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Quantum illumination with photon-subtracted continuous-variable entanglement
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Quantum illumination is a protocol where quantum resources are utilized to detect a low-reflectivity object
embedded in a bright thermal noise bath. For example, quantum illumination with a two-mode squeezed state
(TMSS) provides a 6 dB advantage in the error-probability exponent over the optimal classical illumination. We
here consider quantum illumination with the photon-subtracted two-mode squeezed state (PSTMSS). Our result
is twofold. First, we show that a much smaller error probability Perr could be obtained, meaning that much smaller
resources will be required in quantum illumination for a fixed Perr. Second, quantum illumination with PSTMSS
appreciably outperforms its classic correspondence in both low- and high-noise operating regimes, extending the
regimes in which quantum illumination is optimal for target detection.
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I. INTRODUCTION

Quantum precise measurement [1], quantum teleportation
[2], and quantum computation [3] are important quantum
technologies which challenge current wisdom about the
limit and power of conventional informational processing.
However, environment-induced decoherence quickly destroys
the quantum entanglement underlying these techniques and
thus substantially undermines any enhancement in the quan-
tum technique. Remarkably, quantum illumination, or more
precisely quantum target detection, with its foundation based
on bipartite nonclassical correlation is quite an exception.
Lloyd shows that even in entanglement-destroying loss
and noise, one can still make substantial improvement in
the signal-to-background ratio in realistic target detections
[4].

The paradigm of Lloyd’s quantum illumination is as
follows. To detect a region where a low-reflectivity object
may be embedded, we prepare two entangled optical modes.
One is sent to irradiate the region and the other is retained as
the ancilla. Then when the light is received from the region, we
perform the optimal joint measurement on the received light
and the ancilla, achieving an effective signal-to-background
ratio of 2η/b, with η � 1 being the reflectivity of the object
and b being the average number of photons in thermal
noise. As a comparison, the signal-to-background ratio in
illumination with an unentangled single photon follows η/b.
Such an original idea has been further investigated in several
theories and experiments. Shapiro and Lloyd explored the
performance gain of quantum illumination in the multiphoton
regime [5]. Tan et al. provide a full Gaussian-state treatment of
quantum-illumination target detection [6]. Guha et al. present
two structured optical receivers that can be readily imple-
mented in proof-of-concept experiments [7]. More recently, a
quantum-illumination experiment, although slightly different
from Lloyd’s original one, has been carried out and it showed
that illumination with quantum protocol has clear advantages
over classical ones, i.e., based on classical correlations
[8].

The aim of this paper is to investigate the application of a
photon-subtraction technique for object detection. We consider
the photon-subtracted two-mode squeezed state (PSTMSS) as

the basic quantum resource and evaluate the corresponding
minimal error probability in target detection. Actually, the
photon-subtracted state is a non-Gaussian state and our study
can be considered as the natural extension of quantum illu-
mination from Gaussian to non-Gaussian regimes. Numerical
result shows that like their advantage in quantum-state distilla-
tion [9–11] and quantum-error correction [12], non-Gaussian
quantum states support much lower error probability and are
more robust against environmental noise.

This paper is organized as follows. In Sec. II, we introduce
the model of quantum illumination with a photonic beam
splitter. In Sec. III, we consider the ideal photon-subtracted
TMSS state and derive the relevant error probability. Indeed,
ideal photon-subtracted TMSS is obtained theoretically by ap-
plying bi-side photon annihilation operators on the entangled
two-mode state. In laboratories, the practical PSTMSS state
obtained by beam-splitter coupling and on-off photon detectors
is more often discussed. Likewise, in Sec. IV we just consider
the practical PSTMSS state. Finally, the conclusions are drawn
in Sec. V.

II. QUANTUM-ILLUMINATION MODEL

Here, let us present the model of quantum illumination
with a beam splitter. Typical quantum illumination can be
explicitly shown as in Fig. 1(a). One mode of the entangled
photonic modes, say B, is used to interrogate the unknown
object hidden in the background. The reflectivity of the object,
denoted with κ , is far less than 1 due to photon loss during
both up and down transmission and low-efficiency in photon
detectors. Finally, after receiving photons from the region,
we will perform joint quantum measurement on the retrieved
light and the ancilla. Conceivably, the optimal quantum joint
measurement could help to provide sufficient information to
make a judgment on the presence of the unknown target.
In fact, when the target exists, one may have a rather small
reflectivity κ � 1. However, when the target is absent, we
have κ = 0. Thus, the task of joint quantum measurement
is to make a state discrimination between the two-mode
quantum state: ρ

(1)
AB (target exists) and ρ

(0)
AB(target does not

exist). The optimal discrimination takes place in the process
of joint quantum measurement, which returns a dichotic result:
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FIG. 1. (Color online) (a) Schematic diagram of quantum target
detection of low-reflectivity object. (b) Simulation of quantum
illumination with a photonic beam splitter, with transmittance κ

and thermal state in C mode. Joint quantum measurement is of
paramount importance in performance enhancement. The result of
quantum measurement provides dichotic information required for
target detection.

1 or 0, corresponding to the existence or absence of the
target.

The joint quantum measurement can be mathematically
formulated with the positive operator valued measurement
(POVM), usually characterized with a set of positive operators
{Er} (r = 0,1). Quantum measurement is a kind of proba-
bilistic measurement and for arbitrary quantum state ρ, the
detecting result is in essence probabilistic, with the probability
given by

P1 = Tr[ρE1], P0 = Tr[ρE0]. (1)

The normalization of the probability P0 + P1 = 1 follows
directly from the trace-preserving condition in POVM: E0 +
E1 = I , with I being the identity matrix in the Hilbert space
Hdim(ρ).

We consider the most general scenario in which we have no
information on the target. We assume the two hypotheses that
the region may or may not contain a target are equally likely,
i.e., the a priori probability

p0 = Prob(target absent) = 1
2 , (2)

p1 = Prob(target exist) = 1 − p0 = 1
2 . (3)

Averaging over both hypotheses, one may find that the error
probability is

Perr = p1Tr
[
ρ

(1)
ABE0

] + p0Tr
[
ρ

(0)
ABE1

]
= 1

2

(
1 − 1

2 Tr
[(

ρ
(1)
AB − ρ

(0)
AB

)
(E1 − E0)

])
. (4)

The construction of optimal {Er} for discriminating a
nonorthogonal quantum state has been clearly understood
[13–15] and the minimal error probability is

Perr = 1
2

(
1 − 1

2

∥∥ρ
(1)
AB − ρ

(0)
AB

∥∥)
, (5)

with ‖γ ‖ = Tr
√

γ †γ = ∑
i si(γ ), and si(γ ) is the absolute

value of the eigenvalues [14].
To see the advantage of quantum illumination with

PSTMSS and TMSS, one should evaluate Perr when |ψ〉PSTMSS

and |ψ〉TMSS as input. Correspondingly, we may obtain
the error probability P PSTMSS

err and P TMSS
err . However, only a

moment’s thought is needed to find that P PSTMSS
err and P TMSS

err
are both close to 1/2 for our quantum-illumination scheme in
Fig. 1.

To see the effect gained by quantum more clearly, a joint
state of many-copy entanglement will always be applied [4–6].
Then, the error probability with an M copy state is

Perr,M = 1
2

(
1 − 1

2

∥∥ρ
(1)⊗M
AB − ρ

(0)⊗M
AB

∥∥)
. (6)

At this point, the optimal joint measurement POVM giving the
judgment rule should be the projectors on the support of the
positive and negative parts of ρ

(1)⊗M
AB − ρ

(0)⊗M
AB .

Direct evaluation of Perr,M is quite a difficult task when
the dimensions of ρAB and M are very large. Fortunately,
the quantum Chernoff bound (QCB) [16,17] comes to the
rescue. For discrimination of the two states ρ

(1)⊗M
AB and

ρ
(0)⊗M
AB , the QCB places the following limit on the error

probability:

Perr,M � P M
QCB = 1

2e−ME = 1
2

{
min

0�s�1
Qs

}M

, (7)

with

E = − ln
[

min
0�s�1

Qs

]
, Qs = Tr

[
ρ

(1)s
AB ρ

(0)1−s
AB

]
. (8)

P M
QCB poses an upper bound on the error probability of

quantum target detection with joint quantum measurement
on arbitrary M copies. More important, such a QCB can be
conveniently obtained with the calculation involving single-
copy states ρ

(1)
AB and ρ

(0)
AB. On the other hand, the lower bound

of Perr,M is also an important figure of merit. A computable
lower bound is given by [6]

Perr,M � Perr,M,L = 1
2

(
1 −

√
1 − {

Tr
[
ρ

(1)1/2
AB ρ

(0)1/2
AB

]}2M)
.

(9)

The importance of Perr,M,L lies in the fact that it is again
a given quantity evaluated from single-copy states ρ

(1)
AB and

ρ
(0)
AB. Although not exponentially tight, Perr,M,L and P M

QCB do
provide clues to how P M

err behaves with exponentially growing
M . In the following, we will consider the specific scenarios
in which the ideal PSTMSS and practical PSTMSS are
involved.

III. QUANTUM ILLUMINATION WITH IDEAL PSTMSS

We now consider the quantum illumination with the state of
ideal PSTMSS. First of all, we consider the quantum state of
TMSS. In Ref. [6], TMSS is described with a covariance matrix
in phase space. Here, instead, our analysis will start from the
photon number space. In fact, the formalism in Ref. [6] applies
solely to a Gaussian state. In the non-Gaussian regime, for
example, the photon-subtracted TMSS, the photon state space

062309-2



QUANTUM ILLUMINATION WITH PHOTON-SUBTRACTED . . . PHYSICAL REVIEW A 89, 062309 (2014)

is most powerful and straightforward. To this point, we use
the Fock state [18] {|n〉,n = 0,1, . . . ,∞} as a basis for the
quantum state of the single-mode Hilbert space. For example,
the TMSS state is a superposition of infinitely many Fock
states in photon number space

|�〉AB =
√

1 − λ2
∞∑

n=0

λn|n〉A|n〉B. (10)

Photon-subtracted TMSS is a modified TMSS and is
what we are mainly concerned with in the following dis-
cussions. Photon subtraction is not completely new but fre-
quently used in continuous-variable entanglement distillation
[19–27] and Bell-inequality violation [28–30]. Mathemati-
cally, ideal photon subtraction can be represented with the
photon annihilation operator â and PSTMSS follows âA ⊗
âB|�〉AB. After normalization, we obtain

|� ′〉AB =
∞∑

n=0

(1 − λ2)3/2

√
1 + λ2

(n + 1)λn|n,n〉, (11)

with λ = tanh(r) and r being the squeezing parameters.
We now consider the derivation of ρ

(1)
AB and ρ

(0)
AB. First,

when the target is absent we have κ = 0 and the reflectivity of
the beam splitter [Fig. 1(b)] is unity. All the thermal states in
mode C will be projected onto the joint quantum measurement.
Thus, we have

ρ
(0)
AB = TrB[|� ′〉AB〈� ′|] ⊗ ρth(NB)

= (1 − λ2)3

(1 + λ2)

∞∑
n=0

λ2n(n + 1)2|n〉〈n| ⊗ ρth(NB), (12)

with ρth(NB) being the single-mode thermal state with average
photon number NB:

ρth(NB) =
∞∑

k=0

1

NB + 1

(
NB

NB + 1

)k

|k〉〈k|. (13)

Second, when the target is present, we have a beam
splitter of extremely low transmittance κ . The unitary
transformation of modes B and C is described with Ṽ =
exp{arctan[

√
(1 − η)/η](âBâ

†
C − â

†
BâC)}. Written in the Fock

basis |n〉A|m〉B, the transformation of Ṽ follows

Ṽ |n〉|m〉 =
n∑

k=0

m∑
	=0

f nm
kl (η)|n − k + 	〉|m + k − 	〉, (14)

with

f nm
kl (η) = (−1)	

√(
n

k

)(
n − k + 	

	

)(
m

	

)(
m + k − 	

k

)
× (η)

m+n−k−	
2 (1 − η)

k+	
2 . (15)

Thus, the coupling between the three-mode state ABC follows

ρABC = Ṽ [|� ′〉〈� ′| ⊗ ρth(N ′
B)]Ṽ †,

in which we use a thermal state with slightly different intensity
N ′

B = NB
1−κ

to represent the noise entering mode C. Such a
choice is made in order to specify the thermal noise observed
in joint quantum measurement the same as the one when target
is absent [6].

Finally at the joint measurement, we only take care of
modes A and B. By taking a partial trace over mode C, we
have

ρ
(1)
AB = TrC[ρABC] = (1 − λ2)3

λ2(1 + λ2)(N ′
B + 1)

∞∑
n1=0

∞∑
n2=0

∞∑
m=0

1

N ′
B + 1

(
N ′

B

N ′
B + 1

)k

λn1+n2+2(n1 + 1)(n2 + 1)|n1〉A〈n2|

⊗
(

n1∑
k=0

m∑
	=0

n2∑
k′=0

m∑
	′=0

f
n1m
k,	 (κ)f n2m

k′	′ (κ)δk−	,k′−	′ |n1 − k + 	〉B〈n2 − k′ + 	′|
)

. (16)

From Eqs. (12) and (16), we can immediately evaluate
the corresponding Qs via numerical methods. Precisely, we
cannot save and process all the entries in the density matrix of
infinite-dimensional Hilbert space and one convenient way is
to truncate the photon number of the relevant quantum state to a
preassigned value D. Namely, we consider the photon number
subspace 0,1, . . . ,D − 1 and neglect all the contributions of
higher photon number. Such an approximation is quite suitable
particularly when the input entanglement |� ′

AB〉 is rather weak.
Of course, the larger the value D, the more information of
ρ

(0)
AB and ρ

(1)
AB will be preserved. In fact, to balance with the

computer resources required in the numerical simulation and
numerical convergence, a suitable D is chosen for numerical
computation.

The advantage afforded by photon subtraction can be
clearly observed by showing the dependence of the QCB for
Perr,M on the number of copies M . The plots are given in
logarithmic scales in Fig. 2. For clarity, we show the QCB

in three different values of environment noise: (a) NB = 10,
(b) NB = 1, and (c) NB = 0.1. Also shown is the lower
bound for error probability of detection with coherent state
|α〉 (classic illumination) and TMSS (quantum illumination)
[6]. In each curve (a)–(c), we choose target reflectivity to
be κ = 0.01, the average of photon number in transmitted
mode Ns = 0.01. Moreover, the parameter for the TMSS to
be photon subtracted still follows Ns = 0.01. This helps us to
clearly show the enhancement afforded by photon subtraction.
The solid lines in Fig. 2 denote the QCB of target detec-
tion with PSTMSS. Our numerical results are summarized
as follows:

(1) The QCB for PSTMSS is not only much smaller
than that for TMSS, P

M,PSTMSS
QCB < P

M,TMSS
QCB , but also far

less than the lower bound of TMSS, P
M,PSTMSS
QCB < P

M,TMSS
err,M,L .

This tells us that even if the QCB fails to be exponentially
tight, the error probability P

M,PSTMSS
QCB is strictly smaller than
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FIG. 2. (Color online) Error probability of target detection for
coherent state, TMSS state, and PSTMSS. (a) NB = 10, D = 20,
(b) NB = 1, D = 15, (c) NB = 0.1, D = 10. Also shown are the
lower bounds for the coherent (circle lines) and TMSS (dashed lines)
states. The reflectivity of the target (equivalently, the transmittance
coefficient of the beam splitter) is chosen: κ = 0.01. For all subplots
in (a)–(c), the transmitted modes of the TMSS and coherent states
are chosen to be Ns = 0.01 = sinh2(r) = |α|2. Also in PSTMSS, the
squeezing parameter for the relevant TMSS still follows Ns = 0.01.

P
M,TMSS
err,M,L , showing the power of quantum illumination with

photon-subtracted Gaussian state.
(2) Gaussian quantum illumination with TMSS outper-

forms the classic receiver (the classic illumination) in strong
noisy backgrounds [see Fig. 2(a)]. However, in less noisy
circumstances, for example, NB = 1 or NB = 0.1, the quantum
illumination with TMSS is no longer the optimal receiver,
which is explicitly demonstrated in Figs. 2(b) and 2(c). One
could see that the QCB of P

M,TMSS
QCB even exceeds the lower

bound of the coherent state, and the advantage of quantum
illumination disappears. Fortunately, the photon-subtracted
state helps even in less noisy environments.

This leads us to investigate the mechanism under which
error probability has been reduced. As shown in Eq. (8),
the error probability in the case of a many-copy state is
not determined by the entanglement in the quantum state
of ρAB but by the distinction between the two states ρ

(1)
AB

and ρ
(0)
AB. In terms of the quantum Chernoff bound, such

a distinction is further evaluated with the corresponding

overlap QTMSS
s = Tr[ρ(1)

AB

s
ρ

(0)
AB

1−s
]. Whereas in the case of

coherent-state illumination, we have no B mode and Qcoh
s =

Tr[ρ(1)
A

s
ρ

(0)
A

1−s
]. In a less noisy environment such as NB = 0.1,

it can be numerically shown that min0�s�1 QTMSS
s = QTMSS

0.5
and min0�s�1 QCoh

s = QCoh
0.5 and QTMSS

0.5 > QCoh
s and coherent-

state illumination (classic illumination with no entanglement)
performs better than quantum-state illumination (with TMSS
entanglement state), which is independently observed in
Ref. [5].

As for the state PSTMSS, it appears that error probability
with PSTMSS is always lower than with TMSS. The reason can
be tracked back to the photon-number population in Eq. (11).
Actually, we use a very weak TMSS state (Ns = 0.01), which
can be well approximated with |ψTMSS〉 = |00〉 + √

Ns |11〉.
However, with bi-side photon subtraction, we obtain the state
|ψPS

TMSS〉 = |00〉 + 2
√

Ns |11〉. This equals a pure TMSS state
with doubled average photon number. Namely, this seems as
if we use a squeezing-double TMSS state to illuminate the
target. The error probability is no doubt reduced. It should
be noted that the doubled squeezing comes from our photon
subtraction which modulates the photon-number distribution,
not from simply increasing the average photon number Ns .
This again shows the effect of photon subtraction in quantum
target detection. It appreciably extends the regimes in which
quantum illumination is optimal for target detection.

IV. QUANTUM ILLUMINATION WITH
PRACTICAL PSTMSS

In the previous section, we considered quantum illumi-
nation with ideal photon subtraction. Physically, these are
nonphysical operations and the realistic photon annihilation
can be implemented with photonic beam splitters and “on-off”
photon detectors [19,21]. Actually, this is the one of the most
widely used techniques in continuous-variable entanglement
distillation. After the realistic photon subtraction, a pure TMSS
state is projected into a mixed state. The mix is introduced
by the nondiscrimination of the detected photons. According
to Refs. [19,23], the state after photon subtraction can be
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FIG. 3. (Color online) Error probability of target detection for
coherent state, TMSS state, and realistic PSTMSS state. (a)
NB = 5, D = 25 (b) NB = 0.5, D = 17, (c) NB = 0.05, D = 10.
Also shown are the lower bounds for coherent (circle lines) and
TMSS (dashed lines) states. All other parameters are chosen from
Fig. 2.

represented with

ρ
PSTMSS(r)
AB = (1 − λ2)(1 − λ2T )(1 − λ2T 2)

λ2(1 − T )2(1 + λ2T )

∞∑
n,m=1

(λT )n+m

×
min (n,m)∑

k,l=1

Ckl
mn|n − k,n − l〉〈m − k,m − l|,

(17)

with

Ckl
mn =

√(
n

k

)(
m

k

)(
n

l

)(
m

l

) (
1 − T

T

)k+l

, (18)

and T being the transmittance of the beam splitter in photon
subtractions. The “(r)” in Eq. (17) indicates that the state is
now a realistic PSTMSS state. Then the quantum illumination
with ρ

PSTMSS(r)
AB can proceed the same way as the one in

Sec. III. When the target is absent, it follows

ρ
(0)
AB(r) = TrB

[
ρ

PSTMSS(r)
AB

] ⊗ ρth(NB). (19)

However, when the target is present, we have

ρ
(1)
AB(r) = TrC

{
Ṽ

[
ρ

PSTMSS(r)
AB ⊗ ρth(N ′

B)
]
Ṽ †}. (20)

With Eqs. (19) and (20), we can numerically calculate Qs =
Tr[ρ(1)s

AB(r)ρ
(0)1−s
AB(r) ] and then evaluate the QCB in quantum

illumination. In Fig. 3, we compare the performance of
quantum illumination with realistic photon subtraction. Here,
the transmittance of the beam splitter is chosen as T = 0.95,
which has already been checked in a recent experiment [27].
We give a numerical evaluation of the performance of quantum
illumination with a practical photon-subtracted state. Here,
to keep the numerical convergence for simulating the mixed
state [Eq. (17)], we keep more photons in each mode. Again,
our result shows that the illumination with a realistic photon-
subtracted state still works very well to improve quantum
illumination, in both low- and high-noise operating regimes.

V. CONCLUSIONS

We demonstrate that a photon-subtracted (both ideal and re-
alistic) continuous-variable entanglement state can be applied
to the detection of a low-reflectivity object in noisy and noise-
less environments. Our result is obtained via the derivation of
a non-Gaussian quantum state in photon-number space. This is
a complement to the previous result for quantum illumination
with Gaussian states, and these non-Gaussian states can be
generated in laboratories [31]. We hope our extension of the
regime where quantum illumination outperforms the classic
illumination can be experimentally checked in the near future.
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[28] R. Garcı́a-Patrón, J. Fiurášek, N. J. Cerf, J. Wenger, R. Tualle-
Brouri, and P. Grangier, Phys. Rev. Lett. 93, 130409 (2004).

[29] Tim J. Bartley, Philip J. D. Crowley, Animesh Datta, Joshua
Nunn, Lijian Zhang, and Ian A. Walmsley, Phys. Rev. A 87,
022313 (2013).

[30] Hyunchul Nha and H. J. Carmichael, Phys. Rev. Lett. 93, 020401
(2004).

[31] Yury Kurochkin, Adarsh S. Prasad, and A. I. Lvovsky, Phys.
Rev. Lett. 112, 070402 (2014).

062309-6

http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1126/science.1160627
http://dx.doi.org/10.1126/science.1160627
http://dx.doi.org/10.1126/science.1160627
http://dx.doi.org/10.1126/science.1160627
http://dx.doi.org/10.1088/1367-2630/11/6/063045
http://dx.doi.org/10.1088/1367-2630/11/6/063045
http://dx.doi.org/10.1088/1367-2630/11/6/063045
http://dx.doi.org/10.1088/1367-2630/11/6/063045
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1103/PhysRevLett.101.253601
http://dx.doi.org/10.1103/PhysRevA.80.052310
http://dx.doi.org/10.1103/PhysRevA.80.052310
http://dx.doi.org/10.1103/PhysRevA.80.052310
http://dx.doi.org/10.1103/PhysRevA.80.052310
http://dx.doi.org/10.1103/PhysRevLett.110.153603
http://dx.doi.org/10.1103/PhysRevLett.110.153603
http://dx.doi.org/10.1103/PhysRevLett.110.153603
http://dx.doi.org/10.1103/PhysRevLett.110.153603
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.89.137903
http://dx.doi.org/10.1103/PhysRevLett.89.137904
http://dx.doi.org/10.1103/PhysRevLett.89.137904
http://dx.doi.org/10.1103/PhysRevLett.89.137904
http://dx.doi.org/10.1103/PhysRevLett.89.137904
http://dx.doi.org/10.1103/PhysRevA.66.032316
http://dx.doi.org/10.1103/PhysRevA.66.032316
http://dx.doi.org/10.1103/PhysRevA.66.032316
http://dx.doi.org/10.1103/PhysRevA.66.032316
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1103/PhysRevLett.102.120501
http://dx.doi.org/10.1016/S0019-9958(67)90302-6
http://dx.doi.org/10.1016/S0019-9958(67)90302-6
http://dx.doi.org/10.1016/S0019-9958(67)90302-6
http://dx.doi.org/10.1016/S0019-9958(67)90302-6
http://dx.doi.org/10.1103/PhysRevA.71.062340
http://dx.doi.org/10.1103/PhysRevA.71.062340
http://dx.doi.org/10.1103/PhysRevA.71.062340
http://dx.doi.org/10.1103/PhysRevA.71.062340
http://dx.doi.org/10.1103/PhysRevA.72.014305
http://dx.doi.org/10.1103/PhysRevA.72.014305
http://dx.doi.org/10.1103/PhysRevA.72.014305
http://dx.doi.org/10.1103/PhysRevA.72.014305
http://dx.doi.org/10.1103/PhysRevLett.98.160501
http://dx.doi.org/10.1103/PhysRevLett.98.160501
http://dx.doi.org/10.1103/PhysRevLett.98.160501
http://dx.doi.org/10.1103/PhysRevLett.98.160501
http://dx.doi.org/10.1103/PhysRevA.77.032311
http://dx.doi.org/10.1103/PhysRevA.77.032311
http://dx.doi.org/10.1103/PhysRevA.77.032311
http://dx.doi.org/10.1103/PhysRevA.77.032311
http://dx.doi.org/10.1103/PhysRevA.84.062309
http://dx.doi.org/10.1103/PhysRevA.84.062309
http://dx.doi.org/10.1103/PhysRevA.84.062309
http://dx.doi.org/10.1103/PhysRevA.84.062309
http://dx.doi.org/10.1103/PhysRevA.78.012331
http://dx.doi.org/10.1103/PhysRevA.78.012331
http://dx.doi.org/10.1103/PhysRevA.78.012331
http://dx.doi.org/10.1103/PhysRevA.78.012331
http://dx.doi.org/10.1103/PhysRevA.61.032302
http://dx.doi.org/10.1103/PhysRevA.61.032302
http://dx.doi.org/10.1103/PhysRevA.61.032302
http://dx.doi.org/10.1103/PhysRevA.61.032302
http://dx.doi.org/10.1103/PhysRevA.67.032314
http://dx.doi.org/10.1103/PhysRevA.67.032314
http://dx.doi.org/10.1103/PhysRevA.67.032314
http://dx.doi.org/10.1103/PhysRevA.67.032314
http://dx.doi.org/10.1103/PhysRevA.73.042310
http://dx.doi.org/10.1103/PhysRevA.73.042310
http://dx.doi.org/10.1103/PhysRevA.73.042310
http://dx.doi.org/10.1103/PhysRevA.73.042310
http://dx.doi.org/10.1103/PhysRevA.73.043807
http://dx.doi.org/10.1103/PhysRevA.73.043807
http://dx.doi.org/10.1103/PhysRevA.73.043807
http://dx.doi.org/10.1103/PhysRevA.73.043807
http://dx.doi.org/10.1103/PhysRevA.80.032309
http://dx.doi.org/10.1103/PhysRevA.80.032309
http://dx.doi.org/10.1103/PhysRevA.80.032309
http://dx.doi.org/10.1103/PhysRevA.80.032309
http://dx.doi.org/10.1364/JOSAB.30.001922
http://dx.doi.org/10.1364/JOSAB.30.001922
http://dx.doi.org/10.1364/JOSAB.30.001922
http://dx.doi.org/10.1364/JOSAB.30.001922
http://dx.doi.org/10.1038/nphoton.2010.1
http://dx.doi.org/10.1038/nphoton.2010.1
http://dx.doi.org/10.1038/nphoton.2010.1
http://dx.doi.org/10.1038/nphoton.2010.1
http://dx.doi.org/10.1103/PhysRevLett.93.130409
http://dx.doi.org/10.1103/PhysRevLett.93.130409
http://dx.doi.org/10.1103/PhysRevLett.93.130409
http://dx.doi.org/10.1103/PhysRevLett.93.130409
http://dx.doi.org/10.1103/PhysRevA.87.022313
http://dx.doi.org/10.1103/PhysRevA.87.022313
http://dx.doi.org/10.1103/PhysRevA.87.022313
http://dx.doi.org/10.1103/PhysRevA.87.022313
http://dx.doi.org/10.1103/PhysRevLett.93.020401
http://dx.doi.org/10.1103/PhysRevLett.93.020401
http://dx.doi.org/10.1103/PhysRevLett.93.020401
http://dx.doi.org/10.1103/PhysRevLett.93.020401
http://dx.doi.org/10.1103/PhysRevLett.112.070402
http://dx.doi.org/10.1103/PhysRevLett.112.070402
http://dx.doi.org/10.1103/PhysRevLett.112.070402
http://dx.doi.org/10.1103/PhysRevLett.112.070402



