulse was sampled at 20 equally spaced points. For calculating
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FIG. 4. (Color online) Simulated Ramsey experiments for 1/f

noise. (a) The coherence σ (t) = 2 |ρ12(t)| is plotted versus time t/tg
where tg is the duration of a gate. Each curve corresponds to a different
noise power. The dashed lines interpolate the numerical data and every
tenth data point is shown. (b) For each decay in (a) we extract tg as
the time at which σ = 1/e and plot the corresponding average gate
fidelity Fg = [2 + σ (tg)]/3 (blue points). The solid red curve is the
gate fidelity for stochastic noise with exponential decay σ (t) = e−t/T ∗

2

of the coherences. The solid blue curve is the (analytic) gate fidelity
for 1/f noise: Fg = (2 + e−(tg/T ∗

2 )2
)/3.

cutoff frequencies, N was taken to be the total number of time
steps in the experiment. The amplitude A′ of the 1/f noise
was adjusted to achieve target average gate error rates r of
approximately 10−4, 10−3, and 10−2 corresponding to T ∗

2 /tg
values of 94, 30, and 8, respectively. Finally the time evolution
was calculated using the time-ordered composition of discrete
unitary gates U (t + �t,t) = exp [−i2πH (t)�t/�].

10
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FIG. 5. (Color online) Fidelity decay in the presence of 1/f noise
(A′ = 2 × 10−8 → r ∼ 10−3) with application of random Clifford
gates (blue circles, mean of four experiments, K = 2500) and identity
gates (red squares, K = 2500). Also shown are fits to the FDM F =
0.486(0.998)m + 0.510 (blue dotted line) and to the Gaussian model
F = 0.495(0.999)m

2 + 0.503 (red dashed line). The standard error
in the data is less than 4.8 × 10−3 and fit parameters are rounded to
three digits.

A qubit initialized in the X-Y plane and subjected to 1/f

phase noise suffers a rapid Gaussian decay of state fidelity,
but this decay is dramatically slowed by performing random
Clifford gates (Fig. 5). Insofar as a computation may be
modeled as a random sequence of Clifford gates, the relevant
quantity for discussing computational errors may be the gate
fidelity Fg or, equivalently, the error rate r , rather than the
dephasing time T ∗

2 . Supporting this notion is the fact that, for
a fixed value of T ∗

2 , 1/f noise has a much higher gate fidelity
than does noise that exhibits an exponential Ramsey decay
(Fig. 4).

This behavior is potentially due to the depolarizing effect
of twirling the 1/f noise with Clifford gates. Consider a model
with instantaneous Clifford gates followed by noise. We fix a
noise realization ξ (t) and average over SRB sequences. The
noise gives rise to a sequence of correlated random variables
whose samples are φj = ∫ (j+1)tg

j tg
ξ (s)ds, where j labels the

Clifford gate in an SRB experiment. Since each φj is a real
number, the noise operator realizations e−i2πφj Z are single-axis
unitary rotations. These are each twirled independently and
by direct calculation become depolarizing channels Eφj

with
depolarizing parameter [see Eq. (2.7)]

αj = [1 + 2 cos(4πφj )]/3. (5.5)

Defining φm = (φm−1,φm−2, . . . ,φ1), a sequence of m Clifford
gates therefore produces the channel∫

φm

p(φm)Eφm−1Eφm−2 · · · Eφ1Eφ0dφm, (5.6)

where the joint distribution does not factor into
p(φm−1)p(φm−2) · · ·p(φ1) due to the low-frequency compo-
nents of the noise.

This behavior foreshadows the result that, for all cases
tested, RB provides an estimate within a factor of 2 of the
actual average error rate for K ∼ 100 or greater (Fig. 6). Note,
however, that the confidence interval of the RB estimate in
the presence of 1/f noise seems to saturate as K increases,
and accuracy ceases to improve (Fig. 7). This indicates that the
exponential model of fidelity decay is not completely accurate,

10−4 10−3 10−2

−0.1

0

0.1

0.2

r

µ

FIG. 6. (Color online) SRB results for several non-Markovian
error models and error rates with K = 10 000 averaged sequences.
Leakage, both random and fixed, was nearly always estimated to
within a factor of 2, and there was no significant difference between
the two types, except for the largest error rate, where random leakage
had better accuracy, precision, and fit confidence. 1/f noise was
estimated in all cases to within 25% of r . Random leakage (blue
circles), fixed leakage (green triangles), and 1/f (red squares).
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FIG. 7. (Color online) Convergence in K for standard RB with
1/f noise of (a) accuracy μ and (b) confidence interval C on a
fit of the fidelity decay to the exponential model. Noise strengths
are A′ = 2.5 × 10−9 (T ∗

2 /tg = 93.95) (red squares), A′ = 2.0 × 10−8

(T ∗
2 /tg = 30.05) (green triangles), and A′ = 2.5 × 10−7 (T ∗

2 /tg =
8.35) (blue circles).

in contrast to the Markovian case. As a consequence, there is
some Kmax such that further increases in sample size will not
yield a more accurate estimate.

VI. SRB: LEAKAGE

Leakage errors are interesting because they can build
coherences in levels above or outside the qubit subspace,
leading to highly non-Markovian dynamics. In order to
simulate leakage, we extend the Hilbert space of our simulation
from a qubit to a qutrit, i.e., a three-level system. The noisy
Clifford gates are modeled by the ideal gate acting on the qubit
subspace followed by a unitary error gate acting on the full
qutrit Hilbert space. Each Clifford gate is assigned a different
random qutrit unitary error Ui :

Csim
i = Ui ◦ (

C ideal
i ⊕ I

)
. (6.1)

Figure 8 illustrates leakage-induced error processes in the
qubit subspace, as well as the effect of RB on these processes.
When a single leakage error (noisy identity gate) is repeatedly
applied, the survival probability of nonstationary states oscil-
lates. In contrast, when RB is performed, the random Clifford
sequences average this oscillatory behavior, turning it into a
uniform decay.

To understand analytically how leakage errors enter into
a benchmarking experiment we start by extending the Pauli
operators to act on the three-dimensional Hilbert space by
defining the following orthogonal basis of nine operators
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FIG. 8. (Color online) Fidelity decay in the presence of random
leakage noise (r = 10−3) with repeated application of random noisy
Cliffords (blue circles, K = 10 000) and repeated application of a
noisy identity gate, i.e., a fixed unitary qutrit gate (red line). Blue
dotted line is F = .666(.998)m + .333, the FDM fit to the RB data.
Note the decay to 1/3 (black dashed line). The standard errors in
the data increase monotonically with m from 10−6 to approximately
10−3, and fit parameters are rounded to three digits. The solid red line
is the survival probability of the excited state P (m) = |〈1|Um|1〉|2 for
repeated application of a fixed (randomly chosen) three-level unitary
error U . If the excited state is nonstationary, P (m) is an oscillatory
function that is not periodic unless the stationary states accumulate
commensurate phases.

P1 = I :

P2 =
√

3/2

(
X 0
0 0

)
, P3 =

√
3/2

(
Y 0
0 0

)
,

P4 =
√

3/2

(
Z 0
0 0

)
, P5 =

√
1/2

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠,

(6.2)

P6 =
√

3/2

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠, P7 =
√

3/2

⎛⎝0 0 −i

0 0 0
i 0 0

⎞⎠,

P8 =
√

3/2

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠, P9 =
√

3/2

⎛⎝0 0 0
0 0 −i

0 i 0

⎞⎠.

(6.3)

The first four represent population and correlations in the
qubit subspace, the fifth represents population inversion in
the third level, and the last four represent correlations between
the qubit subspace and the third level, and drive leakage. Let us
normalize each element so that the set forms an orthonormal
basis. Partitioning the basis into spaces {P1,P2,P3,P4,P5} and
{P6,P7,P8,P9}, we find that Eq. (2.5) becomes

ĒG = 1

|G|
∑
U∈G

(
UT ⊕ 1 0

0 UT
L

)(
A B
C D

)(
U ⊕ 1 0

0 UL

)

= 1

|G|
∑
U∈G

(
(UT ⊕ 1)A(U ⊕ 1) (U ⊕ 1)BUL

UT
L C(U ⊕ 1) UT

LDUL

)
, (6.4)

where U is the 4 × 4 PTM representation of the map of the
Clifford operator in the qubit subspace and the 4 × 4 matrix
UL is the effect of the unitary in the leakage space. UL does
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not have a simple form and depends on the relative phase
between the qubit subspace map and the higher level. It maps
elements from the leakage subspace only to other elements in
the leakage subspace.

It is simple to show that the top left element in the block
matrix equation Eq. (6.4) becomes the 5 × 5 matrix

1

|G|
∑
U∈G

(UT ⊕ 1)A(U ⊕ 1) =

⎛⎜⎜⎜⎜⎜⎝
1

α

α

α

A51 A55

⎞⎟⎟⎟⎟⎟⎠.

(6.5)

This has a similar form to Eq. (2.7), where the parameter α

represented a depolarizing parameter. The other three blocks
do not take such a simple form. However, by allowing the
phase in the higher level to be both U ⊕ 1 and U ⊕ (−1) for
all U in the single-qubit Clifford group (extending the size
of the single-qubit Clifford group to 48 elements) then the
set of unitaries becomes {(U ⊕ 1)(±UL)}. With this addition,
the off-diagonal matrices of Eq. (6.4) become zero, that is,
the effective map is block diagonal. This addition could be
simple to implement experimentally, as ideal implementations
of ±π/2 and ±3π/2 rotations have opposite phases in the
leakage levels. Thus, by making the Clifford group from
these generators, it is possible to construct all {(U ⊕ 1)(±UL)}
operators. Since the map is now block diagonal, the FDM is
straightforward to calculate. We work in the operator basis
{P1,P2, . . . ,P9}. The ground state is given by

|0〉〈0| = 1

3
P1 +

√
3

18
P4 +

√
1

18
P5. (6.6)

Acting with Ēm
G on the corresponding vector of coefficients

and calculating an expectation produces the FDM

F = Tr(|0〉〈0|Ēm
G |0〉〈0|) (6.7)

= αm

2
+ 1

3
+ (A55)m

6
+ A51

3
√

2

m−1∑
j=0

(A55)j

= C1α
m + C2Am

55 + C3, (6.8)

where C1 = 1/2, C2 = 1/6 − D, C3 = 1/3 + D, and D =
A51/[3

√
2(1 − A55)]. This is a simple sum of exponentials.

Initial-state preparation and measurement errors that act only
in the qubit subspace change only the constants (not the
functional form). Furthermore, if the leakage error is from
a unital operation (which includes unitary operations), then
A51 = 0. From this model we see that leakage causes the
fidelity to asymptotically decay to C3, which is equal to 1/3
for unital noise. When there is no leakage (A55 = 1 and
A51 = 0), the decay goes to 1/2 as expected from standard
RB. This implies that the asymptotic fidelity value can be used
an indicator of the type of noise present in the system.

Here we numerically investigate this two-phase model of
RB with two types of leakage noise: fixed random and dif-
ferent random three-dimensional unitary channels. A typical
benchmarking experiment is shown in Fig. 8 as the blue dotted
line for the different random unitary errors. It is clear that the
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FIG. 9. (Color online) The 90% confidence intervals on the ran-
dom leakage models are plotted against sample size K for multiple
values of r = 10−4 (red squares), r = 10−3 (green triangles), and
r = 10−2 (blue circles).

fidelity does not decay to 1/2 but rather to 1/3. For this case the
confidence interval and μ parameter are shown in Fig. 9. Here
again by about 100 samples the estimated error and the actual
error agree. Furthermore, we find that both error models are
well captured by the benchmarking experiments and predict
the correct underlying error (see Fig. 6).

VII. INTERLEAVED RB: MARKOVIAN ERRORS

The goal of IRB is to obtain bounds on the gate fidelity of an
individual gate with noise Eint. In the limit where the average
noise Ē is depolarizing, the bounds collapse, and an exact
estimate of αint is possible. More precisely, for channels Eint

and Ē with depolarizing parameters αint and ᾱ, if Ē (or Eint) is
depolarizing, then the depolarizing parameter of the composed
channel EintĒ is given by the product αintᾱ. Typically, one
expects that averaging over many sequences implies that Ē
converges to a depolarizing channel and so the depolarizing
parameter of EintĒ converges to αintᾱ.

We examine the extent to which this is the case by setting
Ē to be an average of L unitary channels. We plot how the
diamond norm between Ē and the depolarizing channel with
the same average fidelity scales with L in Fig. 10. We see

FIG. 10. (Color online) The diamond norm distance D between
Ē and the depolarizing channel of error rate r decreases as a function
of L. r = 10−4 (red squares), r = 10−3 (green triangles), and r =
10−2 (blue circles).

062321-10



INVESTIGATING THE LIMITS OF RANDOMIZED . . . PHYSICAL REVIEW A 89, 062321 (2014)

10-4 10-3 10-2 10-1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

rint

μ

FIG. 11. (Color online) IRB in the presence of random unitary
noise for K = 10 000. r̂int is the estimated interleaved error rate, rint

is the true rate, and μ = log10 (r̂int/rint). The average Clifford error is
r = 10−4 (red squares), r = 10−3 (green triangles), r = 10−2 (blue
circles; blue triangles indicate negative IRB estimates).

that the approximation becomes increasingly accurate with
increasing L.

IRB was tested using a noise model in which each Clifford
gate received a random, gate-dependent unitary error of error
rate r , and the interleaved gate received a unitary error gate
of error rate rint. The method was tested for three values of r

and a wide range of values for rint (Fig. 11). While the IRB
estimates were within a factor of 2 of the true interleaved error
rate for rint � r , they were less accurate as rint became much
less than r (Fig. 11). We can see that when rint/r is about 0.1,
the estimate begins to diverge from the true value. Thus, IRB
can be a reliable tool in most regimes of interest, unless the
interleaved gate is significantly better than a typical gate.

VIII. CONCLUSION

In this paper we reviewed randomized benchmarking
protocols and numerically investigated their application on
a single qubit under various physically realistic and relevant
error models. These models included systematic rotations,
amplitude damping, leakage to higher levels, and 1/f noise.
While each randomized benchmarking protocol has a domain

of validity for which it provably gives robust error estimates,
we found that, in most cases analyzed, benchmarking provides
better than a factor-of-2 estimate of the average error rate. This
suggests that RB protocols can be utilized in quite general
situations and thus are a valuable tool for verification and
validation of quantum operations.

We showed using both numerical and general theoretical
results that the number of different random sequences in a
benchmarking experiment can be much less than the Hoeffding
bound estimates [7]. Our theoretical method consisted of
finding the nonlinear least-squares solution, linearizing the
nonlinear model around this solution, and constructing exact
confidence intervals for the linearized multivariate model. We
see that the size of the confidence intervals scales linearly with
the standard error.

In the case of 1/f noise, we find that randomized bench-
marking protocols produce a fidelity decay that can be modeled
by a composition of correlated depolarizing channels. The
degree of correlation can affect the extent to which a simple
exponential decay is valid. For leakage errors, we devised a
protocol that allows for the estimation of gate errors under
a decay model of a sum of exponentials. The asymptotic
behavior of fidelity decays can be used as a measure of the
extent to which leakage errors are present in an experiment.
Finally we showed that, in practice, the interleaved randomized
benchmarking protocol provides bounds that are tighter than
those theoretically predicted [8]. Provided the error on the
interleaved gate is not much smaller (by a factor of 10) than
the average error, the estimated error rate is a reliable quantity.
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