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Performing exact inference on Bayesian networks is known to be #P -hard. Typically approximate inference
techniques are used instead to sample from the distribution on query variables given the values e of evidence
variables. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at
most m parents per node in time O(nmP (e)−1), depending critically on P (e), the probability that the evidence
might occur in the first place. By implementing a quantum version of rejection sampling, we obtain a square-root
speedup, taking O(n2mP (e)−

1
2 ) time per sample. We exploit the Bayesian network’s graph structure to efficiently

construct a quantum state, a q-sample, representing the intended classical distribution, and also to efficiently
apply amplitude amplification, the source of our speedup. Thus, our speedup is notable as it is unrelativized—we
count primitive operations and require no blackbox oracle queries.
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I. INTRODUCTION

How are rational decisions made? Given a set of possible
actions, the logical answer is the one with the largest corre-
sponding utility. However, estimating these utilities accurately
is the problem. A rational agent endowed with a model and
partial information of the world must be able to evaluate the
probabilities of various outcomes, and such is often done
through inference on a Bayesian network [1], which efficiently
encodes joint probability distributions in a directed acyclic
graph of conditional probability tables. In fact, the standard
model of a decision-making agent in a probabilistic time-
discretized world, known as a partially observable Markov
decision process, is a special case of a Bayesian network.
Furthermore, Bayesian inference finds application in processes
as diverse as system modeling [2], model learning [3,4], data
analysis [5], and decision making [6], all falling under the
umbrella of machine learning [1].

Unfortunately, despite the vast space of applications,
Bayesian inference is difficult. To begin with, exact inference
is #P -hard in general [1]. It is often far more feasible to
perform approximate inference by sampling, such as with
the Metropolis-Hastings algorithm [7] and its innumerable
specializations [8], but doing so is still NP-hard in general [9].
This can be understood by considering rejection sampling, a
primitive operation common to many approximate algorithms
that generates unbiased samples from a target distribution
P (Q|E) for some set of query variables Q conditional on
some assignment of evidence variables E = e. In the general
case, rejection sampling requires sampling from the full
joint distribution P (Q,E) and throwing away samples with
incorrect evidence. In the specific case in which the joint
distribution is described by a Bayesian network with n nodes
each with no more than m parents, it takes time O(nm) to
generate a sample from the joint distribution, and so a sample
from the conditional distribution P (Q|E) takes average time
O(nmP (e)−1). Much of the computational difficulty is related
to how the marginal P (e) = P (E = e) becomes exponentially
small as the number of evidence variables increases, since only
samples with the correct evidence assignments are recorded.

One very intriguing direction for speeding up approx-
imate inference is in developing hardware implementa-

tions of sampling algorithms, for which promising results
such as natively probabilistic computing with stochastic
logic gates have been reported [10]. In this same vein,
we could also consider physical systems that already de-
scribe probabilities and their evolution in a natural fash-
ion to discover whether such systems would offer similar
benefits.

Quantum mechanics can in fact describe such naturally
probabilistic systems. Consider an analogy: If a quantum state
is like a classical probability distribution, then measuring it
should be analogous to sampling, and unitary operators should
be analogous to stochastic updates. Though this analogy is
qualitatively true and appealing, it is inexact in ways yet to
be fully understood. Indeed, it is a widely held belief that
quantum computers offer a strictly more powerful set of tools
than classical computers, even probabilistic ones [11], though
this appears difficult to prove [12]. Notable examples of the
power of quantum computation include exponential speedups
for finding prime factors with Shor’s algorithm [13], and
square-root speedups for generic classes of search problems
through Grover’s algorithm [14]. Unsurprisingly, there is a
ongoing search for ever more problems amenable to quantum
attack [15–17].

For instance, the quantum rejection sampling algorithm for
approximate inference was only developed quite recently [18],
alongside a proof, relativized by an oracle, of a square-root
speedup in runtime over the classical algorithm. The algorithm,
just like its classical counterpart, is an extremely general
method of doing approximate inference, requiring preparation
of a quantum pure state representing the joint distribution
P (Q,E) and amplitude amplification to amplify the part of
the superposition with the correct evidence. Owing to its
generality, the procedure assumes access to a state-preparation
oracle ÂP , and the runtime is therefore measured by the
query complexity [19], the number of times the oracle must
be used. Unsurprisingly, such oracles may not be efficiently
implemented in general, as the ability to prepare arbitrary states
allows for witness generation to QMA-complete problems,
the quantum analog to classically deterministic NP-complete
problems [18,20]. This also corresponds consistently to the
NP-hardness of classical sampling.
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FIG. 1. (Color online) (a) An example of a directed acyclic graph which can represent a Bayesian network by associating with each node a
conditional probability table. For instance, associated with the node X1 is the one value P (X1 = 1), while that of X5 consists of four values, the
probabilities X5 = 1 given each setting of the parent nodes, X2 and X3. (b) A quantum circuit that efficiently prepares the q-sample representing
the full joint distribution of panel (a). Notice in particular how the edges in the graph are mapped to conditioning nodes in the circuit. The |ψj 〉
represent the state of the system after applying the operator sequence U1, . . . ,Uj to the initial state |0000000〉.

In this paper, we present an unrelativized (i.e., no oracle)
square-root, quantum speedup to rejection sampling on a
Bayesian network. Just as the graphical structure of a Bayesian
network speeds up classical sampling, we find that the same
structure allows us to construct the state-preparation oracle ÂP

efficiently. Specifically, quantum sampling from P (Q|E = e)
takes time O(n2mP (e)−1/2), compared with O(nmP (e)−1)
for classical sampling, where m is the maximum number
of parents of any one node in the network. We exploit the
structure of the Bayesian network to construct an efficient
quantum circuit ÂP composed of O(n2m) controlled-NOT gates
and single-qubit rotations that generates the quantum state
|ψP 〉 representing the joint P (Q,E). This state must then
be evolved to |Q〉 representing P (Q|E = e), which can be
done by performing amplitude amplification [21], the source
of our speedup and heart of quantum rejection sampling in
general [18]. The desired sample is then obtained in a single
measurement of |Q〉.

We better define the problem of approximate inference
with a review of Bayesian networks in Sec. II. We discuss
the sensible encoding of a probability distribution in a
quantum state axiomatically in Sec. III. This is followed
by an overview of amplitude amplification in Sec. IV. The
quantum rejection sampling algorithm is given in Sec. V. As
our main result, we construct circuits for the state preparation
operator in Secs. VI A and VI B and circuits for the reflection
operators for amplitude amplification in Sec. VI C. The total
time complexity of quantum rejection sampling in Bayesian
networks is evaluated in Sec. VI D, and we present avenues
for further work in Sec. VII.

II. BAYESIAN NETWORKS

A Bayesian network is a directed acyclic graph structure
that represents a joint probability distribution over n bits. A
significant advantage of the Bayesian network representation
is that the space complexity of the representation can be made
much less than the general case by exploiting conditional de-
pendencies in the distribution. This is achieved by associating
with each graph node a conditional probability table for each
random variable, with directed edges representing conditional
dependencies, such as in Fig. 1(a).

We adopt the standard convention of capital letters (e.g., X)
representing random variables while lowercase letters (e.g., a)
are particular fixed values of those variables. For simplicity,
the random variables are taken to be binary. Accordingly,
probability vectors are denoted P (X) = {P (X = 0),P (X = 1)}
while P (x) ≡ P (X = x). Script letters represent a set of
random variables X = {X1,X2, . . . ,Xn}.

An arbitrary joint probability distribution P (x1,x2, . . . ,xn)
on n bits can always be factored by recursive application of
Bayes’s rule P (X,Y ) = P (X)P (Y |X),

P (x1,x2, . . . ,xn) = P (x1)
n∏

i=2

P (xi |x1, . . . ,xi−1). (1)

However, in most practical situations a given variable Xi will
be dependent on only a few of its predecessors’ values, those
we denote by parents (Xi) ⊆ {x1, . . . ,xi−1} [see Fig. 1(a)].
Therefore, the factorization above can be simplified to

P (x1,x2, . . . ,xn) = P (x1)
n∏

i=2

P (xi | parents(Xi)). (2)

A Bayes net diagrammatically expresses this simplification,
with a topological ordering on the nodes X1 � X2 � · · · � Xn

in which parents are listed before their children. With a node
xi in the Bayes net, the conditional probability factor P (xi =
1| parents(Xi)) is stored as a table of 2mi values [1], where mi is
the number of parents of node Xi , also known as the indegree.
Letting m denote the largest mi , the Bayes net data structure
stores at most O(n2m) probabilities, a significant improvement
over the direct approach of storing O(2n) probabilities [1].

A common problem with any probability distribution is in-
ference. Say we have a complete joint probability distribution
on n bits, P (X ). Given the values e = e|E |, . . . ,e2e1 for a set
E ⊆ X of random variables, the task is to find the distribution
over a collection of query variables Q ⊆ X \ E . That is, the
exact inference problem is to calculate P (Q|E = e). Exact
inference is #P -hard [1], since one can create a Bayes net
encoding the n variable k-SAT problem, with nodes for each
variable, each clause, and the final verdict—a count of the
satisfying assignments.

Approximate inference on a Bayesian network is much
simpler, thanks to the graphical structure. The procedure for
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sampling is as follows: Working from the top of the network,
generate a value for each node, given the values already
generated for its parents. Since each node has at most m

parents that we must inspect before generating a value, and
there are n nodes in the tree, obtaining a sample {x1,x2 . . . ,xn}
takes time O(nm). For unbiased sampling from the full joint
distribution P (X ) this runtime is classically optimal [1] as it
follows exactly the decomposition in Eq. (2).

Having sampled from P (X ), to complete the classical
approximate inference algorithm, we must now postselect on
the correct evidence values E = e, leaving us with an average
time per sample of O(nmP (e)−1), which suffers when the
probability P (e) becomes small, typically exponentially small
with the number of evidence variables |E |. Quantum rejection
sampling, however, will improve the factor of P (e)−1 to
P (e)−1/2, while preserving the linear scaling in the number
of variables n, given that we use an appropriate quantum state
to represent the Bayesian network.

III. QUANTUM SAMPLING FROM P(X )

This section explores the analogy between quantum states
and classical probability distributions from first principles.
In particular, for a classical probability distribution function
P (X ) on a set of n binary random variables X what quantum
state ρP (possibly mixed, d qubits) should we use to represent
it? The suitable state, which we call a quantum probability
distribution function (qpdf), is defined with three properties.

Definition 1. A qpdf for the probability distribution P (X )
has the following three properties:

(1) Purity: In the interest of implementing quantum al-
gorithms, we require that the qpdf be a pure state ρP =
|�P 〉〈�P |.

(2) Q-sampling: A single qpdf can be measured to obtain
a classical n-bit string, a sample from P (X ). Furthermore,
for any subset of variables W ⊂ X , a subset of qubits in the
qpdf can be measured to obtain a sample from the marginal
distribution P (W). We call these measurement procedures
q-sampling.

(3) Q-stochasticity: For every stochastic matrix T there
is a unitary UT such that whenever T maps the classical
distribution P (X ) to P ′(X ), UT maps the qpdf |�P 〉 to
|�P ′ 〉 = UT |�P 〉.

The motivation for property 3 is for implementing Markov
chains, Markov decision processes, or even sampling algo-
rithms such as Metropolis-Hastings, on quantum states [22].
The question we pose, and leave open, is whether a qpdf exists.

The simplest way to satisfy the first two criteria, but not
the third, is to initialize a single qubit for each classical binary
random variable. This leads to what is called the q-sample,
defined in prior work [23] as

Definition 2. The q-sample of the joint distribution
P (x1, . . . ,xn) over n binary variables {Xi} is the n-qubit pure
state |ψP 〉 = ∑

x1,...,xn

√
P (x1, . . . ,xn)|x1, . . . ,xn〉.

The q-sample possesses property 1 and the eponymous
property 2 above. However, it does not allow for stochastic
updates as per property 3, as a simple single-qubit example
shows. In that case, property 3 requires(

U11 U12

U21 U22

) ( √
p√

1 − p

)
=

(√
pT11 + (1 − p)T12√
pT21 + (1 − p)T22

)
, (3)

for all p ∈ [0,1]. Looking at Eq. (3) for p = 0 and p = 1
constrains U completely, and it is never unitary when T is
stochastic. Thus, the q-sample fails to satisfy property 3.

Yet, the q-sample satisfies properties 1 and 2 in a very
simplistic fashion, and various more complicated forms might
be considered. For instance, relative phases could be added
to the q-sample giving

∑
x eiφ(x)√P (x)|x〉, though this alone

does not guarantee property 3, which is easily checked by
adding phases to the proof above. Other extensions of the
q-sample may include ancilla qubits, different measurement
bases, or a postprocessing step including classical randomness
to translate the measurement result into a classical sample. It is
an open question whether a more complicated representation
satisfying all three properties exists, including q-stochasticity,
so that we would have upgraded the q-sample |ψP 〉 into a qpdf
|�P 〉 possessing all the defining properties.

Nevertheless, although the q-sample is not a qpdf by our
criteria, it will still be very useful for performing quantum
rejection sampling. The property that a sample from a marginal
distribution is obtained by simply measuring a subset of qubits
means that, using conditional gates, we can form a q-sample
for a conditional distribution from the q-sample for the full
joint distribution, as we show in Sec. VI. This corresponds
to the classical formula P (V|W) = P (V,W)/P (W), which
is the basis behind rejection sampling. The way it is actually
done quickly on a q-sample is through amplitude amplification,
reviewed next, in the general case.

IV. AMPLITUDE AMPLIFICATION

Amplitude amplification [21] is a well-known extension
of Grover’s algorithm and is the second major concept in
the quantum inference algorithm. Given a quantum circuit
Â for the creation of an n-qubit pure state |ψ〉 = α|ψt 〉 +
β|ψ̄t 〉 = Â|0〉⊗n, where 〈ψt |ψ̄t 〉 = 0, the goal is to return the
target state |ψt 〉 with high probability with as few queries
to state preparation Â as possible [24]. To make our circuit
constructions more explicit, we assume target states are
marked by a known evidence bit string e = e|E | . . . e2e1, so
that |ψt 〉 = |Q〉|e〉 lives in the tensor product space HQ ⊗ HE
and the goal is to extract |Q〉.

Just like in Grover’s algorithm, a pair of reflection operators
are applied repetitively to rotate |ψ〉 into |ψt 〉. Reflection about
the evidence is performed by Ŝe = Î ⊗ (Î − 2|e〉〈e|) followed
by reflection about the initial state by Ŝψ = (Î − 2|ψ〉〈ψ |).
Given Â, then Ŝψ = ÂŜ0Â

†, where Ŝ0 = (Î − 2|0〉〈0|⊗n).
The analysis of the amplitude amplification algorithm

is elucidated by writing the Grover iterate Ĝ = −Ŝψ Ŝe =
−ÂŜ0Â

†Ŝe in the basis of α
|α| |ψt 〉 ≡ (1

0) and β

|β| |ψ̄t 〉 ≡ (0
1) [19],

Ĝ =
(

1 − 2|α|2 2|α|
√

1 − |α|2
−2|α|

√
1 − |α|2 1 − 2|α|2

)
. (4)

In this basis, the Grover iterate corresponds to a rotation by
small angle θ = cos−1(1 − 2|α|2) ≈ 2|α|. Therefore, applying
the iterate N times rotates the state by Nθ . We conclude that
ĜN |ψ〉 is closest to α

|α| |ψt 〉 after N = O( π
4|α| ) iterations.

Usually, amplitude amplification needs to be used without
knowing the value of |α|. In that case, N is not known.
However, the situation is remedied by guessing the correct
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number of Grover iterates to apply in exponential progression.
That is, we apply Ĝ 2k times, with k = 0,1,2, . . . , measure the
evidence qubits |E〉 after each attempt, and stop when we find
E = e. It has been shown [21] that this approach also requires
on average O( 1

|α| ) applications of Ĝ.

V. THE QUANTUM REJECTION SAMPLING ALGORITHM

The quantum rejection sampling algorithm [18], which we
review now, is an application of amplitude amplification on
a q-sample. The general problem, as detailed in Sec. II, is
to sample from the n-bit distribution P (Q|E = e). We assume
that we have a circuit ÂP that can prepare the q-sample |ψP 〉 =
ÂP |0〉⊗n. Now, permuting qubits so the evidence lies to the
right, the q-sample can be decomposed into a superposition of
states with correct evidence and states with incorrect evidence,

|ψP 〉 =
√

P (e) |Q〉 |e〉 +
√

1 − P (e)|Q,e〉, (5)

where |Q〉 denotes the q-sample of P (Q|E = e), our target
state. Next perform the amplitude amplification algorithm
from the last section to obtain |Q〉 with high probability.
Note that this means the state preparation operator ÂP must
be applied O(P (e)−1/2) times. Once obtained, |Q〉 can be
measured to get a sample from P (Q|E = e), and we have
therefore done approximate inference. Pseudocode is provided
as an algorithm 1.

However, we are so far missing a crucial element. How is
the q-sample preparation circuit ÂP actually implemented, and
can this implementation be made efficient, that is, polynomial
in the number of qubits n? The answer to this question removes
the image of ÂP as a featureless black box and is addressed in
the next section.

VI. CIRCUIT CONSTRUCTIONS

While the rejection sampling algorithm from Sec. V is
entirely general for any distribution P (X ), the complexity of q-
sample preparation, in terms of the total number of CNOTs and
single qubit rotations involved, is generally exponential in the
number of qubits, O(2n). We show this in Sec. VI A, providing
the complexity analysis of the general state preparation
algorithm [25], which uses conditional qubit rotations based
on conditional probabilities [26,27]. The difficulty of such a
preparation is not surprising, since arbitrary q-sample prepa-
ration encompasses witness generation to QMA-complete
problems [18,20].

However, there are cases in which the q-sample can be
prepared efficiently [23,27]. The main result of this paper adds

Algorithm 1 Quantum rejection sampling algorithm: generate one
sample from P (Q|E = e) given a q-sample preparation circuit ÂP

k ← −1
while evidence E �= e do

k ← k + 1
|ψP 〉 ← ÂP |0〉⊗n //prepare a q-sample of P (X )
|ψ ′

P 〉 ← Ĝ2k |ψP 〉 //where Ĝ = −ÂP Ŝ0Â
†
P Ŝe

Measure evidence qubits E of |ψ ′
P 〉

Measure the query qubits to obtain a sample Q = q

to those cases—for probability distributions resulting from a
Bayesian network B with n nodes and maximum indegree m,
the circuit complexity of the q-sample preparation circuit ÂB is
O(n2m). We show this in Sec. VI B. The circuit constructions
for the remaining parts of the Grover iterate, the phase flip
operators, are given in Sec. VI C. Finally, we evaluate the
complexity of our constructions as a whole in Sec. VI D and
find that approximate inference on Bayesian networks can be
done with a polynomially sized quantum circuit.

Throughout this section we denote the circuit complexity
of a circuit Ĉ as QĈ . This complexity measure is the count of
the number of gates in Ĉ after compilation into a complete,
primitive set. The primitive set we employ includes the CNOT

gate and all single-qubit rotations.

A. Q-sample preparation

If P (x) lacks any kind of structure, the difficulty of
preparing the q-sample |ψP 〉 = ÂP |0〉⊗n with some unitary ÂP

scales at least exponentially with the number of qubits n in the
q-sample. Since P (x) contains 2n − 1 arbitrary probabilities,
ÂP must contain at least that many primitive operations. In
fact, the bound is tight—we can construct a quantum circuit
preparing |ψP 〉 with complexity O(2n).

Theorem 1. Given an arbitrary joint probability distribution
P (x1, . . . ,xn) over n binary variables {Xi}, there exists a
quantum circuit ÂP that prepares the q-sample ÂP |0〉⊗n =
|ψP 〉 = ∑

x1,...,xn

√
P (x1, . . . ,xn)|x1 · · · xn〉 with circuit com-

plexity O(2n).
Proof. Decompose P (x) = P (x1)

∏n
i=2 P (xi |x1 . . . xi−1)

as per Eq. (1). For each conditional distribution
P (Xi |x1 . . . xi−1), let us define the i-qubit uniformly con-
trolled rotation Ûi such that given an (i − 1) bit string
assignment xc ≡ x1 . . . xi−1 on the control qubits, the action
of Ûi on the ith qubit initialized to |0〉i is a rotation about
the y axis by angle 2 tan−1(

√
P (xi = 1|xc)/P (xi = 0|xc)) or

Ûi |0〉i = √
P (xi = 0|xc)|0〉i + √

P (xi = 1|xc)|1〉i . With this
definition, the action of the single-qubit Û1 is Û1|0〉1 =√

P (x1 = 0)|0〉1 + √
P (x1 = 1)|1〉1. By applying Bayes’s rule

in reverse, the operation ÂP = Ûn . . . Û1 then produces
|ψP 〉 = ÂP |0〉. As each k-qubit uniformly controlled rota-
tion is decomposable into O(2k) CNOTs and single-qubit
rotations [28], the circuit complexity of ÂP is QÂP

=∑n
i=1 O(2i−1) = O(2n). �
The key quantum compiling result used in this proof is the

construction of Bergholm et al. [28] that decomposes k-qubit
uniformly controlled gates into O(2k) CNOTs and single-qubit
operations. Each uniformly controlled gate is the realization
of a conditional probability table from the factorization of
the joint distribution. We use this result again in Bayesian
q-sample preparation.

B. Bayesian q-sample preparation

We now give our main result, a demonstration that the
circuit ÂB that prepares the q-sample of a Bayesian network is
exponentially simpler than the general q-sample preparation
circuit ÂP . We begin with a Bayesian network with, as usual,
n nodes and maximum indegree m that encodes a distribution
P (X ). As a minor issue, because the Bayesian network may
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have nodes reordered, the indegree m is actually a function of
the specific parentage of nodes in the tree. This nonuniqueness
of m corresponds to the nonuniqueness of the decomposition
P (x1, . . . ,xn) = P (x1)

∏n
i=2 P (xi |x1 . . . xi−1) due to permuta-

tions of the variables. Finding the variable ordering minimizing
m is unfortunately an NP-hard problem [29], but typically
the variables have real-world meaning and the natural causal
ordering often comes close to optimal [30]. In any case, we
take m as a constant much less than n.

Definition 3. If P (X ) is the probability distribution repre-
sented by a Bayesian network B, the Bayesian q-sample |ψB〉
denotes the q-sample of P (X ).

Theorem 2. The Bayesian q-sample of the Bayesian net-
work B with n nodes and bounded indegree m can be prepared
efficiently by an operator ÂB with circuit complexity O(n2m)
acting on the initial state |0〉⊗n.

Proof. As a Bayesian network is a directed acyclic graph,
let us order the node indices topologically such that for
all 1 � i � n, we have parents(xi) ⊆ {x1,x2, . . . ,xi−1}, and
maxi |parents(xi)| = m. Referring to the construction from
the proof of theorem 1, the state preparation operator Â =
Ûn . . . Û1 then contains at most m-qubit uniformly controlled
operators, each with circuit complexity O(2m), again from
Bergholm et al. [28]. The circuit complexity of ÂB is thus
QÂB = ∑n

i=1 O(2m) = O(n2m). �
Figure 1(b) shows the circuit we have just described. We

also note here that, although the complexity of ÂB is in general
O(n2m), there are Bayesian networks where the complexity
is reduced to the classical value of O(nm). This reduced
bound arises when the conditional gates in Fig. 1(b) factor
into several conditional gates, each conditioned on a single
qubit. For example, the Bayesian network in which every
child depends on its parents by the binary addition operation,
xi = y1 ⊕ y2 ⊕ · · · ⊕ ym for yk ∈ parents(xi), is an explicit
instance saturating this reduced bound.

The Bayesian q-sample preparation we have covered in this
section forms part of the Grover iterate required for amplitude
amplification. The rest is comprised of the reflection, or phase
flip, operators.

C. Phase flip operators

Here we show that the phase flip operators are also
efficiently implementable, so that we can complete the ar-
gument that amplitude amplification on a Bayesian q-sample
is polynomial time. Note first that the phase flip operators Ŝe

acting on k = |E | � n qubits can be implemented with a single
k-qubit controlled Z operation along with at most 2k bit flips.
The operator Ŝ0 is the special case Ŝe=0n . A Bayesian q-sample
can be decomposed exactly as in Eq. (5):

|ψB〉 =
√

P (e) |Q〉 |e〉 +
√

1 − P (e)|Q,e〉. (6)

Recall |Q〉 is the q-sample of P (Q|E = e) and |Q,e〉 contains
all states with invalid evidence E �= e. We write the evidence
as a k-bit string e = ek . . . e2e1 and X̂i as the bit flip on the ith
evidence qubit. The controlled phase, denoted Ẑ1...k , acts on
all k evidence qubits symmetrically, flipping the phase if and
only if all qubits are 1. Then Ŝe is implemented by

Ŝe = B̂Ẑ1...kB̂ (7)

FIG. 2. Quantum circuit for implementing the phase flip operator
Ŝe. The k = |E | qubit controlled phase operator acts on the evidence
qubits E . It may be compiled into O(k) CNOTs and single-qubit op-
erators given O(k) ancillas [16]. The evidence values e = ek . . . e2e1

control the bit flips through ēi ≡ 1 − ei .

where B̂ = ∏k
i=1 X̂

ēi

i with ēi ≡ 1 − ei . Explicitly,

Ŝe|ψB〉 = B̂Ẑ1...kB̂[
√

P (e)|Q〉|e〉 +
√

1 − P (e)|Q,e〉]
= B̂Ẑ1...k[

√
P (e)|Q〉|1n〉 +

√
1 − P (e)|Q,1n〉]

= B̂[−
√

P (e)|Q〉|1n〉 +
√

1 − P (e)|Q,1n〉]
= [−

√
P (e)|Q〉|e〉 +

√
1 − P (e)|Q,e〉]. (8)

The circuit diagram representing Ŝe is shown in Fig. 2.
The k-qubit controlled phase can be constructed from O(k)
CNOTs and single-qubit operators using O(k) ancillas [16] or,
alternatively, O(k2) CNOTs and single-qubit operators using no
ancillas [31].

D. Time complexity

The circuit complexities of the various elements in the
Grover iterate Ĝ = −ÂŜ0Â

†Ŝe are presented in Table I. As
the circuit complexity of the phase flip operator S0 (Se) scales
linearly with number of qubits n (|E |), QĜ is dominated
by the that of the state preparation operator Â. Although
QÂP

scales exponentially with the number of nodes n for
general q-sample preparation, Bayesian q-sample preparation
on a network of bounded indegree m is efficient. Namely,
QÂB = O(n2m) scales linearly with n as in classical sampling
from a Bayesian network. It takes O(P (e)−1/2) applications of
ÂB to perform the rejection sampling algorithm from Sec. V
and, thus, a single sample from P (Q|E) can be obtained by a

TABLE I. Circuit complexity QÛ of implementing the operators
Û discussed in the text. The Grover iterate Ĝ for amplitude
amplification of a Bayesian q-sample (general q-sample) consists
of two instances of the preparation circuit ÂB (ÂP ) and one instance
each of Ŝ0 and Ŝe. The time to collect one sample from P (Q|E = e)
is O(QĜP (e)−1/2).

Û QÛ Comments

ÂP O(2n) Q-sample preparation
ÂB O(n2m) Bayesian state preparation
Ŝ0 O(n) O(n) ancilla qubits
Ŝe O(|E |) O(|E |) ancilla qubits
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FIG. 3. (a) Quantum Bayesian inference on Bayes net B for
evidence E = e is done by repetition of the circuit shown, with k

incrementing k = 0,1, . . . , stopping when the measurement result x

contains evidence bits e. Then x can be recorded as a sample from
the conditional distribution P (Q|E). This corresponds to Algorithm 1.
(b) The constituents of the Grover iterate Ĝ, the state preparation ÂB ,
and phase flip operators Ŝe and Ŝ0. The state preparation operator is
constructed from Theorem 2, and an example is shown in Fig. 1(b).
The phase flip operators are constructed as shown in Fig. 2.

quantum computer in time O(n2mP (e)−1/2). In Sec. II, we saw
that classical Bayesian inference takes time O(nmP (e)−1)
to generate a single sample. Thus, quantum inference on a
Bayesian network provides a square-root speedup over the
classical case. The quantum circuit diagram for Bayesian
inference is outlined in Fig. 3.

VII. CONCLUSION

We have shown how the structure of a Bayesian network
allows for a square-root, quantum speedup in approximate
inference. We explicitly constructed a quantum circuit from
CNOT and single-qubit rotations that returns a sample from
P (Q|E = e) using just O(n2mP (e)−

1
2 ) gates. For more general

probability distributions, the Grover iterate would include a
quantity of gates exponential in n, the number of random
variables, and thus not be efficient. This efficiency of our
algorithm also implies experimental possibilities. As a proof
of principle, one could experimentally perform inference on a

two-node Bayesian network with only two qubits with current
capabilities of ion trap qubits [32].

We also placed the idea of a q-sample into the broader
context of an analogy between quantum states and classical
probability distributions. If a qpdf can be found that is pure, can
be q-sampled, and allows q-stochastic updates, the quantum
machine learning subfield would greatly benefit. Algorithms
for many important routines, such as Metropolis-Hastings,
Gibbs sampling, and even Bayesian learning, could find
square-root speedups in a similar manner to our results here.

Artificial intelligence and machine learning tasks are often
at least NP-hard. Although exponential speedups on such
problems are precluded by the BBBV result [33], one might
hope for square-root speedups, as we have found here, for a
variety of tasks. For instance, a common machine learning
environment is online or interactive, in which the agent
must learn while making decisions. Good algorithms in this
case must balance exploration, finding new knowledge, with
exploitation, making the best of what is already known. The
use of Grover’s algorithm in reinforcement learning has been
explored [34], but much remains to be investigated. One
complication is that machine learning often takes place in
a classical world; a robot is not usually allowed to execute a
superposition of actions. One might instead focus on learning
tasks that take place in a purely quantum setting. For instance,
quantum error-correcting codes implicitly gather information
on what error occurred in order to correct it. Feeding this
information back into the circuit could create an adaptive,
intelligent error-correcting code [35].
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