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We present a protocol for quantum fingerprinting that is ready to be implemented with current technology and
is robust to experimental errors. The basis of our scheme is an implementation of the signal states in terms of
a coherent state in a superposition of time-bin modes. Experimentally, this requires only the ability to prepare
coherent states of low amplitude and to interfere them in a balanced beam splitter. The states used in the protocol
are arbitrarily close in trace distance to states of O(log2 n) qubits, thus exhibiting an exponential separation in
abstract communication complexity compared to the classical case. The protocol uses a number of optical modes
that is proportional to the size n of the input bit strings but a total mean photon number that is constant and
independent of n. Given the expended resources, our protocol achieves a task that is provably impossible using
classical communication only. In fact, even in the presence of realistic experimental errors and loss, we show
that there exist a large range of input sizes for which our quantum protocol transmits an amount of information
that can be more than two orders of magnitude smaller than a classical fingerprinting protocol.
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I. INTRODUCTION

Communication complexity is the study of the amount
of communication that is required to perform distributed
information-processing tasks. This corresponds to the
scenario in which two parties, Alice and Bob, respectively
receive inputs x,x ′ ∈ {0,1}n. Their goal is to collaboratively
compute the value of a Boolean function f (x,x ′) with as little
communication as possible [1]. Although they can always
do this by communicating their entire input, there are many
situations in which they can succeed with significantly less
communication [2].

Likewise, quantum communication complexity studies the
case where the parties are allowed to employ quantum
resources such as quantum channels and shared entanglement
(see Refs. [3,4] for an overview). Remarkably, it has been
proven that there exist various problems for which the use of
quantum resources offer exponential savings in communica-
tion compared to their classical counterparts [5–9]. Unfortu-
nately, these results are currently accompanied by only a few
experimental demonstrations [10–12], and providing a method
to facilitate their implementation is a pressing problem.

We focus on the simultaneous message passing model [1],
in which Alice and Bob are not allowed to communicate with
each other but instead send messages to a third party, the
referee, who must determine the value of the function based
only on the messages she receives. An important example is
the equality problem, where f (x,x ′) = 1 if and only if x = x ′.
In this case, Alice and Bob can achieve their goal by sending
much shorter fingerprints of their original inputs. If they are
restricted to classical messages and local randomness only, it
has been shown that the optimal classical protocols require
fingerprints of length at least �(

√
n) when an arbitrarily small

probability of error is allowed [13–15]. On the other hand,
it was shown in Ref. [9] that if Alice and Bob are allowed to
send quantum states, then they only need to send fingerprints of
O(log n) qubits, thus demonstrating an exponential separation
between classical and quantum communication complexity.

In this work, we present a protocol for quantum finger-
printing that uses quantum states that are arbitrarily close in

trace distance with respect to states of O(log2 n) qubits, thus
exhibiting an exponential separation in abstract communica-
tion complexity compared to the classical case. The protocol
is robust to experimental imperfections and is characterized
by a probability of error which is tunable and can be made
arbitrarily small. Moreover, in an ideal implementation, the
mean photon number of the signals is independent of n, so
that the energy cost of the protocol is constant regardless of
the size of the messages.

In the remainder of this paper, we describe the results
of Ref. [9], and based on them, we outline the protocol for
implementing quantum fingerprinting with coherent states and
a constant mean number of photons. We then show how the
protocol can be adjusted to account for experimental errors,
and we analyze its performance in realistic scenarios. Finally,
we conclude by discussing further possible applications of our
results as well as some of its limitations.

II. COHERENT-STATE QUANTUM PROTOCOL

Quantum fingerprinting, as introduced in Ref. [9], relies
on the concept of error-correcting codes. A code can be
expressed as a function E : {0,1}n → {0,1}m, where E(x)
is the codeword associated with the input x and m = cn

for some c > 1. The protocol makes use of codes that have
the additional property that the minimum Hamming distance
between any two codewords is at least (1 − δ)m for some
δ > 0. One example is Justesen codes [16], for which we can
have δ < 9

10 + 1
15c

whenever c > 2. In Ref. [9], a protocol is
specified in which, for each possible input x and corresponding
codeword E(x), Alice and Bob prepare the fingerprint states

|hx〉 = 1√
m

m∑
i=1

(−1)E(x)i |i〉 , (1)

where E(x)i is the ith bit of the codeword E(x). This state
has dimension m, so it can be associated with a system of
log2 m = O(log2 n) qubits.

An approach to implementing the fingerprint states is to
decompose the underlying Hilbert space as a tensor product of
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Hilbert spaces of smaller dimension [12,17,18]. For example,
we could have a collection of O(log2 n) two-level systems,
such as photons in the polarization degree of freedom. As
noted already in Ref. [12], a serious drawback of this strategy
is that most fingerprint states must be highly entangled
[19,20], so that even for low input sizes, the experimental
requirements greatly exceed that which is possible to achieve
with current technology, except for the case of single-qubit
quantum fingerprinting [17,18].

Alternatively, we can consider the underlying Hilbert space
as arising directly from a single m-dimensional physical
system, such as a single photon distributed over m orthogonal
optical modes, as has been considered in Refs. [21,22]. In that
case, let bi be the annihilation operator of the ith optical mode.
We define the fingerprint mode as ax = 1√

m

∑m
i=1(−1)E(x)i bi ,

so that a single-photon state in the fingerprint mode

a†
x |0〉 = 1√

m

m∑
i=1

(−1)E(x)i |1〉i (2)

is exactly an implementation of the fingerprint state of Eq. (1).
Here |1〉i denotes a one-photon state in the ith mode. Since
these states are an exact implementation of the fingerprint
states, they are equivalent to states of O(log2 n) qubits, even if
the number of modes employed is proportional to the input
size n. This clearly indicates that the amount of abstract
communication in a protocol is not given by the number of
modes used.

In general, we must quantify the amount of communication
by the smallest number of qubits that would be required,
in principle, to replicate the performance of the protocol.
More precisely, if a quantum communication protocol uses
states in a Hilbert space of dimension d, this space can be
associated with a system of O(log2 d) qubits. Therefore, the
amount of communication C in a quantum protocol is generally
given by

C = log2[dim(H)], (3)

where H is the smallest Hilbert space containing all the states
of the protocol, which may be a significantly smaller subspace
of the entire Hilbert space associated with the physical systems.
For example, a single photon in the polarization degree
of freedom can be used as a qubit, but we require two
polarization modes, each representing an infinite-dimensional
Hilbert space. Moreover, Holevo’s theorem [23] guarantees
that no more than log2 d classical bits of information could be
transmitted, on average, by a quantum protocol that uses states
in a Hilbert space of dimension d.

By quantifying communication carefully, we gain a better
understanding of the different physical resources that are
required to transmit a certain amount of information. For
example, the fact that the same amount of information can
be transmitted by a single photon in n optical modes, at most
n photons in a single mode or log2 n qubits, is understood
because the smallest Hilbert space containing all possible
states in each of the three cases has the same dimension.

In terms of an experimental demonstration, creating states
of fixed photon number in a superposition of modes, as pro-
posed in Refs. [21,22], is an extremely challenging task [24].
Instead, we opt for an alternative that is readily implementable

in practice: a coherent state in the fingerprint mode. This
coherent fingerprint state can be written as |α〉x = Dx(α) |0〉,
where Dx(α) = exp(αa

†
x − α∗ax) is the displacement operator

and α is a complex number. A straightforward calculation
shows that this state can be equivalently expressed as a simple
sequence of coherent pulses

|α〉x =
m⊗

i=1

∣∣∣∣(−1)E(x)i
α√
m

〉
i

, (4)

where | α√
m

〉i is a coherent state with amplitude α√
m

in the ith
mode. Notice that a projection of this state onto the single-
photon subspace gives exactly the state of Eq. (2).

The phase of each individual state in the product depends
on the corresponding bit of the codeword. Therefore, to
implement the states correctly, Alice and Bob need a common
phase reference, which can be established before the start of
the protocol or may be available already from other contexts,
without giving Alice and Bob access to shared randomness.
On the other hand, the referee needs a measurement that allows
her to verify whether the relative phases of the incoming
pulses are equal or different. A way of achieving this consists
of an interferometer in which the individual pulses enter a
balanced beam splitter, and whenever there is a click in the
output detectors, it is unambiguously revealed whether their
phases are the same or not [25]. We call these outcomes
“0” and “1,” respectively, in accordance to the relative parity
of the phases. In this way, we have established the basic
ingredients for a quantum fingerprinting protocol in an ideal
implementation:

(1) Alice and Bob fix a value c for the Justesen code and of
α for the coherent fingerprint states.

(2) They prepare states |α〉x , |α〉x ′ according to their
respective inputs x,x ′ as in Eq. (4).

(3) They send these states to the referee, who performs an
interference measurement on the individual signals using a
balanced beam splitter and single-photon detectors.

(4) The referee concludes that the inputs are different if and
only if she observes at least one click in the 1 detector.

An illustration of the protocol is shown in Fig. 1.

FIG. 1. (Color online) Coherent-state protocol: Alice and Bob
send a train of m coherent pulses whose phases (+ or −) depend on
the inputs they receive. The referee interferes the individual signals
in a 50:50 beam splitter and concludes that the inputs are different if
and only if at least one 1 click is observed.
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As discussed before, the abstract communication cost of a
quantum protocol, which is equal to the amount of information
transmitted, is determined by the dimension of the quantum
states used. In our case, the coherent fingerprint states are
effectively contained in a Hilbert space of small dimension, as
is formally summarized by the following statement:

Theorem 1. There exist a set of states {|v〉x} of dimension d

satisfying log2 d = O(log2 n), such that for any ε > 0, it holds
that |||v〉〈v|x − |α〉〈α|x ||1 � ε for all inputs x.

Proof. For a given �N , let HV be the subspace spanned by
the Fock states |N〉x whose photon number N satisfies |N −
|α|2| � �N . To calculate the dimension of this subspace, we
use the fact that the dimension of the space of states with fixed
a photon number N is equal to the number of distinct ways
in which the photons can be distributed into the m different
modes. Since the photons are indistinguishable, this quantity
is given by the binomial factor (N + m − 1

m − 1 ) [26]. In the case of
HV , there are 2�N different possible values of N , the largest
being N = |α|2 + �N . Thus, the dimension d of this subspace
satisfies

log2 d � log2

[
2�N

(|α|2 + �N + m − 1

m − 1

)]

� (|α|2 + �N ) log2(m + |α|2 + �N − 1)

+ log2(2�N ), (5)

which is O(log2 n) for any fixed α and �N .
Now let PV be the projector unto HV and define the

O(log2 n)-qubit states |v〉x := PV |α〉x /||PV |α〉x ||. Consider
a measurement {PV ,1 − PV } that informs us whether the
photon number lies within the range |N − |α|2| � �N . Since
all of the coherent fingerprint states have the same Poissonian
photon number distribution with mean |α|2, we can use the
properties of this distribution to calculate the probability that
the measured number of photons N deviates by an amount �N

from its expected value. This probability satisfies [27]

Pr(|N − |α|2| � �N ) � 2e−|α|2
(

e|α|2
|α|2 + �N

)|α|2+�N

= ε′.

(6)

This also implies that 1 − |〈v|α〉x |2 � ε′. Finally, using the
Fuchs–van de Graaf inequality [28], we have that

|||v〉〈v|x − |α〉〈α|x ||1 � 2
√

1 − |〈v|α〉x |2 � 2
√

ε′, (7)

and this can be made equal to any ε > 0 by choosing �N

accordingly while keeping α fixed. �
The above result implies that the statistics obtained from

any measurement on the coherent fingerprint states can
be made arbitrarily close to those obtained from states of
O(log2 n) qubits. Therefore, for sufficiently small ε, the two
cases are operationally indistinguishable, and an exponential
separation in communication complexity is maintained.

To calculate the error probability of the protocol, notice
that whenever x = x ′, the referee outputs the correct answer
with certainty because the only possible outcomes are 0 or
no clicks. For the case of x 	= x ′, we need to calculate the
probability that no 1 outcomes are observed. It can be shown
(see the Appendix for details) that this probability of error

satisfies

Prm(error) � [1 − pc(1 − δ)]m, (8)

where pc is the probability of obtaining a click at each time
slot, which is given by

pc = 1 − exp

(
−2

|α|2
m

)
. (9)

To illustrate the behavior of this quantity, note that for large
m, we can make the approximation pc ≈ 2|α|2

m
, so that

Prm(error) ≈
(

1 − 2(1 − δ)|α|2
m

)m

� exp[−2(1 − δ)|α|2]. (10)

Therefore, for fixed δ, the probability of error can be made
arbitrarily close to zero by fixing α accordingly, and this error
decreases exponentially with α. Moreover, we can choose the
total mean photon number of the coherent fingerprint states
independently of the input size and still satisfy any demand on
the error probability.

III. PROTOCOL IN THE PRESENCE OF EXPERIMENTAL
ERRORS

So far, we have assumed an ideal scenario, but any practical
implementation will invariably suffer from the presence of
experimental errors. Our goal is now to show that the above
protocol can be modified to become robust against these errors.

The main drawback of the previous protocol is that it
is extremely sensitive to the error that occurs when the
fingerprints are equal, but the 1 detector fires due to an
imperfection. Nevertheless, it is natural to envision a situation
in which the expected ratio of 0 to 1 clicks differs significantly
for the cases of equal or different inputs, so that these situations
can be statistically distinguished. Formally, let f0 be the
observed fraction of 0 outcomes and define the expectation
values qE := E(f0|x = x ′), qD := E(f0|x 	= x ′), and �q =
(qE − qD)/2. The modification to the protocol is then very
simple: The referee concludes that the inputs are equal if and
only if f0 > qE − �q . In this case, it can be shown (see the
Appendix for details) that the probability of error satisfies

Prm(error) �
[
1 − p′

c

(
1 − e−2�2

q

)]m
, (11)

where p′
c ≈ pc + pdark is the effective click probability. Again,

for large m, p′
c ≈ 2|α|2/m, and we get

Prm(error) � e−2|α|2(1−e
−2�2

q ), (12)

which can also be made arbitrarily close to zero by fixing α

accordingly.
The values of the expectations qE and qD as well as the

click probability p′
c are determined by the experimental errors.

We consider a model of imperfections characterized by three
parameters: the combined effect of channel loss and limited
detector efficiency η, the limited visibility of the interferometer
ν, and the dark count probability pdark. The effect of loss and
limited efficiency is equivalent to a transformation |α〉x →
|√ηα〉x , which can always be compensated by increasing
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the initial value of α to α/η, without changing the scaling
properties of the protocol.

Since pdark � 1 and p′
c � 1 for large n, we neglect the

occurrence of double clicks in one time slot. In this case the
expected fractions of 0 outcomes can be shown to be

qD = pc

pc + pdark
[νδ + (1 − ν)(1 − δ)] + pdark

2(pc + pdark)
,

qE = pc

pc + pdark
ν + pdark

2(pc + pdark)
. (13)

From these expressions we can also calculate �q to obtain

�q = pc

pc + pdark
(1 − δ)(2ν − 1). (14)

It is important to notice the crucial role played by the
dark count probability, which sets a limit on the maximum
input size the protocol can tolerate with a fixed mean photon
number. When the click probability pc becomes smaller than
pdark, most of the outcomes are random regardless of whether
the inputs are equal or different, making the two situations
increasingly difficult to distinguish. To put this into context, it
is currently possible to achieve values as low as pdark ∼ 10−8

[30]. In this case, the protocol can function for input sizes of
up to n ∼ 1013 for a constant mean number of photons. This
can be seen in Fig. 2, where a comparison of classical and
quantum fingerprinting protocols is made. We also highlight
that even in the presence of errors, our protocol surpasses the
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FIG. 2. (Color online) Logarithmic plot for the transmitted infor-
mation as a function of the input size n for different fingerprinting
protocols with probability of error of 10−6. We adopt the classical
protocol specified in [14], which requires 2

√
n + O(1) bits of

communication and must be repeated ten times to ensure the desired
probability of error. For the quantum case, we choose c = 3 for the
Justesen code and portray the cost for the coherent-state protocol
with an ideal implementation (|α|2 = 88.8) and for a nonideal
implementation (|α|2 = 6651) suffering from experimental errors.
The effective dimension of the states is chosen so that the trace
distance between the fingerprint states and states of this dimension is
smaller than 10−6. The errors are characterized by the parameters η =
0.1, ν = 0.98 as in the experiment of [29] and by pdark = 4 × 10−8,
as would occur with the Superconducting Nano-wire Single-Photon
Detector (SNSPD) of Ref. [30]. For n ∼ 1013, it is not possible to
maintain the desired error probability for fixed α, and increasing the
mean photon number leads to a steeper increase in the transmitted
information.

performance of a classical protocol [14] for a wide range of
input sizes, with a reduction in the transmitted information
that can be larger than two orders of magnitude, as depicted
by the dotted lines in Fig. 2.

IV. DISCUSSION

We have outlined a quantum fingerprinting protocol that can
be implemented with current technology [31], even in the pres-
ence of experimental imperfections, and demonstrates an ex-
ponential separation in communication complexity compared
to the classical case. Previous work had proposed different
paths towards the implementation of quantum fingerprinting,
but none of them could be experimentally deployed to the point
of exhibiting a gap in communication complexity compared to
the classical case.

From a practical perspective, we are often interested in
the expenditure of resources beyond the abstract amount of
communication. For instance, we may be interested in the
running time of the protocol or the amount of energy used.
Since our protocol uses O(n) optical modes, the total time
required to carry the protocol is quadratically larger than
what would be needed in a classical protocol. On the other
hand, the total number of photons used is constant, whereas,
classically, one would need O(

√
n) photons when restricted to

using O(
√

n) modes. Thus, our protocol introduces an asymp-
totically unbounded reduction in energy consumption for the
price of only a quadratic increase in running time. Moreover,
by Theorem 1, any classical communication protocol using
O(n) modes and a constant photon number could only be used
to transmit O(log2 n) classical bits of information, which is
insufficient to solve the equality problem in the simultaneous
message passing model. This also means that only O(log2 n)
classical bits of the input bit strings are leaked to the referee
(or anyone else). Overall, given the expended resources, our
protocol achieves a task that is provably impossible with
classical communication only.

The fact that the total mean photon number is constant has
potential practical implications beyond the inherently vast
reduction in energy consumption. The clock rate of a quantum
communication protocol is usually limited by the dead times
of the detectors. However, since in our case each individual
mode carries very few photons on average, the expected time
between detector clicks could be significantly larger than the
dead times, allowing an increase of the clock rate by orders of
magnitude. Moreover, time resolution is unnecessary in our
scheme; only the click patterns matter regardless of the times
at which they occur. Finally, the low photon numbers imply
that nonlinear effects are not an issue in the transmission of
the signals.

Most important, the fact that only a small subspace is
employed in our scheme implies that, in principle, the unused
sections of the entire Hilbert space can still be used for other
purposes such as the transmission of additional information
through multiplexing schemes. For example, it may be possible
to conduct multiple quantum fingerprinting protocols in
parallel or to perform them alongside classical communication.
Although this multiplexing can be achieved in principle,
practical methods for achieving it are a line for future research.
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Generally, our results imply that any state |ψ〉 = ∑d
i=1 ci |i〉

can be approximately implemented by a sequence of coherent
states ⊗d

i=1 |αci〉. This could provide a promising route for the
implementation of other quantum communication protocols.
An example is existing schemes for quantum digital signatures
[32,33] that also use sequences of phase-encoded coherent
states. Our fingerprinting protocol also provides a new
ground in which to explore fundamental aspects of quantum
mechanics, such as the connection between entanglement
and nonorthogonality, the information-carrying capacity of
quantum states, and the regime of extremely low mean photon
numbers. Overall, our results pave the way for experimental
demonstrations of the gap between classical and quantum com-
munication complexity and open a new window of opportunity
for research in quantum communication in general.
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APPENDIX

1. Error probability for the ideal protocol

To calculate the error probability of the ideal protocol,
notice that whenever the inputs to Alice and Bob satisfy
x = x ′, the referee outputs the correct answer with certainty
because the only possible outcomes are 0 or no clicks. For the
case of x 	= x ′, we need to calculate the probability that no 1
outcomes are observed. After the individual signals interfere
in the beam splitter, there will always be a coherent state
entering one detector and the vacuum entering the other one.
The probability pc of obtaining a click can be calculated from
the Poissonian statistics of the incoming coherent states and is
given by

pc = 1 − exp

(
−2

|α|2
m

)
, (A1)

where pc ≈ 2 |α2|
m

for |α2|
m

� 1. The total number of clicks
in the m signals is therefore a binomial random variable,
which we call C. We introduce another random variable Z, the
number of 0 outcomes observed. When x 	= x ′, the conditional
probability distribution of Z given that k clicks are observed
is a hypergeometric distribution satisfying

Prm(Z = 
|C = k) =
(
mδ




)(
m−m δ

k−


)
(
m

k

) . (A2)

In this case, the probability of error is given by

Prm(error) =
m∑

k=0

P (C = k)P (Z = k|C = k)

=
m∑

k=0

(
m

k

)
pk

c (1 − pc)m−k

(
mδ




)(
m−m δ

k−


)
(
m

k

)

�
m∑

k=0

(
m

k

)
(pcδ)k(1 − pc)m−k,

where we have used the inequality(
m δ




)(
m−m δ

k−


)
(
m

k

) � δk, (A3)

which can be proven with a straightforward calculation. From
the binomial theorem we conclude that for any two inputs

Pr(error)m � [1 − pc(1 − δ)]m. (A4)

2. Error probability for the protocol in the presence of
experimental errors

To bound the probability of error in this case, we consider first
the case x = x ′ and denote by p′

c ≈ pc + pdark the effective
click probability. We then have

Pr(f0 � qE − �q |x = x ′)

=
m∑

k=0

Pr(C = k) Pr(f0 � qE − �q |k,x = x ′)

=
m∑

k=0

(
m

k

)
(p′

c)k(1−p′
c)m−k Pr

(
Z

k
� qE − �q |k,x = x ′

)

�
m∑

k=0

(
m

k

)(
e−2�2

q p′
c

)k
(1 − p′

c)m−k

= [
1 − p′

c

(
1 − e−2�2

q

)]m
,

where we have made use of Hoeffding’s inequality [34]

Pr

(
Z

k
� qE − �q |x = x ′

)
� e−2k�2

q ,

which holds when Z is hypergeometrically distributed. Since
the Hoeffding bound for Pr(f0 � qE − �q |x = x ′) is equal to
that of Pr(f0 � qD + �q |x 	= x ′), the bound on the probability
of error is the same when the fingerprints are different.
Therefore, we can conclude that

Prm(error) �
[
1 − p′

c

(
1 − e−2�2

q

)]m
. (A5)
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