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Estimation of quantum states by weak and projective measurements
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We explore the possibility of using “weak” measurements to carry out quantum state tomography via numerical
simulations. Given a fixed number of copies of identically prepared states of a qubit, we perform state tomography
using weak as well as projective measurements. Due to the collapse of the state after measurement, we cannot
reuse the state after a projective measurement. If the coupling strength between the quantum system and the
measurement device is made weaker, the disturbance caused to the state can be lowered. This then allows us
to reuse the same member of the ensemble for further measurements and thus extract more information from
the system. However, this happens at the cost of getting imprecise information from the first measurement.
We implement this scheme for a single qubit and show that under certain circumstances, it can outperform the
projective measurement-based tomography scheme. This opens up the possibility of new ways of extracting
information from quantum ensembles. We study the efficacy of this scheme for different coupling strengths and
different ensemble sizes.
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I. INTRODUCTION

Measurement in quantum physics has a very different
connotation as compared to that in classical physics. Mea-
surement invariably disturbs the quantum system, and we
say that information comes at a certain cost. The most
commonly encountered quantum measurements are projective
measurements, wherein the state collapses into one of the
eigenvectors of the observable being measured. There is no
further information that one can obtain by making a repeated
measurement on this collapsed state. Alternatively, one could
conceive of “weak” or “unsharp” measurements, where the
coupling of the apparatus with the system is weak and only
a limited amount of noise is introduced. Consequently, the
information obtained from this measurement is also limited.
However, there is a possibility of recycling the state and
making further measurements on it, which may reveal more
information about the state.

Ideal state estimation would require an infinite number
of copies of identically prepared states, however, in reality
we always have a finite ensemble. Therefore, it would be
interesting to explore the possibilities of reducing the size of
the ensemble required to achieve a certain amount of fidelity of
state estimation. We explore the possibility of carrying out state
tomography on finite ensembles using weak measurements,
where we recycle the state to extract information about
more than one observable. An unsharp or weak measurement
is achieved when the apparatus system coupling is weak
compared to the initial spread of the pointer state wave
functions. This can be achieved by reducing the coupling
strength or by preparing the initial pointer states in sufficiently
wide wave functions. For such weak measurements the state of
the system does not collapse fully, and the state can still be used
to extract more information. Such schemes involving weak
or unsharp or fuzzy measurements have been proposed in the
literature [1–6]. Weak measurement has an interesting property
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that although it yields very little information [7], the state
is correspondingly disturbed very little. However, in such a
measurement, the pointer positions corresponding to different
eigenvalues of the observer being measured could overlap,
leading to an ambiguity. A certain region of the pointer position
may therefore have to be discarded in order to reduce the
ambiguity in the measurement. Thus we have two parameters,
namely, the strength of the measurement and the discard
parameter, over which we can optimize the performance of
the measurement scheme. This on the one hand provides a
novel way of extracting information from a quantum system,
and on the other hand, may lead to improvement in fidelity over
projective measurements. It may be noted that it is the interplay
between the initial state of the pointer and the coupling
strength which defines a weak (unsharp) measurement. In fact
if we are able to prepare a very narrow initial state of the
pointer, even a weak coupling strength can lead to a projective
measurement. Weak measurements are also associated with
“weak values,” which require the notion of postselection
[8–11]. This process of postselection leads to throwing away
data and can lead to suboptimal use of information from
a measurement [12,13]. In our work we use weak or unsharp
measurements without postselection. Although all quantum
measurements (projective, nonprojective, weak, etc.) can be
seen as positive operator valued measures (POVMs), it is
important to know the details of a measurement scheme. A
POVM can also be interpreted as a projective measurement
on a larger Hilbert space [7,14,15]. For a finite ensemble
the upper bound on the amount of information extractable
is available [16]. The cost of information extraction from
quantum systems in terms of disturbance caused has also been
explored in the context of weak measurements [17–19].

A good way to represent pure as well as mixed states
of a single qubit is to use the Bloch sphere [14,20]. The
Bloch sphere is a unit ball and every point on and inside
the sphere represents a quantum state of the qubit. The state
corresponding to the point (x,y,z) is given by

ρ = 1
2 (I + �n · �σ ), (1)
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where n̂ = xx̂ + yŷ + zẑ is a vector with x = 〈σx〉, y = 〈σy〉,
and z = 〈σz〉. The pure states correspond to the case when the
point lies on the surface and in that case �n is a unit vector. The
expectation values of σx , σy , and σz serve as a direct means
to calculate the values of (x,y,z). Therefore, to carry out state
estimation of a given state of a single qubit, we need to estimate
the numbers (x,y,z).

The efficacy of any state tomography procedure is deter-
mined by the closeness of the estimated state to the state being
tomographed. This requires an appropriate fidelity measure.
Since we are dealing with general states of a qubit we consider
the distance between the estimated state and the original
state on the Bloch sphere as a measure of the fidelity of the
tomography scheme. Let us assume that the estimated values
of (x,y,z) are (xest,yest,zest) for a given estimation scheme. We
define a measure of fidelity as

f = 1 − [(x − xest)
2 + (y − yest)

2 + (z − zest)
2] (2)

The fidelity is a measure of the distance between the original
state and the estimated state. For a perfect estimation f is
equal to 1. The amount by which f is less than 1 measures the
departure of the estimate from the original state. We will use
this measure throughout this paper to measure the efficacy of
the state estimation schemes.

This work explores state reconstruction for pure and mixed
states of a qubit using weak measurements and compares
the efficacy of this scheme with that using projective mea-
surements. Since state tomography requires an ensemble of
identically prepared states, we have assumed finite ensembles
and calculated the dependence of the fidelity of the tomography
scheme as a function of ensemble size in both cases. We show
that under certain circumstances, weak measurements with
state recycling can be a better tool for state reconstruction.
This we believe extends the scope of extracting information
from quantum systems at a reduced cost.

The material in this paper is arranged as follows. In
Sec. II we describe weak measurements. Section III details
the tomography procedure using weak measurements on finite
ensembles. In this section the main results of the simulation
are presented. Section IV contains some discussion and
concluding remarks.

II. WEAK MEASUREMENTS IN QUANTUM MECHANICS

The process of gaining information from a quantum
system typically requires an apparatus with distinct classical
(macroscopic) pointer positions to interact with the quantum
system followed by a readout of the pointer positions. A
useful model of this process is available due to von Neumann.
Although originally this model was constructed for strong
(projective) measurements [21] it has wider applications and
can also be applied to weak measurements [1–6,8,9].

Consider the measurement of an observable A of a
quantum system with eigenvectors {|aj 〉} and eigenvalues {aj },
j = 1, . . . ,n. Imagine an apparatus with continuous pointer
positions described by a variable q and its conjugate variable
p such that [q,p] = i. The initial state of the measuring device
has an initial spread of �q with its initial Gaussian quantum

state |φin〉 centered around zero given by

|φin〉 =
(

κ

2π

) 1
4
∫ ∞

−∞
dq e− κq2

4 |q〉, (3)

where κ = 1
(�q)2 and we have taken � = 1. The system and

the measuring device are made to interact by means of a
Hamiltonian,

H = gδ(t − t ′)A ⊗ p, (4)

where p is the momentum conjugate to the variable q, and g

is the coupling strength. The Hamiltonian is so chosen that the
system and the device get a kick and interact momentarily at
t = t ′. Let the initial state |ψin〉 of the system be written in
terms of the eigenstates |a1〉,|a2〉, . . . ,|an〉 of the operator A:

|ψin〉 =
n∑

i=1

ci |ai〉. (5)

The joint evolution of the system and the measuring device
under the coupling Hamiltonian gives an entangled state for
t > t ′:

e−i
∫

Hdt |ψin〉 ⊗ |φin〉

=
(

κ

2π

) 1
4

n∑
i=1

∫ ∞

−∞
dqci e− κ(q−gai )2

4 |ai〉 ⊗ |q〉. (6)

The above state consists of a series of Gaussians centered at
ga1,ga2, . . . ,gan for the pointer entangled with corresponding
eigenstates |a1〉,|a2〉, . . . ,|an〉 of the system. At this stage we
invoke the “classicality” of the apparatus, because of the fact
that only one of the pointer positions actually shows up. This
requires the collapse of the wave function which is brought
in as something natural for the classical apparatus. Thus the
process is completed with the meter showing only one of
the gais. Consequently, the system state collapses into the
corresponding eigenstate |ai〉. The above analysis holds good
only if the Gaussians are well separated or distinct. In case
they overlap, which can happen if the coupling strength g

is small or the initial spread in the pointer state given by
1/κ is large, the scenario changes [1,8,22]. This is called the
weak or unsharp measurement regime. Weak measurements
have been employed in developing recipes for the violation
of Bell inequalities [22] and Leggett Garg inequalities [23].
These have also been recently used to study super quantum
discord [24,25].

In the treatment of weak measurement given by Aharonov,
Albert, and Vaidmann (AAV), a subsequent projective mea-
surement of a second observable is carried out, followed by a
postselection of the output state into one of the eigenstates of
the second observable. However, we take a different approach
in our work, where we do not do any postselection; i.e., we
consider weak measurements without weak values.

How exactly do we carry out the weak measurement? How
much is the effect of a weak measurement on the system?
If we carry out weak measurements on all the members of
an identically prepared ensemble, what happens to such an
ensemble? We illustrate these points by taking an example.
Consider a measurement of σz (z component of spin) of a qubit
in a fixed quantum state. Following the general prescription
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given in Eq. (4) we write the interaction Hamiltonian

H = gδ(t − t ′)σz ⊗ p (7)

assuming the initial state of the pointer to be the same as
that given in Eq. (3). The qubit is taken to be in a pure state
given by

|ψin〉 = cos
α

2
|0〉 + sin

α

2
|1〉, (8)

where |0〉 and |1〉 are the eigenstates of σz with eigenvalues
+1 and −1, respectively. The combined state of the system
and the pointer after the interaction is given by taking a special
case of Eq. (6):

|ψout〉 =
(

κ

2π

) 1
4
∫ ∞

−∞
dq cos

α

2
e− κ(q−g)2

4 |0〉 ⊗ |q〉

+
(

κ

2π

) 1
4
∫ ∞

−∞
dq sin

α

2
e− κ(q+g)2

4 |1〉 ⊗ |q〉. (9)

At this stage the apparatus and the system are in an entangled
state. An observation of the apparatus will lead to values whose
distribution is determined by the above state. It is clear from
Eq. (9) that the distribution of values of the apparatus is a
Gaussian centered around +g for the system input state |0〉
and is a Gaussian centered around −g for the system input
state |1〉. The width of the Gaussian in each case is given
by 1/κ . By tuning the parameter ε = κg we can change the
nature of the measurement in terms of its strength. In our
work we have taken g = 1 so that we have ε = κ . For large
values of ε we have a projective measurement, where the
pointer distributions are well separated for the states |0〉 and
|1〉. Therefore, each reading of the pointer tells us exactly
what the state of the system is after the measurement. By
repeatedly measuring the same observable we can calculate
the expectation value of the observable. The state collapses
completely in each measurement and there is no question of
reusing these states. However, when the value of ε is small
we have two Gaussians that overlap. From an observation of
the pointer we do not learn with certainty as to what value to
assign to the system spin z component. The pointer positions
are weakly correlated with the eigenstates of σz. The state is
only partially affected and there is a possibility of reusing the
state. The effect of the weak measurement in this case can be
explicitly calculated and it turns out that there is very little
change in the state of the system. The final state of the system
can be calculated by taking the state in Eq. (6) and then taking
a partial trace over the apparatus’s degrees of freedom giving
us the final mixed state corresponding to the system alone:

ρf = 1

2

(
1 + cos α

(
1 − ε

8

)
sin α(

1 − ε
8

)
sin α 1 − cos α

)
. (10)

Since ε is small we can conclude that the disturbance caused
to the system is also small. Furthermore, the disturbance can
be controlled by changing ε.

A recent work by Rozema et al. suggests some new
possibilities that weak measurements can offer with respect to
Heisenberg’s uncertainty relation and the disturbance caused
to the state [26]. Oreshkov and Brun, in 2005, wrote down a
weak measurement POVM and showed that any generalized

measurement can be decomposed into a sequence of weak
measurements, without using an ancilla [27]. Lundeen et al.
recently came up with a method employing weak values to
directly measure the wave function of a quantum system
in a pure state [28] and followed it up with a method to
measure any general state [29]. For some further developments
in this regard, see [30]. Unsharp measurements have also
been used to make sequential measurements on a single
qubit [6]. Other examples of quantum state tomography with
weak measurements can be found in [31–33]. An approach to
perform quantum state tomography using weak measurement
POVMs was introduced by Hofmann [34].

III. QUANTUM STATE ESTIMATION OF A SINGLE QUBIT

We now turn to the question of using weak measurements
with state recycling for the problem of state estimation of a
single qubit.

A. The scheme

In our prescription, we consider a finite-size ensemble of
pure or mixed states of a qubit. On every member of the
ensemble we carry out a σz measurement whose strength is
defined by the parameter ε1. We record the meter reading in
each case and keep the modified states after measurements
to obtain a changed ensemble. This new ensemble is now
used to measure σx in the same way but with a coupling
strength ε2. Finally the resultant ensemble is used to carry out
projective measurement of σy on its members. The first two
measurements are weak while the last measurement is strong
or projective. To avoid statistical errors the results are averaged
over many runs. The entire process is summarized in Fig. 1. For
both the weak measurements, consider a regime in which ε is
neither too large to make the measurement projective, nor too
small, as is done in traditional weak measurements. For such

ρ ρ′
1 ρ′′

2 ρ′′′
3

σz σx σy

1 2

Weak Weak Projective

FIG. 1. The schematic diagram of our scheme where we pick
a copy of the qubit in state ρ from the first box and perform the
measurement of σz weakly defined through the system apparatus
coupling strength ε1. The state after this measurement changes to ρ ′

1,
on which we perform the measurement of σx again weakly defined
through the coupling strength ε2. The state now changes to ρ ′′

2 on
which we perform a projective measurement of σy . The state after
the projective measurement is ρ ′′′

3 and we discard this copy since
no information can be extracted from the ensemble. The overlapping
Gaussians in the first two cases indicate that the measurement is weak
while the nonoverlapping outcomes in the last case indicate that the
measurement is projective in nature.
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values of ε, the two Gaussians, representing the pointer value
distributions for the two eigenvalues of the observable, overlap
partially with each other. When there is no overlap, a meter
reading unambiguously indicates an outcome and we have a
projective measurement. A meter reading corresponding to a
point in the overlap region cannot be reliably correlated with
the system being in one or the other eigenstate. To reduce this
difficulty, let us define a region, midway between the centers
of the two Gaussians, of width 2a. We call it the discard
region, which means that any pointer reading which falls in
this region is rejected. For the case where we measure σz, all
readings where the pointer position is to the right of this region
are interpreted as indicating the value of σz to be +1 while the
ones on the left of this region are interpreted as −1. Even when
the outcome is discarded, the member of the ensemble is not
rejected, but is retained to be reused for the next measurement.
In summary, in this scheme as is shown in Fig. 1 we first
measure σz weakly, followed by σx which is again measured
weakly, and last we make a projective measurement of σy .
The entire simulation is run on identically prepared copies
(ensemble size) of the state of interest (pure or mixed). The
simulation is repeated many times to avoid statistical errors.

A general single qubit state is given by

ρ =
(

ρ00 ρ01

ρ10 ρ11

)
= ρ00|0〉〈0| + ρ01|0〉〈1| + ρ10|1〉〈0| + ρ11|1〉〈1|. (11)

The diagonal elements are known as populations as they
give the probabilities with which the states |0〉 and |1〉 are
present in the mixture. The off-diagonal elements are known
as coherences as these contain the phase information of the
states |0〉 and |1〉. When the state is coupled to a measurement
device, as discussed above, the resultant state after unitary
evolution for a strength ε is

ρ ′ =
(

ε

2π

) 1
2

×
[∫ ∞

−∞
dq

∫ ∞

−∞
dq ′ρ00 e− ε(q−1)2

4 e− ε(q′−1)2

4 |0〉〈0|

+
∫ ∞

−∞
dq

∫ ∞

−∞
dq ′ρ01 e− ε(q−1)2

4 e− ε(q′+1)2

4 |0〉〈1|

+
∫ ∞

−∞
dq

∫ ∞

−∞
dq ′ρ10 e− ε(q+1)2

4 e− ε(q′−1)2

4 |1〉〈0|

+
∫ ∞

−∞
dq

∫ ∞

−∞
dq ′ρ11 e− ε(q+1)2

4 e− ε(q′+1)2

4 |1〉〈1|
]

⊗|q〉〈q ′|. (12)

Let us consider taking out a member of the ensemble of system
states and then coupling it with the apparatus. Now when the
observer notes down the meter reading he or she can see a
particular reading which depends upon the initial states of
the system and the meter and the coupling between the two.
Though this process is not well understood and von Neumann’s
model is silent about this final step of collapse, it can be thought
of as the action of the projector |q〉〈q| on the meter state
resulting in the meter reading q.

The probability density of obtaining the value q for the
meter is therefore given by

P (q) = Tr(|q〉〈q|ρMD), (13)

where the reduced density operator for the apparatus or the
measuring device (MD) is obtained by taking a partial trace of
the state ρ ′ over the system:

ρMD = Trsystem(ρ ′). (14)

This probability density can now be used to calculate the
probabilities of possible outcomes. For example, P (σz = 1)
can be obtained by integrating the probability density from
+a to ∞. Thus, the probabilities with which we obtain +1,
−1, or ambiguous readings while measuring in the z basis are
calculated by integrating the above probability densities from
+a to ∞, −∞ to −a, and −a to +a, respectively, and are
given by

P (|0〉) = 1

4

[
(1 + z)Erfc

(−1 + a)
√

ε1√
2

− (−1 + z)Erfc
(1 + a)

√
ε1√

2

]
,

P (|1〉) = 1

4

[
− (−1 + z)Erfc

(−1 + a)
√

ε1√
2

+ (1 + z)Erfc
(1 + a)

√
ε1√

2

]
,

P (discardz) = 1

2

[
Erf

(−1 + a)
√

ε1√
2

+ Erf
(1 + a)

√
ε1√

2

]
. (15)

Further for the second weak measurement, the input state is the
output from the first measurement described by an ensemble
ρ ′

1. This ensemble is obtained from the state ρ ′ given in Eq. (12)
by taking a trace over the measuring device (apparatus):

ρ ′
1 = TrMD(ρ ′). (16)

The probabilities with which we obtain the value +1, −1,
or ambiguous readings while measuring in the σx basis are
given by

P (|σx ; +〉) = 1

4
e− ε1

2

[(
− Erf(−1 + a)

√
ε2

2
+ Erf(1 + a)

√
ε2

2

)
x + e

ε1
2

(
Erfc(−1 + a)

√
ε2

2
+ Erfc(1 + a)

√
ε2

2

)]
,

P (|σx ; −〉) = 1

4
e− ε1

2

[(
Erf(−1 + a)

√
ε2

2
− Erf(1 + a)

√
ε2

2

)
x + e

ε1
2

(
Erfc(−1 + a)

√
ε2

2
+ Erfc(1 + a)

√
ε2

2

)]
, (17)

P (discardx) = 1

2

[
Erf

(−1 + a)
√

ε1√
2

+ Erf
(1 + a)

√
ε1√

2

]
.
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After this measurement if we trace over the second apparatus
we obtain the ensemble represented through a density operator
ρ ′′

2 . Lastly we perform a regular strong (projective) measure-
ment of σy and the probabilities are given by

P (|σy ; +〉) = 1
2

[
1 + e− 1

2 (ε1+ε2)y
]
,

(18)
P (|σy ; −〉) = 1

2

[
1 − e− 1

2 (ε1+ε2)y
]
.

In the above equations, we have used

Erf(x) = 2√
π

∫ x

0
e−t2

dt,

(19)
Erfc(x) = 1 − Erf(x).

These measurements when repeated over the entire ensem-
ble give us an estimate of the expectation values of σx , σy , and
σz, which in turn help us locate the coordinates (x,y,z) of the
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f
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(b)

FIG. 2. Fidelity, f̄ , (a) and standard deviation σ in fidelity (b),
plotted as a function of coupling strength ε for a randomly chosen
state ρ1. The size of the ensemble here is 30. Weak measurement
(solid line) outperforms projective measurement (broken black line)
for small ensemble sizes. No values are discarded in this simulation,
hence the discard parameter a = 0. The straight horizontal dotted
line represents the projective measurement and our scheme clearly
outperforms the projective measurements.

point inside the Bloch sphere:

z = Tr(ρσz),

x = Tr(ρ ′
1σx)e

ε1
2 , (20)

y = Tr(ρ ′′
2 σy)e

1
2 (ε1+ε2),

where ρ, ρ ′
1, and ρ ′′

2 denote the initial state of the system and
those after the first and second measurements, respectively.
We note that ε1 and ε2 appear in Eq. (20) because we are
interested in the expectation values of σx , σy , and σz for the
original state ρ of the system. These results are valid only for
small values of ε1 and ε2. In subsequent studies we work with
the simplification ε1 = ε2 = ε.

For a scheme based purely on projective measurements,
the ensemble is divided into three equal parts and direct
measurements of σx , σy , and σz are performed independently.

0.2 0.2 0.4 0.6 0.8
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0.65

0.70

0.75

0.80

0.85

f

0.2 0.2 0.4 0.6 0.8
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0.20
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0.30

0.35
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(a)

(b)

FIG. 3. Fidelities, f̄ , (a) and standard deviations σ in fidelity (b)
plotted as a function of coupling strength ε for a randomly chosen
state ρ2 with an ensemble size of 30. In each graph different lines
represent different values of the discard parameter a. The discard
parameter values plotted are a = 0 (dotted thick line), a = 0.2 (dotted
light line), a = 0.4 (dotted light line), a = 0.6 (dotted light line),
and a = 0.8 (solid line). The solid line corresponds to the best case
where our scheme outperforms the projective measurements which
are represented by the straight horizontal broken line. The standard
deviation graph for a = 0.8 (the best case) represented by the solid
line indicates that the noise in the tomography based on our scheme
is not more than that of projective measurements.
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This leads to a direct estimate of the expectation values of these
operators giving the values of (x,y,z) and hence an estimate
of the state. The error in these estimates depends upon the
size of the ensemble. We simulate both these schemes and
compare the performance of our method with the one based
on projective measurements.

B. Two random examples

To begin with we perform the simulations on two randomly
generated states ρ1 and ρ2 given by

ρ1 = 1

2

(
1.399 −0.385 + 0.042i

−0.385 − 0.042i 0.601

)
(21)
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FIG. 4. (a) Plot of the mean fidelity ¯̄f for a state with ensemble
size 30 and a mean calculated over 1000 runs, further averaged
over 2000 randomly chosen states, as a function of the coupling
strength ε. Different curves represent different values of the discard
parameter a. The discard parameters used are a = 0 (dotted thick
line), a = 0.2 (dotted line), a = 0.4 (dotted line) a = 0.6 (dotted
line), and a = 0.8 (solid line). The straight dotted line represents
projective measurements. The solid line comes very close to the
projective measurements. (b) Plot of the number of times our
schemes outperform the projective measurement based scheme for
the 2000 randomly chosen states of the qubit as a function of the
discard parameter a. The dotted horizontal line represents the 50%
mark. The performance of our schemes is better than the projective
measurement schemes when the discard parameter crosses a certain
value (approximately 0.3).

and

ρ2 = 1

2

(
1.055 −0.601 − 0.398i

−0.601 + 0.398i 0.945

)
. (22)

On the Bloch sphere these states correspond to (x =
−0.385; y = −0.042; z = 0.397) and (x = −0.601; y =
0.398; z = 0.055), respectively. Both these states are mixed
states with distance from the origin of the Bloch sphere for
ρ1 being 0.555 and that for ρ2 being 0.723. Clearly ρ2 is less
mixed than ρ1. We would like to stress that these states are
randomly chosen.

Taking ensembles of size 30 and putting ε1 = ε2 = ε we
perform simulations (using Wolfram Mathematica 9) over
10 000 runs and calculate the individual fidelity for each
run. We use the definition of fidelity defined in Eq. (2). The
mean fidelity f̄ and the standard deviation σ in fidelity are
then plotted as a function of ε and in each case a comparison is
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FIG. 5. (a) Plot of the mean fidelity ¯̄f for a state with ensemble
size 60 and a mean calculated over 1000 runs, further averaged
over 2000 randomly chosen states, as a function of the coupling
strength ε. Different curves represent different values of the discard
parameter a. The discard parameters used are a = 0 (dotted thick
line), a = 0.2 (dotted line), a = 0.4 (dotted line) a = 0.6 (dotted
line), and a = 0.8 (solid line line). The straight dotted line represents
the projective measurements. (b) Plot of the number of times our
schemes outperform the projective measurement based scheme for
the 2000 randomly chosen states of the qubit as a function of the
discard parameter a. The success rate goes down with an increase in
ensemble size from 30 to 60.
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made with the same parameters for the projective measurement
case (see Figs. 2 and 3). We also vary the breadth of the region
in which we discard the pointer readings to get an idea of how
it affects the quality of state estimation.

In each case we see that there is an interesting dependence
of the fidelity of the estimate on ε and the discard parameter
a. For the case ρ1 the weak scheme outperforms the projective
measurement scheme even without any discard parameter. On
the other hand for ρ2 we have to increase the discard parameter
considerably to outperform the projective measurements.
However, for another randomly chosen state the scheme may
not outperform the projective measurement scheme.

The analysis of the mean fidelity f̄ vs ε plots shows that
there are states such as ρ1 for which tomography by weak
measurements is more effective than projective measurements,
for small ensemble sizes (Fig. 2). We note that only in a certain
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FIG. 6. (a) Plot of the mean fidelity ¯̄f for a state with ensemble
size 90 and a mean calculated over 1000 runs, further averaged
over 2000 randomly chosen states, as a function of the coupling
strength ε. Different curves represent different values of the discard
parameter a. The discard parameters used are a = 0 (dotted thick
line), a = 0.2 (dotted line), a = 0.4 (dotted line), a = 0.6 (dotted
line), and a = 0.8 (solid line). The straight dotted line represents the
projective measurements. (b) Plot of the number of times our schemes
outperform the projective measurement based scheme for the 2000
randomly chosen states of the qubit as a function of the discard
parameter a. The success rate further decreases with an increase in
ensemble size to 90.

range of ε values this is true. The reason is not difficult to see.
If ε is large then the state of the system is destroyed in the very
first measurement of σz and the subsequent measurements
become meaningless. Again, if ε is made too small, then the
overlap of the “Gaussians” is too large and a large number of
the meter readings fall in the overlapping region. These meter
readings then cannot be utilized for any useful purpose under
our scheme. The plot of standard deviation in fidelity σ vs
ε shows that, for the optimal values of ε, even the standard
deviation of fidelity by weak measurements is less than that
for the projective measurements.

There are some states, though, for which this method
of estimation does not do better than that by projective
measurements. In some of these cases, the estimation can be
improved by discarding a certain range of meter readings, as
was discussed earlier. The state ρ2 is an example of such a case
where by increasing the discard parameter we can outperform
the projective measurements. The results for this state are given
in Fig. 3. The average fidelity becomes better than that for
the projective measurements and the corresponding standard
deviation of fidelity (σ plotted as a function of ε) is of the
same order as that for projective measurements.

C. Average performance over the Bloch sphere

Encouraged by these results we now move on to test our
scheme on a large number of randomly generated states of
a qubit and look for the average performance of the scheme
over the Bloch sphere. The process is carried out for 2000
states generated randomly. We also study the dependence on
ensemble size and use ensemble sizes of 30, 60, and 90. For
each case the simulation is repeated 1000 times to average
over statistical fluctuations.

ρ

σz σx

σx σz

Weak

Projective

ρ′
1 ρ′′

2 = 1
2
(ρ′′

zx + ρ′′
xz)

ρ′′
zx ρ′′

xz

FIG. 7. Block diagram of the weak measurement based state
estimation scheme applied to the case when the states lie on a
disk in the Bloch sphere with 〈σy〉 = 0. For such states only two
measurements are performed, namely, a weak measurement followed
by a projective measurement. To achieve symmetry we divide the
ensemble into two halves and for the first half we carry out weak
measurement of σz followed by a projective measurement of σx and
for the second half we reverse the order of the measurements. For the
first half the final density operator after both the measurements is ρ ′′

zx

and the same for the second half is ρ ′′
xz. The density operator for the

entire ensemble after the measurement thus is ρ ′′
2 = 1

2 (ρ ′′
zx + ρ ′′

xz).
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While we average the fidelity over all states to obtain the
average fidelity we also keep track of whether the scheme
outperformed or underperformed as compared to the projective
measurement scheme in each case. For the ensemble size of
30, the results of this simulation are presented in two different
ways in Fig. 4. We calculate the mean fidelities averaged over
these states, ¯̄f , with and without discard, which are then plotted
against ε in Fig. 4(a). This graph shows an improvement
as we increase the amount of discard. We also present our
results through a score plot, where we compute the number
of states out of 2000 starting states for which our scheme
outperforms the projective measurement scheme. The score
plot is described in Fig. 4(b). Interestingly, this number crosses
the 50% mark for a threshold value of the discard parameter.

When a study of mean fidelity, averaged over 2000 states,
¯̄f vs ε, was done, it turns out that although on the average

the performance of projective measurements is better, if
ambiguous meter readings are discarded, then the number of
states for which our tomography scheme is successful goes
up. In fact, the number of successes out of 2000 for the
discard parameter values of 0, 0.2, 0.4, 0.6, and 0.8 are 923,
973, 1023, 1051, and 1071, respectively. This we think is
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FIG. 8. Results of state estimation for 500 randomly generated
states on the disk with 〈σy〉 = 0 for an ensemble size of 30 with each
state averaged over 1000 runs. The average fidelity as a function of ε

for discard parameter values 0, 0.2, 0.4, 0.6, and 0.8 are shown in part
(a). In part (b) the score plot is displayed where we plot the number
of successes out of 500 as a function of discard parameter a.

clear evidence that our scheme has the potential of unearthing
more information than projective measurements under certain
circumstances. In particular, if we are given 30 copies of an
unknown state of a qubit, our scheme will be a better choice
for carrying out state tomography.

We now turn to testing our scheme with increasing ensem-
ble size. We repeat the simulation in exactly the same way for
the cases of ensemble size 60 and 90. The results are presented
in a similar way in Figs. 5 and 6. Increasing the ensemble
size clearly reduces the efficacy of our scheme as compared
to projective measurements. The score plots show that our
scheme outperforms the projective measurement scheme for
ensemble sizes of 60 and 90 for a lesser number of states and
the number is less than 50%. Therefore we conclude that our
scheme is preferable only when we have a small ensemble
size. We would like to clarify that this is not due to statistical
fluctuations as we have taken the average over a large number
of runs even when the ensemble size is small.

D. States with 〈σ y〉 = 0

We now turn to a subset of states in the Bloch sphere,
namely, the states with 〈σy〉 = 0. These states form a disk
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FIG. 9. Results of state estimation for 500 randomly generated
states on the disk with 〈σy〉 = 0 for an ensemble size of 60 with each
state averaged over 1000 runs. The average fidelity as a function of ε

for discard parameter values 0, 0.2, 0.4, 0.6, and 0.8 are shown in part
(a). In part (b) the score plot is displayed where we plot the number
of successes out of 500 as a function of discard parameter a.
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perpendicular to the ŷ axis and passing through the origin.
The set contains pure states which lie on a circle and mixed
states all the way to maximally mixed states which lie in the
interior of the disk. Once it is known that a state belongs to
this set, estimations of only two parameters are required to
know the state. This can be achieved by measuring 〈σx〉 and
〈σz〉. Given a finite-size ensemble of identically prepared states
belonging to this set, how do we estimate the state and how
well can we do it? If we employ projective measurements we
can divide the ensemble into two equal parts and measure 〈σx〉
on one half of the system and measure 〈σz〉 on the other half. In
our weak measurement based scheme with state recycling, we
again divide the ensemble into two equal parts. On the first half
we carry out a weak measurement of σx of strength ε followed
by a projective measurement of σz while on the second half we
reverse the order where we carry out a weak measurement of
σz followed by a projective measurement of σx . The flowchart
of this measurement scheme is shown in Fig. 7.

While simulating the scheme, we choose ensemble sizes
of 30, 60, and 90 and compare the state estimation efficacy
of our scheme with the projective measurement scheme. For
each ensemble size, we generate 500 random states in the set
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FIG. 10. Results of state estimation for 500 randomly generated
states on the disk with 〈σy〉 = 0 for an ensemble size of 90 with each
state averaged over 1000 runs. The average fidelity as a function of
ε for discard parameter values 0, 0.2, 0.4, 0.6, and 0.8 are shown
in part (a). In part (b) the score plot is displayed where we plot the
number of successes out of 500 as a function of discard parameter a.

and repeat the estimation 1000 times for each state. The results
for ensemble size 30 are displayed in Fig. 8. The results are
presented exactly in the same way as we did in the previous
section. The results of ensemble sizes 60 and 90 are presented
in Figs. 9 and 10, respectively.

For this subset of states the weak measurement based
scheme does much better. The score plots show that the
scheme outperforms the projective measurements in all three
cases. The relative efficacy reduces as the ensemble size is
increased.

IV. CONCLUDING REMARKS

In this work we have used weak measurements to carry
out quantum state tomography on finite-sized (pure or mixed)
one-qubit ensembles. We have shown that in such schemes,
recycling of states is possible, where one makes more than one
measurement on a single copy before discarding a given mem-
ber of the ensemble of identically prepared states. In general
when coupling strengths are small, the pointer positions may
overlap, making the outcome of the measurement ambiguous.
We have introduced a discard parameter such that the outcomes
with most ambiguity are discarded. We have carried out an
optimization of the scheme to improve its efficacy with respect
to the coupling strength ε and the discard parameter a.

Over a randomly chosen subset of qubit states, our
scheme performs better than the scheme based on projective
measurements. We demonstrate this by showing that the weak
measurement based scheme works better for more than 50%
of the randomly chosen cases for small ensemble sizes. For
a subset of states on the Bloch sphere where we take a disk
with 〈σy〉 = 0 the scheme does very well and is almost always
preferable over projective measurements. As the ensemble size
increases the relative efficacy of our scheme decreases as seen
in the comparative results for varying ensemble sizes.

It is true that an experimenter will not know a priori
whether, for a given unknown state, which scheme out of
projective measurement and weak measurement will be more
suitable. However, the experimenter will be able to make an
informed choice, depending on knowledge about the ensemble
size. In the particular case where the σy polarization is zero or
for that matter any particular polarization is known to be zero,
our method will be a better choice for state estimation.

This has opened up an interesting possibility of estimating
quantum states and extracting information from quantum
ensembles using weak measurements. We would also like
to mention that the original context in which the weak
measurements were introduced was related to weak value and
postselection. However, we do not carry out any postselection
and do not use the weak value. We only use the weak nature
of the measurement to recycle the states.

In many physical situations, the apparatus is weakly
coupled with the system and hence our scheme may find
a natural application for such measurements. In another
direction, a natural extension of this scheme on two qubits,
where entangled states are possible, can lead to interesting
possibilities. In particular, one may be able to detect quantum
entanglement by such schemes. A more detailed discussion of
this and related results will be taken up elsewhere.
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