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Genuinely multipoint temporal quantum correlations and universal
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We introduce a constructive procedure that maps all spatial correlations of a broad class of d-level states
of N parties into temporal correlations between general d-outcome quantum measurements performed on
a single d-level system. This allows us to present temporal phenomena analogous to genuinely multipartite
nonlocal phenomena, such as Greenberger-Horne-Zeilinger correlations, which do not exist if only projective
measurements on a single qubit are considered. The map is applied to certain lattice systems in order to replace
one spatial dimension with a temporal one, without affecting measured correlations. We use this map to show how
repeated application of a one-dimensional (1D) cluster gate leads to universal one-way quantum computing when
supplemented with general two-outcome quantum measurements. In this way, we recover a temporal version of
measurement-based quantum computing performed on a sequentially recreated 1D cluster.
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I. INTRODUCTION

Quantum mechanics treats space and time very differently.
Whereas spatial coordinates are represented by operators,
usually time enters as a number parametrizing sequences
of events. One might expect that quantum predictions in
a purely spatial domain are very different from those in
a purely temporal domain. To the contrary, here we show
that for a broad class of states, expectation values of local
quantum measurements performed on spatially separated d-
level particles can be mapped to those measured on a single
d-level system at different instances of time.

Temporal correlations have been widely studied, beginning
with the seminal work of Leggett and Garg, who considered
them in the context of macroscopic realism [1,2]. Brukner
et al. rephrased the scenario to include more observables at
a single instant of time, and they presented a task that is
solved more efficiently by a non-macrorealistic system [3].
Both approaches were further generalized to involve many
instances of time [4–7], and a semidefinite program is known
that determines whether a probability distribution can be
realized in a sequential manner [8]. All these works consider
a scenario of sequential projective measurements done on
a single system, and they show that temporal measurement
statistics are indeed different from the spatial ones: for a
sequence of projective measurements on a qubit, there is no
temporal analog of genuinely multipartite entanglement [9],
no monogamy of entanglement [10], and temporal Tsirelson
bounds can be higher [11].

Here we show that some of these differences disappear
as soon as one considers general [positive operator-valued
measure (POVM)] measurements in place of the projective
ones. Our approach is based on the fact that every pure
quantum state of finite dimension can be expressed in the form
of a matrix product state (MPS), and therefore, under some
constraints on the entanglement structure, can be generated in
a sequential manner [12]. We utilize the sequential procedure
to construct a series of POVM measurements on a single

particle giving rise to temporal correlations identical to the
spatial correlations of the corresponding MPS, even if the
latter is genuinely multiparty-entangled. We emphasize that
the dimension of a single system in the temporal scenario is
the same as the dimension of a single local subsystem in the
N -partite state [13]. Moreover, we generalize the procedure
to a broad class of quantum states that cannot be generated
sequentially in one dimension but can be represented as higher-
dimensional quantum lattice systems. Spatial correlations in
such systems are mapped into spatiotemporal ones reducing
the lattice dimension by 1.

As an important example, we consider two-dimensional
(2D) cluster states, which are a universal resource for one-way
quantum computing [14,15]. The spatial process of one-
way computing on a 2D cluster state is transformed into a
temporal process involving the sequential application of a gate
preparing only 1D cluster states and nontrivial two-outcome
local POVM measurements. The universality of this case is
shown to follow from the use of POVMs; allowing only
projective measurements results in correlations that can be
simulated classically. In this manner, we obtain a 1D model
for universal quantum computing, which involves nontrivial
local two-outcome measurements and where a 1D cluster state
is recreated after each round of local measurements.

II. TEMPORAL QUANTUM CORRELATIONS

The temporal correlation function for a sequence of N

generalized quantum measurements is defined as follows:

Em1,...,mN
=

∑
i1,...,iN

i1, . . . ,iNP (i1, . . . ,iN |m1, . . . ,mN ),

where

P (i1, . . . ,iN |m1, . . . ,mN ) = P (i1|m1)P (i2|i1,m1,m2)

× · · · P (iN |i1, . . . ,iN−1,m1, . . . ,mN ) (1)
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is the probability to observe a particular sequence of outcomes
{i1, . . . ,iN } conditioned on the settings {m1, . . . ,mN }.

Let us first briefly discuss the case of sequential projective
measurements on a qubit prepared in an initial state described
by a Bloch vector �s. The qubit is measured at time instances
t1, . . . ,tN with the corresponding dichotomic observables
parametrized by Bloch vectors �m1, . . . , �mN . Sequential pro-
jective measurements on a single qubit form a Markov chain
[3,7], so that the conditional probabilities in (1) fulfill the
Markov property:

P (ik|i1, . . . ,ik−1, �m1, . . . , �mk) = P (ik|ik−1, �mk−1, �mk). (2)

Straightforward calculation of the temporal correlations re-
veals that for odd and even N , we have, respectively,

E �m1,..., �mN
= ( �m1 · �s)( �m2 · �m3) · · · ( �mN−1 · �mN ),

(3)
E �m1,..., �mN

= ( �m1 · �m2)( �m3 · �m4) · · · ( �mN−1 · �mN ),

demonstrating that temporal correlations between outcomes of
multiple projective measurements on a qubit always factorize
into correlations between at most two measurements. In
this sense, a qubit never gives rise to genuine multipoint
correlations in time.

For generalized measurements, defined by measurement
operators {Mk}, the probabilities in (1) read

P (ik|i1, . . . ,ik−1,m1, . . . ,mk) = Tr(ρkM
†
kMk), (4)

where the post-measurement state is defined by a recursive
formula,

ρk+1 = (MkρkM
†
k )/Tr(MkρkM

†
k ). (5)

The correlations of a sequence of POVM measurements
depend directly on the measurement operators Mk via the
post-measurement states (5). Different sets of {Mk} correspond
to different possible physical implementations of given POVM
elements, Ek = M

†
kMk . This is in contrast to the spatially

separated scenario in which all necessary information is given
by Ek .

III. SEQUENTIAL GENERATION OF QUANTUM STATES

A vital part of our map between spatial and temporal
correlations relies on the knowledge of sequential generation
of a quantum state. We say that a state can be generated
sequentially if it can be prepared from a product state by
a sequential application of unitary operations on blocks of
parties of a given size. Let us first consider a one-dimensional
lattice system, in which at each node there is a d-level
quantum particle. It was demonstrated by Schön et al. [12] that
sequentially generated states can be written as matrix product
states (MPSs) and, conversely, any MPS can be generated
sequentially.

The MPS representation [16–19] is an efficient method
of describing multipartite quantum states, most often used
in the context of one-dimensional spin systems with local
interactions. Here we use open boundary conditions for which
the MPS form of a state is given by

|�〉 =
d∑

i1,...,in=1

A
[1]
i1

, . . . ,A
[N]
iN

|i1, . . . ,iN 〉 . (6)

The first and the last matrices are vectors, and each matrix A
[n]
in

has a maximum dimension D × D. The parameter D, called
the bond dimension, is the largest rank of the reduced density
matrix with respect to every cut. It was shown in Ref. [20]
that the rank of the reduced density matrix is a measure of
entanglement, and therefore D contains information about the
entanglement structure of the state.

To sequentially generate an MPS of a bond dimension D,
we use the method proposed in Ref. [21]. Starting from a
chain of N initially uncorrelated d-level particles, we apply
unitary operations on m neighboring particles in a sequential
manner. As a result, we obtain a state with bond dimension
at most D = dm−1. Given the MPS form of a state (6), the
required unitaries can be computed using the singular value
decomposition [12]. Within this paper, we restrict our attention

FIG. 1. (Color online) Sequential generation of a multipartite MPS and its temporal counterpart. (a) Two-particle unitary gates Uk (gray
rectangles) are sequentially performed on particles (red circles) giving the state � (big red shape). In the end, projective measurements (blue
shapes) are conducted on the particles. Dashed lines indicate how unitary gates are related to MPS matrices of Eq. (6). (b) Measurements can
be shifted in time. (c) Every gate followed by a measurement can equivalently be represented as a POVM. (d) The circuit can be rearranged
into a sequence of quantum channels performing POVM measurements. (e) We can reduce the required resources to two particles. After each
measurement, one of them is reset and recycled into the remaining protocol.
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to the case of bipartite unitaries, i.e., m = 2, which is depicted
in Fig. 1(a).

IV. MAPPING FROM SPATIAL TO TEMPORAL
CORRELATIONS

As described, any MPS of qudits with bond dimension
D � d can be generated by a sequential application of bipartite
unitary gates. Now we utilize this scheme to find a sequence
of measurements performed on a single particle such that
the correlations between outcomes of these measurements
are exactly the same as spatial correlations measured on
the MPS. Note the crucial requirement that a single particle
evolving in time is measured. If higher-dimensional systems
are allowed, the task becomes simpler and trivializes for
systems with dimension equal to the total dimension of the
MPS, as then one can simply measure in time incomplete
projective measurements given by the local measurements on
the MPS.

The transition from the spatial to the temporal domain is
depicted in Fig. 1. At the kth step of the preparation procedure,
one of the particles prepared in the previous step interacts
via the gate Uk with the particle that has not been used
up to now. The latter particle is next subject to the gate
Uk+1, whereas the former particle is left untouched during
the rest of the procedure. This important characteristic of
the sequential preparation allows one to perform a projective
measurement on the first particle right after the gate Uk is
applied without disturbing the later process of preparing the
state [see Fig. 1(b)]. The entire protocol can equivalently be
seen as a sequence of quantum channels [Fig. 1(c)] with a
single-particle input and output that realize d-outcome POVM
measurements [Fig. 1(d)]. Let us parametrize by αk the rank-1
projective measurement on the kth particle. The corresponding
measurement operators {M (k)} can be determined from the
following equation [22]:

S (Uk(|ψ〉 ⊗ |λk+1〉)) =
d∑

i=1

(
M

(k)
i |ψ〉) ⊗ V (αk)|i〉, (7)

where S is a swap operator, V (αk) is a unitary rotation
from the standard basis to the measurement basis of the kth
observer, M

(k)
i is the measurement operator corresponding to

the outcome i, |λk+1〉 is the initial state of the (k + 1)st particle
before the preparation takes place, and |ψ〉 is an arbitrary state.
Note that in the presented mapping, the (k + 1)st particle of
the MPS is mapped into an ancilla of the kth POVM, the
kth projective measurement is mapped into the kth POVM
for k = 1, . . . ,N − 1, and the last projective measurement is
mapped into itself [Fig. 1(d)].

Finally, if we recycle the qudits, we can implement the
construction with only two of them [Fig. 1(e)]. A similar
process of recycling qubits has already been used in an
experimental realization of Shor’s algorithm [23] in the
circuit model of quantum computation. Summing up, due to
the equivalence of quantum circuits depicted in Fig. 1, all
quantum predictions of arbitrary pure MPSs of N qudits, with
bond dimension D � d, can be reconstructed by temporal
consecutive d-outcome POVM measurements followed by a
projective measurement in the final step.

V. GENUINELY MULTIPOINT TEMPORAL
CORRELATIONS

In the context of quantum information and quantum
foundations, many important multi-qubit states, such as the
Greenberger-Horne-Zeilinger state (GHZ) [24], the W state
[25], and the 1D cluster state [26], have bond dimension
D = 2, hence they can be generated sequentially with bipartite
unitaries. To create the GHZ, state we apply CNOT gates on
a chain of qubits prepared in a state |+〉 |0〉 · · · |0〉, whereas
in the case of a 1D cluster we use C-phase gates on a
state |+〉 · · · |+〉. Both of these states are genuinely N -partite
entangled, however their entanglement properties are very
different [27].

We show explicitly a set of qubit measurements producing
genuinely multipoint temporal correlations. Consider local
projective measurements performed on GHZ and cluster states.
Denote the angles (on the Bloch sphere) parametrizing the
measurement on the kth particle by {φk,θk}. Solving Eq. (7), it
is easy to obtain the corresponding kth POVM measurement
operators entering the temporal scenario. In the case of a GHZ
state, we find

M
(k)
−1 =

(
eiφk sin(θk/2) 0

0 − cos(θk/2)

)
,

(8)

M
(k)
1 =

(
cos(θk/2) 0

0 e−iφk sin(θk/2)

)
,

whereas for a cluster state they read

M
(k)
−1 = 1√

2

(
eiφk sin(θk/2) − cos(θk/2)
eiφk sin(θk/2) cos(θk/2)

)
,

(9)

M
(k)
1 = 1√

2

(
cos(θk/2) e−iφk sin(θk/2)
cos(θk/2) −e−iφk sin(θk/2)

)
.

Interestingly, both of them give rise to the same POVM
elements:

E
(k)
−1 =

(
sin2(θk/2) 0

0 cos2(θk/2)

)
,

(10)

E
(k)
1 =

(
cos2(θk/2) 0

0 sin2(θk/2)

)
.

The mapping from spatial to temporal correlations allows us
to obtain the correlation functions for local measurements on
both the GHZ and 1D cluster states by performing sequential
POVM measurements (8) and (9) on a single qubit followed
by a projective one at the last step. Note that in the above
construction, the POVM elements (10) do not depend on
the phase φ, whereas the measurement operators (8) and
(9) depend directly on this parameter. This shows that the
information about the phase is solely encoded in the way the
state collapses at each stage of the sequence of measurements,
and it illustrates the fact that knowledge about POVM elements
alone is not sufficient to determine temporal correlations.

VI. MAPPING FROM SPATIAL TO
SPATIOTEMPORAL CORRELATIONS

If the bond dimension exceeds the dimension of a single
quantum system under consideration, multipartite unitaries are
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FIG. 2. (Color online) 2D examples of mappings from spatial to spatiotemporal correlations. (a) “Order 1” means that the state of the
lattice is generated by applying the timelike (horizontal) gates before the respective next column of spacelike (vertical) gates. “Order 2” means
that the spacelike gates are performed before the timelike gates connecting them. (b) Result of applying the map to the “Order 1” case. The
spatial correlations of measurement outcomes of local projective measurements performed on each node of the lattice are mapped into temporal
correlations of outcomes of local POVM measurements performed on a 1D lattice. (c) Result of applying the map to the “Order 2” case. The
spatial correlations are mapped into temporal correlations of outcomes of POVMs on a 1D lattice, however in this case the POVM’s have
entangled ancillas. In both cases, at the last stage projective measurements are performed.

necessary for the sequential generation, whereas our mapping
works for bipartite unitaries only. This difficulty can be
overcome to some extent by arranging single systems into
an r-dimensional hypercubic lattice with a d-level quantum
system at each node, such that sequential generation is
possible along at least one spatial dimension. We define two
procedures mapping all spatial correlations in such a state to
spatiotemporal ones (see Fig. 2). In both cases, the initial state
of the entire system is assumed to be a product state.

In the first case [see Fig. 2(a), order 1 of operations on
the hypercube], at each stage i we (i) generate an arbitrary
quantum state of the particles placed in an ith (r − 1)-
dimensional slice perpendicular to the distinguished temporal
dimension of the hypercube; (ii) move in a temporal direction
and perform all the unitaries between the ith and (i + 1)st slice
that is next in time; (iii) perform projective measurements. We
consecutively repeat steps (i)–(iii). All the measurements can
be mapped into a single-particle POVM in complete analogy
to the 1D case. The difference is that the initial input state for
the local POVMs at each stage is the entire state of the particles
of the (r − 1)-dimensional hypercube. An important example
of a state with correlations that can be mapped in this way is
a 2D cluster state [26], which is created by applying C-phase
gates between every two neighboring qubits on a square
lattice. Therefore, a sequence of projective measurements on
a 2D cluster state can be mapped into a sequence of POVMs
performed on a repeatedly created 1D cluster [Fig. 2(b)].

In the second procedure [Fig. 2(a), order 2 of operations
on the hypercube], one first creates arbitrary quantum states
of the two neighboring (r − 1)-dimensional slices perpendic-
ular to the distinguished dimension, then the unitaries in be-
tween them are performed. In this case, the correlations of mea-
surements performed along the temporal direction can also be
mapped into correlations arising from the sequence of POVMs.

The important difference is that in this case at each stage
one first has to prepare the state of the (r − 1)-dimensional
slice, and use its particles as ancillas of the POVMs
[Fig. 2(c)]. Note that in this case, one need not perform
any entangling operations on output states of the consecutive
POVMs. An interesting example of this class of states are the
so called sequentially generated states (SGSs) [21], which are
a subclass of projected entangled pair states (PEPSs) [28].
PEPSs provide a complete representation of the arbitrary
quantum state of finite dimension in terms of a 2D tensor
network. SGSs are characterized by the property that, in
contrast to arbitrary PEPSs, they have exponentially vanishing
long-range correlations [21].

Note that we generalize the standard notion of a graph state
[29] to the case of noncommuting gates, which to the best
of our knowledge was first suggested in [30]. In the case in
which the unitaries in the temporal direction commute with the
unitaries needed to create the state of the (r − 1)-dimensional
slice, both mappings can be used.

VII. MEASUREMENT-BASED QUANTUM COMPUTING

Universal one-way quantum computing is a processing
of quantum information based on single-qubit projective
measurements performed on a resource state such as a 2D
cluster state [26]. Each elementary gate from the circuit model
can be implemented by a sequence of such measurements,
although the sequence may depend on previous measurement
outcomes. What is important is that the classical information
about outcomes has to be sent in a single direction [15].
Therefore, we can adapt our procedure of transforming spatial
correlations of a 2D cluster state into spatiotemporal ones,
where the temporal direction is defined by the direction of
classical information transfer. In effect, the computing can be
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FIG. 3. (Color online) One-way quantum computing in time. In
a standard spatial implementation, measurements are performed in a
sequence along one dimension of a 2D cluster. This can be mapped
into a spatiotemporal scenario as follows. First a vertical 1D cluster
state (a blue-shaded rectangle) is prepared in the usual way. Next,
these qubits undergo local POVM measurements, which effectively
entangle the second column of qubits with the prepared 1D cluster,
and the qubits of the 1D cluster are measured (which would never
again take part in the computation, and therefore can be recycled).
Since the contents of the gray rectangle are repeated throughout
the computation, universal one-way quantum computing requires a
single “gate” preparing 1D cluster state that after each preparation
is followed by generalized measurements. In the last stage, local
projective measurements need to be performed.

performed by repeatedly preparing a 1D cluster state followed
by local POVMs.

The idea of cluster state recycling has already appeared
in the works of Raussendorf and Briegel [15,26] and in, for
example, proposals for cluster states built from optical lattices
[31]. The entire 2D cluster state is not produced at the start of
the computation, but rather prepared just in time. Our scheme
is similar in spirit, but only requires a 1D array of qubits
in comparison to the 2D subcluster required to implement
entangling gates via measurements.

The universality of the scheme given in Fig. 3 relies on the
use of POVMs. To see this, first note that any computation
arising by directly measuring a 1D cluster state, either
with projective or POVM measurements, can be efficiently
simulated classically [32]. Now consider a single 1D cluster
gate, i.e., a sequence of C-phase gates preparing a 1D
cluster state, and allow for projective or POVM measurements
after each usage of this gate plus feed forward of classical
information. The scheme with projective measurements has
an efficient classical simulation because these measurements
uncorrelate future results from the previous ones; see Eq. (3).
More precisely, the simulation runs as follows. Each round
can be thought of as a preparation, a cascade of two-qubit
unitary matrices, each one interacting with only the previous
qubit in the sequence, followed by a projective measurement.
The effect of the projective measurement, in contrast to a

POVM, is to prepare each qubit in a known eigenstate that
forms the input of the following round. Thus the simulation of
Ref. [32] can continue for a polynomial number of time steps
and simulate the original quantum circuit. POVMs do not
destroy the temporal correlations, and as Fig. 3 shows, they
allow for universal computation.

A very simple example of entangling gates plus POVMs
corresponds to the circuit model. In the trivial case of a single
POVM element that is simply a one-qubit unitary rotation,
E1 = U , we clearly have universal quantum computation. Our
results demonstrate that nontrivial POVMs, where particles are
really measured, can be used to promote the 1D lattice of qubits
to universal quantum computation. These nontrivial POVMs
give rise to temporal quantum correlations that replace part of
the spatial correlations arising from 2D cluster states.

VIII. CONCLUSIONS

We obtain genuinely multipoint temporal quantum cor-
relations in a scenario of sequential generalized quantum
measurements on a single particle. In this way, we recover in a
temporal experiment the statistics of results arising from local
projective measurements of any multipartite quantum state of
qudits that has an MPS representation with bond dimension
D � d. Our approach can also be applied to a broad class of
generalized graph states, subject to the restriction that they
can be generated in a sequential way with respect to one
spatial dimension. Spatial correlations of such graph states
are then mapped into spatiotemporal ones reducing the space
dimension by 1.

We show that repeatedly preparing a 1D cluster state
followed by (nontrivial) local POVMs is universal for quantum
computing. Our model allows for a resource reduction from N2

qubits of a 2D cluster to 2N qubits of a 1D cluster with local
POVMs, whereas the total number of entangling operations
used for the computation is the same in both architectures.
Our construction proves that genuinely multipoint temporal
quantum correlations are a resource for quantum computing.
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