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We propose and analyze a multiphoton-state coherent transport protocol in a coupled-resonator quantum
network. A multiphoton SWAP gate between two antipodes can be achieved with neither external modulation
nor coupling strength engineering. Moreover, we extend this result to a coupled-resonator chain of arbitrary
length with different coupling strengths. Effects of decoherence via quantum nondemolition interaction are
studied with sources including vacuum quantum fluctuation and bath thermal excitations when the bath is in
the thermal equilibrium state. These observations are helpful to understand the decoherence effects on quantum
communication in quantum coupled-resonator systems.
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I. INTRODUCTION

Coherent transport of quantum information between two
remote qubits is of central importance in quantum information
processing (QIP). There have been many studies of connecting
remote solid qubits and realizing transport in various systems,
including flux qubits in superconductors [1,2], phonons in ion
traps [3,4], and nuclear spins in nuclear magnetic resonance
(NMR) [5]. Because of negligible interaction between sepa-
rated photons, high-speed transmission with low dissipation
in optical fibers, and compatibility with classic telecommu-
nication fiber technology, an optical quantum network has
become one of the most promising candidates for scalable QIP
in recent decades [6]. In this case, photon coherent transport
is of both fundamental and practical importance to perform
communication between two nodes [7]. Knill et al. showed
that an efficient quantum computation can be implemented
with single-photon sources, single-photon detectors, and linear
optics alone [8]; however, the complexity of required networks
is daunting. Furthermore, the narrow spectral bandwidth in the
conventional single-photon cavities with high Q factor will
decrease the single-photon detection efficiency [9]. For these
reasons, most of alterative and feasible approaches have been
proposed by encoding quantum information on multiphoton
fields to overcome these limitations [10–19].

Prior work on quantum communication in quantum net-
works has commonly focused on either spin or single-photon
qubits [20–22], while the study of coupled-resonator chains
with continuous-variable quantum states has attracted much
attention [23–27], and the mapping of quantum states between
photons and atoms has been implemented in experimental sys-
tems [28–31] as a critical requirement for distributed quantum
information. In this article we investigate the multiphoton-state
coherent transport between two antipodes in coupled-resonator
quantum networks based on Cartesian products of graph
theory [20,32]. A chain of two or three resonators can work
as basic building blocks to build quantum coupled-resonator
networks which are multiple Cartesian products of either of
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the two simple chains. This can achieve a perfect multiphoton
SWAP gate after a period of time evolution on a hypercubic
structure that is one of those commonly used in networks
and a direct generalization of spin chains. The method swaps
the arbitrary bosonic states of two antipodes resonators under
time evolution, which is determined by the natural dynamics
and requires neither external modulation of Hamiltonian nor
inter-resonator coupling strength engineering. Its essence is
that a perfect SWAP operation is allowable for a chain of either
two or three resonators. As a consequence, we extend this
result to a coupled-resonator chain of arbitrary length and a
mirror inversion of bosonic states with respect to its center
is implemented. Also the optimal time over these coupled-
resonators is independent of the distance between two remote
nodes and the speedup of the perfect state transfer is possible.

The interaction between a realistic quantum system and its
surrounding environment is hardly avoidable. The proposed
protocol with perfect quantum state transfer occurs in a
closed system or an ideal condition without decoherence.
Thus it is necessary to study the decoherence effects on
such protocols. The decoherence is characterized by a pure
dephasing model for an open system coupled to a bosonic bath
via quantum nondemolition interaction [33]. We assume that
the decoherence effects on each eigenmode of the network are
identical and the decoherence occurs between the occupancy
number bases in Fock space. After unitary evolution and
in Heisenberg picture, a SWAP gate under decoherence is
achieved with two additional phase factors. In a special
case where the bath is in the thermal equilibrium state, the
sources of decoherence effects on the gate include vacuum
quantum fluctuation and bath thermal excitations at finite
temperature. Observing these will help us to understand the
decoherence effects on quantum communication in quantum
coupled-resonator systems.

II. MODEL AND CALCULATION

The Hamiltonian of a coupled-resonator quantum network
described by a graph G is

HS =
N∑

u=1

�a†
uau +

N∑
u,v=1

Kuv(G)a†
uav, (1)
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where au and a
†
u are the bosonic annihilation and creation

operators for the single-mode resonators with frequency �

at node u, and Kuv(G) = κAuv(G) represents the coupling
strength between nodes u and v. A(G) is the adjacency
matrix of graph G, and Auv(G) = 1 if the two nodes u and
v are adjacent; otherwise, Auv(G) = 0. It means that only
the nearest neighbor (NN) coupling is considered. Since A

is a symmetric matrix, its diagonalization occurs through an
orthogonal transformation U as D = UAU † with Dkl = λkδkl .
This transformation yields HS = ∑N

k=1 εkf
†
k fk , where fk =∑N

u=1 Ukuau is the Bogoliubov transformation and εk = � +
κλk . The bath Hamiltonian consisting of harmonic oscillators
with infinite modes is HB = ∑

j ωjb
†
j bj , where bj (b†j ) are

the bosonic annihilation (creation) operators for the modes of
frequencies ωj and j = 1,2, . . . ,∞. The interaction between
the quantum network and the bath is characterized by a simple
decoherence model with nondemolition Hamiltionian HI =
R ⊗ X [33], where R = ∑N

k=1 rkf
†
k fk depends on the network

variables and the quantum noise operator X = ∑
j ξj bj + H.c.

depends on the bath variables. The dynamics of composite
system is driven by the total Hamiltonian H = HS + HB +
HI . Since [HI ,H ] = 0 and [HB,H ] �= 0, the energy exchange
is unallowable between the network and its surrounding bath,
and an irreversible process of information loss happens.

In the Heisenberg picture, the Heisenberg equation of
motion, Ȯ(t) = i[H,O(t)], governs the time evolution of an
operator. By applying this equation, the exact solutions of
operators f

†
k and b

†
j can be found [34]:

f
†
k (t) = eiεkt eirk [Z(t)−F (t)R0]f

†
k (0) (2)

and

b
†
j (t) = eiωj t b

†
j (0) + iξjη

∗
j (t)R0, (3)

where Z(t) = ∑
j [ξjηj (t)bj (0) + H.c.] is the phase oper-

ator with ηj (t) = i(e−iωj t − 1)/ωj , F (t) = 2
∫

dωJ (ω)(t −
sin ωt/ω)/ω is a c-number with the bath spectral density
function J (ω) = ∑

j |ξj |2δ(ω − ωj ), and R(t) = R0 as a result
of its conservation, i.e., [H,R(t)] = 0. rk is a parameter to
measure the decoherence effects on the kth mode of network.
We assume that the effects on each mode are identical,
rk = r , and the decoherence occurs in Fock space. After the
inverse Bogoliubov transformation and time evolution, the
creation operator a

†
m becomes a

†
m(t) = eiY (t )̃a

†
m(t). The term

ã
†
m(t) = ∑

k Ukmeiεktf
†
k (0) is the network free evolution and

Y (t) = r[Z(t) − F (t)R0] represents the decoherence effects.
Upon introducing Bogoliubov transformation again, ã

†
m(t) is

transformed to ã
†
m(t) = ei�t

∑N
u=1(eiκAt )uma

†
u. Thus the time

evolution of quantum states is driven by the adjacency matrix
of the network, which is analogous to the spin networks [20].

A chain of two or three resonators can act as basic building
blocks to build coupled-resonator networks which are multiple
Cartesian products of either of the two simple chains [20]. The
two-resonator chain is denoted by G1 and the three-resonator
one by G2. The three-fold Cartesian product of G1 is a cubic
network as shown in Fig. 1(a). The relations of adjacency
matrices A(G) and A(Gθ ) after g-fold Cartesian product
obey the rules of Kronecker product A(G) = ∑g−1

j=0 I⊗j ⊗

• • •

FIG. 1. (Color online) (a) A cubic quantum network is the three-
fold Cartesian product of two-resonator chain with uniform coupling
strength. A multiphoton SWAP gate between the two nodes along each
main diagonal is achieved at the optimal time. (b) A coupled-resonator
chain with different coupling strengths. Its coupling strength distri-
bution is characterized by the x component of an angular momentum
operator to implement a mirror inversion of arbitrary bosonic states
with respect to the center of the chain.

A(Gθ ) ⊗ I⊗(g−j−1) with an identity matrix I and θ = 1,2.
Consequently, eA(G) = [eA(Gθ )]⊗g , and A(Gθ ) determines the
evolution of network G. After evolution and at the optimal time
t = τθ ≡ π/21/θκ , [eiκA(G)τθ ]um = iθgδu,N+1−m gives that

a†
m(τθ ) = P0P1a

†
N+1−m, (4)

demonstrating the relations between the state of node m at
t = 0 and that of node N + 1 − m at t = τθ . Here, the phase
P0 = ei�τθ iθg arises from the free evolution of network and
P1 = eiY (τθ ) from the decoherence. Actually, it is a perfect
SWAP gate between the two antipodes in the absence of
decoherence. It requires neither external manipulation nor
coupling strength engineering. For simplicity, we take the
cubic quantum network as an example, as shown in Fig. 1(a),
the time evolution swaps arbitrary bosonic states of the two
antipodes along each main diagonal at the optimal time.

In ideal conditions without decoherence, the proposed
method can potentially allow for the realization of a perfect
SWAP gate with coherent-state qubits between two antipodes
in the quantum network. We consider an initial state |〉ini =∏N

u=1 |αu〉u, where |αu〉u is the coherent state with amplitude
αu at node u. The coherent state can be produced by a
displacement operator D(α) = e−|α|2/2eαa†

e−α∗a displacing
the vacuum state |0〉, |α〉 = D(α)|0〉. After evolution in
Heisenberg picture and inversion back to Schröinger picture,
the final quantum network state becomes

|〉f in =
N∏

u=1

|βu〉N+1−u (5)

with βu = P ∗
0 αu. The coherent-state SWAP gate between nodes

m and N + 1 − m is achieved. In addition to the coherent state,
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the coherent transport of the multiphoton entangled states can
be implemented by means of our scheme with an alterative
Hamiltonian

Ha =
∑

σ

[
N∑

u=1

ωa†
u,σ au,σ +

N∑
u,v=1

Kuv(G)a†
u,σ av,σ

]
, (6)

where σ = h,v are the photon polarization states with h

represented by horizontal polarization and v by vertical.
The creation operator with polarization state σ is likewise
transformed to ã

†
m,σ (τθ ) = P0a

†
N+1−m,σ at the optimal time τθ .

Without loss of generality and for simplicity, an initial state
|′〉ini = ∏N

u=1 |� ′〉u with

|� ′〉u = (|h〉⊗Mu + |v〉⊗Mu )u/
√

2 (7)

is taken as an example. The time evolution under the
Hamiltonian Ha swaps the multiphoton entangled states of
two antipodes with the final state

|′〉f in = PE

(
[N/2]∏
u=1

(SWAP)u,N+1−u

)
|′〉ini , (8)

where PE = ∏N
u=1(P ∗

0 )Mu is an additional phase.
Besides the case of single-mode resonators, the imple-

mentation of multimode resonators of frequencies �ϑ is
directly analogous. In multimode quantum networks, the
Hamiltonian is HS = ∑

ϑ Hϑ with Hϑ = ∑N
u=1 �ϑa

†
u,ϑau,ϑ +∑N

u,v=1 Kuv(G)a†
u,ϑav,ϑ . Since [Hϑ,Hϑ ′ ] = δϑϑ ′ , it is possible

to have ã
†
m,ϑ (τθ ) = P0,ϑa

†
M+1−m,ϑ with P0,ϑ = ei�ϑτθ iθg .

III. EXTENSIONS

While the case of a multidimensional hyercube has been
chosen to focus on, we extend this result to a one-dimensional
(1D) coupled resonator and the realization of such resonator
chain can be explored in many physical systems [35–40]. If
Kuv(G) = κu−1δu,v+1 + κuδu,v−1 in the Hamiltonian of Eq. (1),
the Hamiltonian describes a 1D coupled-resonator system
with different coupling strengths as shown in Fig. 1(b).
The coupling-strength distribution matrix K is identical to
the representation of a Hamiltonian H ′ = λJx through pre-
engineering the inter-resonator coupling strengths as κu =
λ
√

u(N − u)/2, where Jx is the x component of a fictitious
angular momentum operator J = (N − 1)/2 and λ is some
constant [20].

The isomorphism of su(2) and so(3) Lie algebras gives
the remarkable result that SU(2) and SO(3) Lie groups are
locally isomorphic, and the commutation relations of an
arbitrary angular momentum operator can be reduced to
those of harmonic oscillator operators in Schwinger picture;
e.g., Jx can be rewritten in terms of two bosonic opera-
tors as Jx = (c†1c2 + c1c

†
2)/2 [41]. H ′ can be viewed as a

Hamiltonian for the two resonators with coupling strength
λ/2 and perfect quantum state transfer between the two
resonators is possible, which gives that eiH ′τ ′

c
†
1e

−iH ′τ ′ =
ic

†
2 and eiH ′τ ′

c
†
2e

−iH ′τ ′ = ic
†
1 at the optimal time t = τ ′ ≡

π/λ. It yields 〈m′
z|eiλJxτ

′ |mz〉 = i2J δm′
zmz

and (eiKτ ′
)um =

iN−1δu,N+1−m, where mz,m
′
z = −J, − J + 1, . . . ,J − 1,J

and |mz〉 = (a†
1)J+mz (a†

2)J−mz/
√

(J + mz)(J − mz)|0〉. Thus
ã
†
m(t) becomes

ã†
m(τ ′) = P ′

0a
†
N+1−m, (9)

where P ′
0 = ei�τ ′

iN−1. As desired, the SWAP gate between sites
m and N + 1 − m is achieved under time evolution. The noise
effect is P ′

1 = eiY (τ ′) when the decoherence is present.

IV. DECOHERENCE IN THERMAL EQUILIBRIUM STATE

When the unavoidable bath is in the thermal equilib-
rium state, its variables are distributed in an uncorrelated
thermal equilibrium mixture of states and the density ma-
trix satisfies Boltzmann distribution ρB = e−HB/T /Z, where
T represents the temperature and Z = Tr(e−HB/T ) is the
partial function. A density operator ρ can be expressed
in terms of coherent states in coherent-state representation
ρ = ∏

j

∫
ρj (αj ,α

∗
j )|αj 〉〈αj |d2αj , and

ρj (αj ,α
∗
j ) = Tr[ρδ(α∗

j − a
†
j )δ(αj − aj )] (10)

builds a connection between the classical and quantum
coherence theory [42]. For the thermal equilibrium state,
ρj (αj ,α

∗
j ) = e−|αj |2/〈nj 〉/π〈nj 〉 with the average excitation

number 〈nj 〉 = (eωj /T − 1)−1 in the modes of frequencies ωj .
The initial state of composite system is a direct product ρ(0) =
ρS(0) ⊗ ρB , and the density matrix is ρS(0) = |ψ(0)〉〈ψ(0)|
with a generic state |ψ(0)〉 = ∏N

u

∑
nu

cnu
|nu〉u.

After evolution and tracing out the variables of the bath,
we have the reduced density matrix of quantum network at
the optimal time ρS(τ ′) = ∑

n,n′ Dn,n′ (T )ρn,n′(τ ′) with two
vectors n = n(n1, . . . ,nN ) and n′ = n′(n′

1, . . . ,n
′
N ) in a chain

of resonators, it is directly analogous in the case of hypercubic
networks. Dn,n′ (T ) is an expected value of a displacement
operator Dj (βjn′n) in the thermal equilibrium state

Dn,n′(T ) =
∏
j

∫
d2αjρj (αj ,α

∗
j )〈αj |Dj (βjn′n)|αj 〉, (11)

where βjn′n = −i(n − n′)rξ ∗
j ηj (τ ′), Dj (βjn′n) =

e
βjn′nb

†
j −β∗

jn′nbj , n = ∑N
u=1 nu, and n′ = ∑N

u=1 n′
u. Dn,n′(T ) =

D
[0]
n,n′D

[T ]
n,n′ includes the vacuum quantum fluctuation

D
[0]
n,n′ = �je

−znn′ ;j (τ ′)/2 and the bath thermal excitations

D
[T ]
n,n′ = ∏

j e−gj (T ) with gj (T ) = znn′;j (τ ′)/(eωj /T − 1) and
znn′;j (τ ′) = |βjn′n|2. ρn,n′ (τ ′) is

ρn,n′ (τ ′) =
N∏

u=1

cnu
(τ ′)c∗

n′
u
(τ ′)|nu〉〈n′

u|N+1−u, (12)

where cnu
(τ ′) = (P ′∗

0 )nue−inu(nu+1)r2F (−τ ′)/2cnu
. As an illustra-

tion, the Ohmic spectral density of bath is taken by J (ω) =
γωe−ω/� with a dimensionless coupling constant γ and the
bath’s response frequency � [43,44]. We have that D

[0]
n,n′ =

(1 + �2τ ′2)−(n−n′)2r2γ /2 and
∑

j gj (T ) = 4γ (n − n′)2g2I (τ ′)
with

I (τ ′) =
∫

dω
1

ωeω/�(eω/T − 1)
sin2 ωτ ′

2
. (13)
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FIG. 2. (Color online) The decoherence effects on the proposed
multiphoton SWAP gate in a chain of resonators. γ = 1, � = 1. (a)
The vacuum quantum fluctuation effects on the SWAP gate fidelity.
(b) The SWAP gate fidelity as a function of temperature at several
coupling parameters. 〈F 〉 is average fidelity, λ is a coupling parameter
in the coupled-resonator chain, r is a coupling parameter between
the network and the bath, γ is a dimensionless coupling constant,
� is the bath’s response frequency in Ohmic spectral density, T is
temperature, and M is the dimension of initial state at node 1 in this
special case.

A special case is that |ψ(0)〉 = (
∑M−1

n1=0 cn1 |n1〉1) ⊗ |0〉,
which means that all of nodes are initialized to vacuum
state except for node 1. The quality of SWAP gate between
nodes 1 and N can be defined by an average fidelity 〈F 〉 =√

〈φ0|U †ρ(t)U |φ0〉, where the overline indicates average
overall possible input state |φ0〉 and U is an ideal SWAP gate.
It turns out to be at the optimal time

〈F 〉 =

√√√√√ M−1∑
n1,n

′
1=0

|cn1 |2|cn′
1
|2Dn1,n

′
1
(T ). (14)

Figure 2 shows the fidelity as a function of coupling parameter
λ and finite temperature T in a chain of coupled resonators.

It is seen that the fidelity decreases with temperature and
increases with coupling strength. The strong coupling can
partly counteract the decoherence effects to ensure the high
fidelity of SWAP gate.

In summary, we have investigated a multiphoton coherent
transport protocol in a coupled-resonator quantum network
and proposed a perfect multiphoton SWAP gate between two
antipodes. The quantum network is the multifold Cartesian
product of a chain of either two or three resonators and
the method requires neither external modulation nor inter-
resonator coupling strength engineering. As an extension, we
have shown that a multiphoton SWAP gate can be achieved
perfectly over a chain of arbitrary length as long as one can
pre-engineer inter-resonator coupling strengths. The optimal
time is independent of the distance between the two remote
parties, and the speedup of state transfer is possible. The
decoherence effects on the SWAP operation have been demon-
strated explicitly. The sources include the vacuum quantum
fluctuation and the bath thermal excitations when the bath is
in the thermal equilibrium state. Such observations can help
us to deepen our understanding of the decoherence effects
on quantum communication in quantum coupled-resonator
systems and evaluate the proposed protocol when it works
in thermal environment. Additionally, our method can provide
the implementation of coherent-state SWAP gate and arbitrary
dimensional quantum state transfer based on photons.
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