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Exact non-Markovian master equation for a driven damped two-level system
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The driven two-level system is a useful model to describe many quantum objects, particularly in quantum
information processing. However, the exact master equation for such a system has barely been explored. Making
use of the Feynman-Vernon influence functional theory, we derive an exact non-Markovian master equation
for the driven two-level system and show the lost feature in the perturbative treatment for this system. The
perturbative treatment leads to the time-convolutionless (TCL) and Nakajima-Zwanzig (NZ) master equations.
So to this end we derive the TCL and NZ master equations for the system and compare the dynamics given by
the three master equations. We find the validity condition for the TCL and NZ master equations. Based on the
exact non-Markovian master equation, we analyze the regime of validity for the secular approximation in the
time-convolutionless master equation and discuss the leading corrections of the nonsecular terms to the quantum
dynamics. Significant effects are found in the dynamics of the driven system.
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I. INTRODUCTION

The dynamics of open quantum systems [1–3] has attracted
much attention and has become active again in recent years
due to its possible applications in quantum information science
[4–9]. Indeed, the study of the coupled system-environment
system is a longstanding endeavor in many fields of physics
including quantum optics [10–13], atomic optics [13–17],
and condensed matter physics [3,18,19]. The coupling of the
system to its environment leads to dissipation and dephasing
with flows of energy or information from the system to the
environment [2,3]. The backflow of information from the
environment to the system determines the Markovianity of
the dynamics.

The driven two-level model is available to effectively de-
scribe many actual physical systems, for example, a quantum
bit in quantum information processing. Thus the theoretical
analysis as well as the practical implementation of the driven
two-level systems renews the topic. There are several ways to
create a driven two-level system (or qubit) by current quantum
technologies; each exploits different approaches or works in
different quantum systems, for instance, by means of quantum
optics and in microscopic quantum objects (electrons, ions, and
atoms) in traps, quantum dots, and quantum circuits [20–23].
Different implementations of qubits [24,25] have been sub-
jected to different types of environmental noise [26]; most en-
vironments were assumed Markovian [27,28] and the dynam-
ics of the system was studied perturbatively in the literature.

In recent years, there has been increasing interest in
developing a non-Markovian generalization for open quantum
system theory; several approaches have been formulated in
terms of nonlocal time evolutions. Diverse formalisms exist for
describing memory effects, including the generalization of the
Lindblad master equation from time-independent dissipative
rates to time-convoluted kernel functions. A wide class of both
phenomenological and theoretical approaches was formulated

*yixx@nenu.edu.cn

for building and characterizing this type of master equation,
which in turn leads to a completely positive map.

By means of the Feynman-Vernon influence functional
theory [29–33], exact master equations describing the general
non-Markovian dynamics of a wide range of open quantum
systems have been developed recently, e.g., quantum Brownian
motion [32,34,35], the single-mode cavity [36] and two
entangled cavities [37,38] with vacuum fluctuations, the spin-
boson model [39], coupled harmonic oscillators [40–42], a
quantum dot in nanostructures [43,44], various nanodevices
with a time-dependent external control field [45], nanocavity
systems including initial system-reservoir correlations [46],
and photonic networks imbedded in photonic crystals [47,48].
However, an exact master equation for driven systems is rare.

The projection operator technique is another way to study
the open quantum system; both the time-convolutionless
(TCL) [49–51] master equation and the Nakajima-Zwanzig
(NZ) [52–54] master equation can be derived by this approach.
The NZ approach provides us with a generalized master
equation in which the time derivative of the density operator is
connected to the past of the reduced density matrix through the
convolution of the density operator and an appropriate integral
kernel, while the TCL approach leads to a generalized master
equation that is local in time. It seems that the NZ approach
should be better than the TCL approach in describing the
non-Markovian effect since it takes into account the history
of the reduced density matrix; however, this is not the case,
as we will show later. Examples in [2,55–62] confirm this
point, namely, the exact dynamics of the open system can
be described via a master equation with a time-dependent
decay rate, as in the well-known case of the Hu-Paz-Zhang
generalized master equation [2,32].

In the weak-coupling limit, the non-Markovian master
equation for a driven two-level system coupled to a bosonic
reservoir at zero temperature was derived and discussed in
Ref. [61]. This derivation treats the system-environment
coupling perturbatively and hence it is available for weak
system-environment couplings. In this paper, exploiting
the Feynman-Vernon influence theory in the coherent-state
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path-integral formalism, we derive an exact non-Markovian
master equation for the driven two-level system. The Feynman-
Vernon influence theory enables us to treat the environment-
system coupling nonperturbatively. The dynamics of the
driven open two-level system, going beyond the TCL, NZ,
and Markovian approximations, is governed by an effective
action associated with the influence functional containing
all the influences of the environment on the system. The
exact master equation is available to examine the validity of
those perturbative approaches applied to the TCL and NZ
techniques. We show that the TCL approach works better than
the NZ one since the latter does not guarantee the positivity
of the density matrix when the correlations in the reservoir
become strong, while the former is available for a wider range
of values of reservoir memory time.

The remainder of the paper is organized as follows. In
Sec. II we introduce a model to describe a driven two-level
system subject to the reservoir and give a detailed derivation
of the influence functional for the model in the coherent-state
representation. In Sec. III an exact non-Markovian master
equation describing the evolution of the driven open two-level
system is derived. In Sec. IV a derivation of the second-order
NZ master equation is presented and the characteristics of
the second-order TCL master equation derived in Ref. [2]
are discussed; also. we give compare the exact, TCL, and
NZ master equations. In Sec. V we investigate the validity of
the secular approximation in Markovian and non-Markovian
regimes, respectively. Section VI discusses the non-Lorentzian
spectrum. A summary is given in Sec. VII.

II. ATOMIC COHERENT-STATE PATH-INTEGRAL
APPROACH TO THE DRIVEN OPEN

TWO-LEVEL SYSTEM

A. Model Hamiltonian

We start by considering a two-level system with Rabi
frequency ω0 driven by an external laser of frequency ωL.
The two-level atom is embedded in a bosonic reservoir at zero
temperature modeled by a set of infinite harmonic oscillators.
In a rotating frame, the Hamiltonian of such a system (system
plus environment) takes the form

H = HS + HE + HI , (1)

with

HS = �σ+σ− + �σx,

HE =
∑

k

�ka
†
kak,

HI =
∑

k

gkσ+ak + H.c., (2)

where � = ω0 − ωL, �k = ωk − ωL, σx = σ+ + σ−, � is the
driven strength, H.c. stands for Hermitian conjugation, σ+ =
|e〉〈g| is the Pauli matrix, and ak and gk are the annihilation
operator and coupling constant, respectively. In the following
we start with this Hamiltonian (1) and derive all the master
equations in this paper.

B. Coherent-state representation

The starting point of analysis is to observe that the lowing
and raising operators of the atomic transition operators σ+ =
|e〉〈g| and σ− = |g〉〈e| satisfy anticommutation rules similar
to those of fermions, i.e.,

{σ−,σ+} = |e〉〈e| + |g〉〈g| ≡ 1,

{σ−,σ−} = {σ+,σ+} = 0, (3)

where {A,B} = AB + BA. Identifying the ground state |g〉
with the fermionic vacuum, we can therefore treat σ+ and σ−
as fermionic creation and annihilation operators, respectively.
Following Ref. [63], we introduce a couple of conjugate Grass-
mann variables ζ and ζ̄ imposing standard anticorrelation with
the annihilation and creation operators of the system.

Therefore, coherent states are defined as a tensor product of
states generated by the exponentiated operation of a creation
operator and a suitable label on a chosen fiducial state
[29,33,64–66]

|z〉 =
∏
k

|zk〉, |zk〉 = exp(a†
kzk)|0k〉, (4)

and

|ζ 〉 = exp(σ+ζ )|g〉. (5)

For bosonic coherent states defined in Eq. (4), the label zk is a
complex number and for atomic coherent states defined in
Eq. (5), the label ζ is a Grassmannian or anticommuting
number. A state of the combined atom-field system can be
expanded in a direct product of the coherent state

|zζ 〉 = |z〉 ⊗ |ζ 〉. (6)

Atomic and bosonic coherent states possess well-known
properties such as being nonorthogonal

〈z|z′〉 = exp

(∑
k

z̄kz
′
k

)
, 〈ζ |ζ ′〉 = exp(ζ̄ ζ ′), (7)

ak|zk〉 = zk|zk〉, σ−|ζ 〉 = ζ |ζ 〉, (8)

where z̄k and ζ̄ denote the conjugation of zk and ζ , respectively.
Despite their nonorthogonality, both types of coherent states
form an overcomplete basis set∫

dϕ(z)|z〉〈z| =
∫

dϕ(ζ )|ζ 〉〈ζ | = 1, (9)

where the integral measures are defined by dϕ(z) =∏
k exp(−z̄kzk)d2zk/π and dϕ(ζ ) = exp(−ζ̄ ζ )d2ζ . As shown,

the bosonic coherent states we use here are not normalized
and the normalization factors are moved into the integration
measures, which is similar to the Bargmann representation
of the complex space. The application of the coherent-state
representation makes the evaluation of path integrals extremely
simple. In the coherent-state representation, the Hamiltonians
of the system, the environment, and the interaction between
them are expressed, respectively, as

HS(ζ̄ ,ζ ) = �ζ̄ζ + �(ζ̄ + ζ ), HE(z̄,z) =
∑

k

�kz̄kzk,

HI (z̄,z,ζ̄ ,ζ ) = (gkζ̄ zk + g∗
k z̄kζ ). (10)
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With this notation, we will present a detailed derivation of the
exact master equation for the reduced density matrix of the
system in the following sections.

C. Influence functional in coherent-state representation

Explicitly, the density matrix of the whole system (the
system plus the environment) obeys the quantum Liouville
equation i∂ρT (t)/∂t = [H,ρT (t)], which gives the formal
solution

ρT (t) = exp(−iH t)ρT (0) exp(iH t). (11)

In the coherent-state representation, by use of Eq. (9), ρT (t)
can be expressed as

〈ζf ,zf |ρT (t)|ζ ′
f ,zf 〉

=
∫

dϕ(zi)dϕ(ζi)dϕ(z′
i)dϕ(ζ ′

i )〈ζf ,zf ; t |ζi,zi ; 0〉

×〈ζi,zi |ρT (0)|ζ ′
i ,z

′
i〉〈ζ ′

i ,z
′
i ; 0|ζ ′

f ,zf ; t〉. (12)

If we assume that the initial density matrix is factorized into
a direct product of the system and the environment state, i.e.,
ρT (0) = ρ(0) ⊗ ρE(0) [19], the reduced density matrix of the
system is then given by

ρ(ζ̄f ,ζ ′
f ; t) =

∫
dϕ(zf )〈ζf ,zf |ρT (t)|ζ ′

f ,zf 〉

=
∫

dϕ(ζi)dϕ(ζ ′
i )ρ(ζ̄i ,ζ

′
i ; 0)J (ζ̄f ,ζ ′

f ; t |ζ̄i ,ζ
′
i ; 0).

(13)

The next task is to determine the effective propagating function
for the reduced density matrix [29,30,67]

J (ζ̄f ,ζ ′
f ; t |ζ̄i ,ζ

′
i ; 0) =

∫
D2ζD2ζ ′ exp{i(SS[ζ̄ ,ζ ]

− S∗
S [ζ̄ ′,ζ ′])}F [ζ̄ ,ζ,ζ̄ ′,ζ ′], (14)

where SS[ζ̄ ,ζ ] is the action of the system in the atomic
coherent-state representation [see Eq. (A2)] and F [ζ̄ ,ζ,ζ̄ ′,ζ ′]
is the influence functional that takes into account the backac-
tion [in Eq. (A1)] of the environment on the system.

If we assume that the environment is initially at zero
temperature, i.e., the initial state of the environment takes the
form

ρE = |0〉BB〈0|, (15)

then the influence functional can be solved exactly to obtain

F [ζ̄ ,ζ,ζ̄ ′,ζ ′]

= exp

(∫ t

t0

dτ

∫ τ

t0

dτ ′{f (τ − τ ′)[ζ̄ ′(τ ) − ζ̄ (τ )]ζ (τ ′)

+ f ∗(τ − τ ′)ζ̄ ′(τ ′)[ζ (τ ) − ζ ′(τ )]}
)

, (16)

where

f (τ − τ ′) =
∑

k

|gk|2e−i�k (τ−τ ′)

=
∫

dωJ (ω)e−i(ω−ωL)(τ−τ ′) (17)

is the dissipation-fluctuation kernel. Details of the derivation
of Eq. (16) can be found in the Appendix.

III. EXACT NON-MARKOVIAN MASTER EQUATION

We now derive the master equation for the reduced density
matrix of the system. Since the effective action after tracing
or integrating out the environmental degrees of freedom [i.e.,
combining Eqs. (14) and (16)] is in a quadratic form of the
dynamical variables, the path integral (14) can be calculated
exactly by making use of the stationary path method and
Gaussian integrals [68,69]. Substituting Eq. (A2) into Eq. (14),
we have

J (ζ̄f ,ζ ′
f ; t |ζi,ζ̄

′
i ; 0)

=
∫

D2ζD2ζ ′ exp

(
1
2 [ζ̄f ζ (t) + ζ̄ (t0)ζi + ζ̄ ′(t)ζ ′

f + ζ̄ ′
i ζ

′(t0)]

−
∫ t

t0

dτ 1
2 [ζ̄ ζ̇ − ˙̄ζ ζ + ˙̄ζ ′ζ ′ − ζ̄ ′ζ̇ ′] + iHS(ζ̄ ,ζ )

− iHS(ζ̄ ′,ζ ′)
)

F [ζ̄ ,ζ,ζ̄ ′,ζ ′]. (18)

To calculate the path integral in Eq. (18), we use the stationary
phase method [33,70], which yields the equations of motion

ζ̇ (τ ) + i[� + �ζ (τ )] +
∫ τ

t0

dτ ′f (τ − τ ′)ζ (τ ′) = 0,

ζ̇ ′(τ ) + i[� + �ζ ′(τ )] −
∫ t

τ

dτ ′f (τ − τ ′)ζ ′(τ ′)

+
∫ t

t0

dτ ′f (τ − τ ′)ζ (τ ′) = 0, (19)

subject to the boundary conditions ζ (t0) = ζi and ζ ′(t) = ζ ′
f ,

respectively. Here ζ̄ ′(τ ) and ζ̄ (τ ) denote the conjugates of ζ ′(τ )
and ζ (τ ), respectively. The equations for these conjugations
can be obtained by first exchanging ζ (τ ) and ζ ′(τ ) in
Eq. (19) and taking then a complex conjugate to these equa-
tions. The corresponding boundary conditions are ζ̄ ′(t0) ≡ ζ̄ ′

i

and ζ̄ (t) ≡ ζ̄f . With these boundary conditions, we can get
the solution of ζ (τ ) and ζ ′(τ ). For clarity, we illustrate this
notation in Fig. 1. Noting t0 � τ � t , we keep in mind that

FIG. 1. Schematic illustration of the four independent paths
denoted by (a) ζ (τ ), (b) ζ ′(τ ), (c) ζ̄ ′(τ ), and (d) ζ̄ (τ ), respectively.
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ζ (t) in Fig. 1(a) can be obtained by setting τ = t and ζ ′(t0)
in Fig. 1(b) can be obtained by τ = t0. Figures 1(c) and 1(d)
are similar, namely, ζ̄ ′(t) and ζ̄ ′(t0) can be obtained with τ = t

and τ = t0, respectively.
The solution of the integro-differential equation (19) can be

expressed in terms of two complex functions u(τ ) and u1(τ )
as

ζ ′(τ ) = u1(τ )[ζ ′
f − ζ (t)] + ζ (τ ),

ζ (τ ) = u(τ )ζi + h(τ ). (20)

A similar transformation can be written down for their
conjugate variables with the exchange of ζ with ζ ′ for
the boundary values ζ̄ (t) = ζ̄f and ζ̄ ′(t0) = ζ̄ ′

i . Substituting
Eq. (20) into Eq. (19), we obtain the equations of motion for
u(τ ), u1(τ ), and h(τ ),

u̇(τ ) + i�u(τ ) +
∫ τ

t0

dτ ′f (τ − τ ′)u(τ ′) = 0,

u̇1(τ ) + i�u1(τ ) −
∫ t

τ

dτ ′f (τ − τ ′)u1(τ ′) = 0, (21)

ḣ(τ ) + i�h(τ ) +
∫ τ

t0

dτ ′f (τ − τ ′)h(τ ′) = −i�,

subject to the boundary conditions u1(t) = 1, u(t0) = 1, and
h(t0) = 0 with t0 � τ and τ ′ � t. By means of a Laplace
transform to Eq. (21), we can easily find that

u1(τ ) = u∗(t − τ ), h(τ ) = −i�

∫ τ

t0

dτ ′u(τ − τ ′). (22)

Now we set τ = t0 in the first and τ = t in the second of
Eqs. (20) and ζ (t) and ζ ′(t0) can be expressed in terms of the
boundary conditions ζi and ζ ′

f ,

ζ (t) = u(t)ζi + h(t),

ζ ′(t0) = u∗(t)[ζ ′
f − h(t)] + n(t)ζi, (23)

where n(t) = 1 − |u(t)|2. Similarly, ζ̄ (t0) and ζ̄ ′(t) can be
obtained by exchanging ζ and ζ ′ in Eq. (23) and by taking
a complex conjugate to these equations. Finally, substituting
these results with Eq. (20) into Eq. (18), we obtain the form of
the propagating function for the reduced density matrix

J (ζ̄f ,ζ ′
f ; t |ζi,ζ̄

′
i ; 0) = exp{u(t)[ζ̄f − h∗(t)]ζi + u∗(t)ζ̄ ′

i

× [ζ ′
f − h(t)] + n(t)ζ̄ ′

i ζi + h(t)ζ̄f

+h∗(t)ζ ′
f − |h(t)|2}. (24)

Note that the preexponential factor in Eq. (24) is one, which
is due to the fact that Eq. (24) is the result of integrating out
fluctuations around the stationary path. Now we can derive the
master equation by computing the time derivative of Eq. (13).
First, from Eq. (24), we have the identities

ζiJ = 1

u

(
δJ

ζ f

− hJ

)
, ζ̄ ′

i J = 1

u∗

(
δJ

ζ ′
f

− h∗J
)

, (25)

which will be used to remove ζi and ζ̄ ′
i from the time

derivative of J . After taking the time derivative of Eq. (13) and
substituting Eqs. (24) and (25) into it, we obtain the evolution

equation

∂ρ(ζ f ,ζ ′
f )

∂t
= mζ̄f P1 + m∗ζ ′

f P2 − (m + m∗)P3

+m∗h∗P1 + mhP2 − ḣ∗P1 − ḣP2

−mhζ̄f ρ − m∗h∗ρζ ′
f + ḣζ̄f ρ + ḣ∗ρζ ′

f , (26)

where m(t) ≡ u̇(t)
u(t) , P1 ≡ ∂ρ

∂ζ f

, P2 ≡ ∂ρ

∂ζ ′
f

, and P3 ≡ δ2ρ

∂2ζ f ζ ′
f

. By

introducing the functional differential relations in the coherent-
state representation [29,43]

ζ̄f P1 ↔ σ+σ−ρ(t), P2ζ
′
f ↔ ρ(t)σ+σ−,

P3 ↔ σ−ρ(t)σ+, (27)

we arrive at an exact non-Markovian master equation

dρ(t)

dt
= − i[H (t),ρ(t)] + γ (t)[2σ−ρ(t)σ+ − {σ+σ−,ρ(t)}],

(28)

with the effective Hamiltonian containing the classical driven
field

H (t) = s(t)σ+σ− + r(t)σ+ + r∗(t)σ−. (29)

The renormalized frequency s(t) and the renormalized driving
field r(t) are results of the backaction of the environment.
The time-dependent dissipative coefficient γ (t) describes the
dissipative non-Markovian dynamics due to the interaction be-
tween the system and environment. All these time-dependent
coefficients can be given explicitly,

s(t) = i

2
[m(t) − c.c.],

γ (t) = −1

2
[m(t) + c.c.],

r(t) = i[ḣ(t) − h(t)m(t)], (30)

where u(t) and h(t) are determined by the integro-differential
equations (21). The non-Markovian effect is fully manifested
in the integral kernels in Eq. (21), which include the nonlocal
time-correlation function f (t) of the environment. The non-
Markovian memory effect is coded into the homogenous
nonlocal time integrals with the integral kernel. In addition,
our derivation of the master equation is fully nonpertur-
bative, which goes beyond the TCL, NZ, and Markovian
approximations and includes all effects resulting from the
environment-system couplings.

IV. COMPARISON BETWEEN EXACT AND
APPROXIMATE MASTER EQUATIONS

A. Nakajima-Zwanzig and time-convolutionless
master equations

To derive the second-order perturbative master equation,
we first consider the interaction picture, in which the effective
Hamiltonian HI (t) in Eq. (2) can be rewritten as

HI (t) = σ−(t)a†(t) + H.c., (31)

where σ−(t) = U †(t)σ−U (t), U (t) = e−iHS t , and a†(t) =∑
k gka

†
ke

i�kt . The density operator ρ̄T (t) of the whole system
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including the system and environment satisfies the Liouville
equation

˙̄ρT (t) = −i[HI (t),ρ̄T (t)]. (32)

Integrating the left- and right-hand sides of Eq. (32), we have

ρ̄T (t) = ρ̄T (t0) − i

∫ t

t0

dt ′[HI (t ′),ρ̄T (t ′)]. (33)

Substituting Eq. (33) into Eq. (32), we obtain

˙̄ρT (t) = −i[HI (t),ρ̄T (0)] −
∫ t

t0

dt ′[HI (t),[HI (t ′),ρ̄T (t ′)]].

(34)

Tracing over the degrees of freedom of the environment, we
can obtain the dynamical equation for the system density
matrix ρ̄(t) = TrBρ̄T (t),

˙̄ρ(t) = −i TrR[HI (t),ρ̄T (t0)]

− TrR

∫ t

t0

dt ′[HI (t),[HI (t ′),ρ̄T (t ′)]]. (35)

If we apply the Born approximation and assume that the
reservoir stays in the vacuum state (15) in the dynamics, we
then have

˙̄ρ(t) = −TrR

∫ t

t0

dt ′[HI (t),[HI (t ′),ρ̄(t ′) ⊗ ρE]]. (36)

Notice that

〈a(t)a†(t1)〉 = f (t − t1),

〈a†(t)a†(t1)〉 = 〈a(t)a(t1)〉 = 〈a†(t)a(t1)〉 = 0, (37)

where 〈A〉= TrB〈AρE〉 = 〈0|A|0〉B . Substituting Eq. (31) into
Eq. (36), we have

˙̄ρ(t) =
∫ t

t0

dt ′f (t − t ′)[σ−(t ′)ρ̄(t ′),σ+(t)] + H.c. (38)

By transforming Eq. (38) back into the Schrödinger picture,
we obtain

ρ̇NZ = −i[HS,ρNZ(t)] +
∫ t

t0

dt ′{f (t − t ′)[U (t − t ′)

× σ−ρNZ(t ′)U †(t − t ′),σ+] + H.c.}. (39)

The non-Markovian master equation (39) is in the stan-
dard form of the Nakajima-Zwanzig equation ρ̇(t) =∫ t

0 dt ′f (t,t ′)ρ(t ′) [52,53], where the NZ kernel f (t,t ′) is of
the time translationally invariant form f (t − t ′).

Note that Eq. (36) is in the form of a delayed integro-
differential equation and thus it is a time-nonlocal master
equation. It is worth recalling that the other systematically per-
turbative non-Markovian master equation that is local in time
can be derived from the time-convolutionless projection oper-
ator formalism [2,55,56]. Now, we discuss the details. Under a
similar assumption, i.e., the factorized initial system-reservoir
density matrix, the second-order time-convolutionless master
equation in the interaction picture can be obtained [2,55–62]

˙̄ρ(t) = −TrR

∫ t

t0

dt ′[HI (t),[HI (t ′),ρ̄(t) ⊗ ρE]]. (40)

Substituting Eq. (31) into Eq. (40) and using Eq. (37), we
transform Eq. (38) back into the Schrödinger picture and obtain

ρ̇TCL = −i[HS,ρTCL(t)] +
∫ t

t0

dt ′{f (t − t ′)

× [σ−(t ′ − t)ρTCL(t)σ+ − σ+
× σ−(t ′ − t)ρTCL(t)] + H.c.}. (41)

We note here that obtaining the time-convolutionless non-
Markovian master equation perturbatively up to second order
in the coupling by the use of the time-convolutionless
projection operator technique is equivalent to obtaining it
by replacing ρ̄(t ′) with ρ̄(t) in Eq. (36) [2,55–62]. One may
wonder if the second-order time-nonlocal master equation (39)
is more accurate than the second-order time-convolutionless
master equation (41). In the following, using the exact master
equation, we show that the TCL approach (41) works better
than the NZ one (39) for a wide range of parameters.

B. Comparison to the Nakajima-Zwanzig
and time-convolutionless master equations

We now analyze the characteristics of the damped driven
two-level systems by comparing the exact dynamics with that
from the NZ and TCL master equations. Our purpose is to shed
light on the performances of two master equations and to point
out their ranges of validity. As stressed in the Introduction,
without the exact master equation, it is difficult to examine the
range of validity for these master equations.

We assume that the system couples to a reservoir with
detuning and the reservoir has a Lorentzian spectral density
[2,61,71,72]

J (ω) = �

2π

λ2

(ω − ω0 + δ)2 + λ2
, (42)

where δ = ω0 − ωc is the detuning of ωc to ω0 and ωc is
the center frequency of the cavity. It is worth noting that
the parameter λ defines the spectral width of the reservoir
and is connected to the reservoir correlation time τR = λ−1.
The parameter � can be shown to be related to the decay of
the system in the Markovian limit with a flat spectrum. The
relaxation time scale is τL = �−1.

The Markovian dynamics usually describes a situation
where the coupling strength between the system and the
environment is very weak and the characteristic correlation
time τR of the environment is sufficiently shorter than that of
the system τL, i.e.,

τR 	 τL, (43)

or, equivalently, the spectrum of the reservoir takes the
value J (ω) = �

2π
, which leads to a Markovian dynamics. The

reservoir has no memory effect on the evolution of the system.
Then, according to Eq. (17), we have

f (t) = �δ(t). (44)

Substituting Eq. (44) into the first of Eqs. (21), we reduce the
solution of u(t) to

u(t) = e−i�t−(�/2)t , (45)
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i.e., all the coefficients in Eq. (30) are constants,

s(t) = �, r(t) = �, γ (t) = �. (46)

The exact master equation (28) is then reduced to the
Markovian master equation [2,10,73]

dρ(t)

dt
= −i[�σ+σ− + �σx,ρ(t)]

+ �

2
[2σ−ρ(t)σ+ − {σ+σ−,ρ(t)}], (47)

where the decoherence rates are time independent. This gives
the standard Lindblad form for the Markovian dynamics. When

τR � τL (48)

is satisfied, the strong non-Markovian effect plays an important
role and the dynamics must be described by the exact master
equation (28).

Now we calculate the two-time correlation functions f (t −
t ′) by substituting Eq. (42) into Eq. (17),

f (t − t ′) = 1
2λ� exp[−(λ + i� − iδ)(t − t ′)]. (49)

It is clear that the bandwidth λ is inversely proportional to
the memory time of the reservoir. For this correlation function
f (t − t ′), Eq. (21) can be easily solved by use of Eq. (49); the
solution reads

u(t) = k(t)

[
cosh

(
dt

2

)
+ λ − iδ

d
sinh

(
dt

2

)]
, (50)

where k(t) = e−(λ+2i�−iδ)t/2 and d =
√

(λ − iδ)2 − 2�λ.
In order to calculate U (t) and σ−(t) in Eqs. (39) and (41),

we calculate the eigenstates of the free system Hamiltonian
HS ,

|φλ1〉 = 1√
2

(
√

1 + sin θ |e〉 + √
1 − sin θ |g〉),

|φλ2〉 = 1√
2

(
√

1 − sin θ |e〉 − √
1 + sin θ |g〉). (51)

The corresponding eigenvalues are λ1 = (� + W0)/2
and λ2 = (� − W0)/2. Here W0 = √

�2 + 4�2 and
θ = arctan(�/2�). Straightforward algebra yields

σ−(t) = eiHStσ−e−iHS t =
2∑

j,k=1

σjke
it(λj −λk )|φλj 〉〈φλk|,

U (t) =
2∑

j=1

eiλj t |φλj 〉〈φλj |, (52)

where σjk = 〈φλj |σ−|φλk〉. Now let us concentrate on the
average 〈σz〉, i.e., on the probability difference of finding
the system in the atomic excited and ground levels. To
examine the validity of the two approximate approaches we
explore three different regimes by changing the width λ of the
Lorentzian spectral density. This investigation will allow us to
estimate in which cases the non-Markovian master equations
are efficient in the description of the system dynamics.

Figure 2 shows a comparison of the exact, TCL, and NZ
master equations with large bandwidth λ = 25�. We find that
the results given by the TCL master equation (41) and the
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FIG. 2. (Color online) Time evolution of the population differ-
ence 〈σz〉 for the system initially in the excited state |e〉 versus the
dimensionless parameter �t . The red solid line, black dashed line,
and blue dash-dotted line denote the exact master equation (28),
the TCL master equation (41), and the NZ master equation (39),
respectively. The width of the Lorentzian spectral density is λ = 25�.
The other parameters are (a) � = 0.3�, � = 0.02�, and δ = 0.01�;
(b) � = 0.3�, � = �, and δ = 0.01�; (c) � = 5�, � = �, and
δ = 0.01�; and (d) � = �, � = �, and δ = 10�.

NZ master equation (39) are in good agreement with those
obtained by the exact master equation (28) for any time scales.
In this case, both the TCL and NZ master equations give a
very good description for the dynamics. They indeed provide
us with the same results, which are very close to the Markovian
dynamics; see the discussion regarding Eq. (47). In addition,
in such cases the use of the TCL master equation, which is
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FIG. 3. (Color online) Plot of 〈σz〉 versus the dimensionless
parameter �t . The width of the Lorentzian spectrum is λ = �. The
results are obtained by the exact (red solid line), TCL (black dashed
line), and NZ (blue dash-dotted line) solutions. The other parameters
are (a) � = 0.3�, � = 0.02�, and δ = 0.01�; (b) � = 10�, � = �,
and δ = 0.01�; (c) � = 10�, � = 0.02�, and δ = 0.2�; and (d)
� = 10�, � = �, and δ = 0.2�.
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FIG. 4. (Color online) Comparison of the density matrices ob-
tained by solving the TCL and NZ master equations with the one
obtained from the exact master equation. We quantify the difference
by the fidelity defined by F (ρ1,ρ2) = Tr

√
ρ1/2

1 ρ2ρ1/2
1 . The results

show that the density matrix given by the TCL master equation
is always better than that given by the NZ master equation. The
parameters in (a)–(c) are the same as in Figs. 2(a), 3(a), and 5(a),
respectively.

easier to solve, might be preferred because it is a time-local
first-order differential equation.

We set the same quantity λ = � in Fig. 3. Clearly, the results
given by the TCL equation (41) and the NZ equation (39)
are in good agreement with those obtained by the exact
expression (28) in a short-time scale, but they deviate from
each other in a long-time scale. Considering in particular the
long-time behavior, the NZ equation leads to a nonphysical
result. For times longer than some critical values, the solution
for the population difference 〈σz〉 cannot represent a physical
result because the absolute value of 〈σz〉 is larger than 1.
We therefore can conclude that for this range of parameters
the TCL equation gives a better description of the dynamics
because it reflects all the qualitative characteristics of the exact
expression.

One may wonder if this observation depends on the quantity
plotted. To clarify this point, we plot the fidelity of the density
matrix from the exact master equation to these from the TCL
and NZ master equations in Fig. 4. The results suggest that
the TCL master equation is indeed better than the NZ master
equation for a wide range of parameters.

In Fig. 5 we choose the parameter λ = 0.05�, which,
according to Eq. (49), corresponds to very strong reservoir
correlations and a very long memory effect. We find again
good agreement between the three approaches in the short-time
scale, but in this case the TCL approximation does not work
well. The dynamics of the TCL master equation (black dashed
line) does not follow the oscillations given by the exact
expression (red solid line). The NZ approach has the same
problem in that it cannot conserve the positivity of the density
matrix (i.e., the absolute value of 〈σz〉 exceeds 1). Thus, in this
case two approximate methods are not suitable to describe the
dynamics of the driven two-level system.
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FIG. 5. (Color online) Plot of 〈σz〉 versus time �t . The results
are obtained by the exact (red solid line), TCL (black dashed line),
and NZ (blue dash-dotted line) solutions. The parameters are (a)
λ = 0.05�, � = 0.3�, � = 0.02�, and δ = 0.01�; (b) � = 3.5�,
� = 0.4�, and δ = 0.01�; (c) � = 10�, � = 0.02�, δ = 0.08�;
and (d) � = 0.3�, � = 0.02�, and δ = 0.14�.

Before closing this section, we discuss the function
f (τ − τ ′) in Eq. (17). Concretely, we examine mathematically
the validity of extending the lower limit of the integration from
0 to −∞. In the following we will explore three different
regimes characterized by the width λ in the spectral density.
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FIG. 6. (Color online) Plot of 〈σz〉 given by the exact master
equation (28) as a function of time. The purpose of this figure
is to show the difference in 〈σz〉 caused by different lower limits
of the integral of the kernel (53). The red solid and blue dashed
lines correspond to lower limits −ωL and −∞, respectively. The
Lorentzian spectral density J (ω) (in units of �/2π ) in (d)–(f)
correspond respectively to the results shown in (a)–(c). Here x−
denotes the left location of the half height of the spectral density.
The parameters in (a)–(c) are the same as in Figs. 2(a), 3(a), and
5(a), respectively. Notice that � = ω0 − ωL = 0.3� in Eq. (2); we
set ω0 = 1.3� and ωL = �.
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In Fig. 6 we show a comparison of the results with two
different lower limits in the integration (17) with the spectral
density given in Eq. (42); the simulation is performed for the
exact dynamics described by Eq. (28). Figure 6(a) is for the
integration with a lower limit −∞, which is slightly different
from that with a lower limit 0. In Figs. 6(b) and 6(c) the results
with a lower limit −∞ are in good agreement with the results
obtained with a lower limit 0.

This numerical result can be explained as follows. When
we change ω → ω − ωL, Eq. (17) becomes

f (τ − τ ′) =
∫ ∞

−ωL

dω J (ω)e−iω(τ−τ ′), (53)

with

J (ω) = �

2π

λ2

(ω − � + δ)2 + λ2
. (54)

This tells us that the frequency ωL affects only the lower
limit of the integral (53) when � is fixed. If we define x± =
� − δ ± λ representing the position of the half height of the
Lorentzian spectral density (54), we think that the integral of
J (ω) over ω from −∞ to ∞ can be approximately replaced by
the same integral but from x− to x+. With this approximation,
we find that x− = −24.71� and λ = 25� in Fig. 6(a). Clearly,
x− is much smaller than −ωL, thus the integral of J (ω) over
ω from x− to −ωL cannot be ignored [see Fig. 6(d)]. This
explains the difference of the two curves in Fig. 6(a). On the
contrary, λ = � and x− = −0.71� in Fig. 6(b) and λ = 0.05�

and x− = 0.24� in Fig. 6(c). Here x− is larger than −ωL in
both cases of Figs. 6(b) and 6(c). Thus, the integral from −ωL

to x− can be ignored [see Figs. 6(e) and 6(f)]. As a result, the
two lines in both Figs. 6(b) and 6(c) are in good agreement.

The above discussion suggests that it is reasonable to extend
the lower limit of the integral of the Lorentzian spectral J (ω)
from 0 to −∞.

V. VALIDITY OF SECULAR APPROXIMATION IN
TIME-CONVOLUTIONLESS MASTER EQUATIONS

Taking advantage of the exact expression for the dissipative
dynamics of the open driven two-level system, we have shown
that the TCL approach can reveal all the characteristics of
the non-Markovian dynamics for a range of parameters much
wider than the results that the NZ equation gives. This is
physically reasonable since the latter may violate the positivity
condition on the density matrix for the reservoir correlations
that are not very strong. Therefore, through a comparison
with the exact non-Markovian master equation (28), we can
investigate the validity of the secular approximation based on
the time-convolutionless master equation (41).

We now use the orthonormalized basis (51) and these
relations (52) to derive explicitly the time-convolutionless
master equations (41) as

ρ̇ = −i[HS − H1,ρ] + D(ρ) + D1(ρ), (55)

with

H1 = g2
0Q0(t)S2

z + g2
2Q+1(t)S−S+ + g2

1Q−1(t)S+S−, (56)

which describes a small shift in the energy of the two-level sys-
tem. The above new operators are defined as S− = |φλ2〉〈φλ1|,

S+ = |φλ1〉〈φλ2|, and Sz = |φλ1〉〈φλ1| − |φλ2〉〈φλ2|. Then the
dissipative superoperator D(ρ) in Eq. (55) can be written in a
Lindblad form

D(ρ) = g2
1P−1(t)[2S−ρS+ − {S+S−,ρ}]

+ g2
2P+1(t)[2S+ρS− − {S−S+,ρ}]

+ g2
0P0(t)[2SzρSz − {S2

z ,ρ}], (57)

where the coefficients g0 = �/W0, g1 = (W0 + �)/2W0,
g2 = (W0 − �)/2W0, and W0 = √

�2 + 4�2. The second
dissipator D1(ρ) in Eq. (55) has a more complicated form and
contains the contribution of the so-called nonsecular terms

D1(ρ) = g0R0(t)[g2(SzρS−−S−Szρ)+g1(S+Szρ − SzρS+)]

+ g2R1(t)[g0(S+ρSz − SzS+ρ) − g1S+ρS+]

+ g1R−1(t)[g0(SzS−ρ−S−ρSz) − g2S−ρS−]+H.c.

(58)

For TCL master equations, the non-Markovian effects are
contained in the time-dependent coefficients Pm(t), Qm(t),
and Rm(t), with m ∈ {+,0,−}. The time-dependent coefficient
reads

Rm(t) = ∫ t

0 dt ′
∫

dω J (ω) exp[i(Mm − ω)(t − t ′)], (59)

where Mm = ωL − mW0. The other coefficients take the forms
Pm(t) = Re[Rm(t)] and Qm(t) = −Im[Rm(t)]. Convention-
ally, the nonsecular terms included in the dissipator D1(ρ) are
neglected in the secular approximation. In order to investigate
the effects of the nonsecular terms on the non-Markovian
dynamics, we focus on two regimes identified by the mutual
relationship between the system characteristic time and the
reservoir correlation time.

The time-dependent coefficient (59) for the driven two-level
system in a Lorentzian reservoir can be calculated explicitly
using Eq. (49),

Rm(t) = �λ

λ + iNm

{1 − exp[−(λ + iNm)t]}, (60)

with

Nm=�−δ+mW0. (61)

We can see from Eq. (60) that when min(|N+|,|N0|,|N−|) � λ,

namely, the relaxation time τR = λ−1 of the reservoir correla-
tion is very large compared to the typical time scale defined as
τS = [min(|N+|,|N0|,|N−|)]−1, i.e.,

τR � τS (62)

is satisfied, oscillating terms (58) [those containing Rm(t)]
may be neglected as t increases since rapid oscillations do not
contribute to the dynamics on the time scale of the relaxation.
This constitutes the secular approximation.

When

τR � τS, (63)

we cannot neglect the nonsecular terms (58) in the master
equation (55) in the dynamics of the driven two-level system.
Therefore, in this case, we can no longer obtain a simple
expression for the system. The master equation of the system
is no longer in the time-dependent Lindblad form.
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TABLE I. Comparison of regimes of secular and nonsecular
approximations in TCL master equations for Markovian and non-
Markovian regimes, respectively.

Regime τR � τS τR � τS

Markovian I II
α → τR 	 τL secular nonsecular
non-Markovian III IV
β → τR � τL secular nonsecular

Examining Eqs. (43) and (62), we can summarize the
comparison of the nonsecular approximation with the secular
one in Table I, which shows the validity regimes for secular
and nonsecular approximations in the TCL, Markovian, and
non-Markovian regimes, respectively.

From Table I we can divide the time-dependent dynamics
into two regimes, labeled by α and β, i.e., Markovian and non-
Markovian regimes, respectively. In regime α, i.e., the Marko-
vian regime, we can see that the results given by regime I under
the secular approximation in the TCL equation (55) are in good
agreement with those obtained by the exact master equation
(28) when the weak-coupling condition (43) and the secular
approximation (62) are simultaneously satisfied [see Figs. 7(a),
7(c), and 7(e)]. When the parameters simultaneously satisfy
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FIG. 7. (Color online) Comparison of the (a), (c), and (e) secular
approximation (regime I) and (b), (d), and (f) nonsecular terms
(regime II) in the Markovian regime α in Table I. The red solid
line, blue dashed line, and black dash-dotted line denote the exact
expression (28), the secular approximation (55) neglecting the non-
secular terms (58), and the nonsecular equation (55) containing (58),
respectively. The parameters are (a) λ = 10�, � = 0, � = 0.5�,
and δ = 40�; (b) � = 0.5�, � = 0.2�, and δ = 10�; (c) � = 10�,
� = 2�, and δ = 60�; (d) � = 0.1�, � = 0.2�, and δ = 5�; (e)
� = 10�, � = 0.2�, and δ = 60�; and (f) � = �, � = 0.5�, and
δ = 10�.
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FIG. 8. (Color online) Comparison of the (a), (c), and (e) secular
approximation (regime III) with (b), (d), and (f) nonsecular terms
(regime IV) in the non-Markovian regime β in Table I. The red solid
line, blue dashed line, and black dash-dotted line denote the exact
master equation (28), the secular approximation (55) neglecting the
nonsecular terms (58), and the nonsecular equation (55) containing
(58), respectively. The parameters are (a) λ = 0.8�, � = 2�, � =
0.2�, and δ = 15�; (b) � = 0.04�, � = 0.06�, and δ = 0.4�; (c)
� = 0, � = 0.2�, and δ = 10�; (d) � = 0.05�, � = 0.1�, and
δ = 1.8�; (e) � = 20�, � = �, and δ = 5�; and (f) � = 0.5�,
� = 0.2�, and δ = 2.5�.

Eqs. (43) and (63) [see Figs. 7(b), 7(d), and 7(f)], i.e., regime
II, the dynamics of the TCL master equation (55) involving the
nonsecular terms (58) are in good agreement with those ob-
tained by the exact expression (28), but the results obtained by
the secular approximation have serious deviations from those
obtained by the exact solution (28). This difference comes from
the nonsecular terms (58), which are ignored in regime II.

Examining the non-Markovian regime labeled by β in
Table I, we find that the results given by the secular
approximation (57) in regime III are in good agreement
with those obtained by the exact expression (28) when the
strong-coupling condition (48) and the secular approximation
(62) are simultaneously satisfied [see Figs. 8(a), 8(c), and 8(e)].
When the parameters satisfy simultaneously Eqs. (48) and (63)
[see Figs. 8(b), 8(d), and 8(f)], i.e., in regime IV, the dynamics
of the TCL master equation (55) involving the nonsecular
terms (58) are in good agreement with those obtained by the
exact one (28). However, the results obtained by the secular
approximation have serious deviations from the exact solution
(28). The same observation can be found in regime II.

From Figs. 7 and 8 we can learn that the non-Markovian
effect occurs when λ is small. The non-Markovian regime β

transits to the Markovian regime α when λ is large. Therefore,
by manipulating λ we can control the crossover from non-
Markovian to Markovian processes and vice versa. This
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provides us with a method to manipulate the non-Markovian
dynamics in the driven two-level system.

Now we discuss the positivity and complete positivity of
the reduced dynamics given by the TCL master equation.
The non-Markovian TCL master equation derived in this
paper is not of the Lindblad form, even in the secular
regime discussed in the present section; therefore, both
the positivity and the complete positivity of the reduced
dynamics cannot be guaranteed. In other words, the
Lindblad-Gorini-Kossakowski-Sudarshan theorem [74,75]
that ensures the positivity cannot be satisfied in general,
indicating that the dynamics given by the TCL master equation
might not be physical for the whole range of parameters.

Nevertheless, the parameters chosen (in fact, it is wide
range of parameters) in this paper ensure the positivity of
the reduced dynamics given by the TCL master equations.
This can be understood as follows. For the driven qubit in the
TCL approximation, the necessary and sufficient condition
for complete positivity and positivity is given by (for details,
see Ref. [61])

2α(t) + β(t) � 0, (64)

where

α(t) = 2
∫ t

0
dτ

[
g2

1P−1(τ ) + g2
2P+1(τ ) + 4g2

0P0(τ )
]
,

β(t) = 4
∫ t

0
dτ

[
g2

1P−1(τ ) + g2
2P+1(τ )

]
. (65)

Returning now to Sec. IV, we stress that the necessary and
sufficient condition (64) for complete positivity is satisfied
for the parameters chosen in Figs. 3 and 5 (not for a very
long time). Therefore, for a wide range of parameters, the
complete positivity of the reduced dynamics is guaranteed.
Hence our conclusion, i.e., that the TCL equation gives a better
description of the dynamics, holds true for a wide range of
parameters. It is important to recall that theoretical descriptions
of non-Markovian open quantum systems are often based on
a series of assumptions and approximations without which
it would not be possible to tackle the problem of the
description of the dynamics in simple analytic terms. However,
those approximations plague almost all approximated reduced
dynamics and lead them to break the complete positivity
required for reduced dynamics. Therefore, the observation here
is available for short times and certain ranges of parameters.

VI. A NON-LORENTZIAN SPECTRUM

Note that the spectral density JSB(ω) is proportional to
the imaginary part of the dynamical susceptibility χ̃ (ω) of
a damped harmonic oscillator. In this section we present a
numerical simulation for 〈σz(t)〉 adapting a different spectral
density, e.g., the spin-boson spectral density [3,76],

JSB(ω) = 1

M

ωλ(
ω2 − ω2

0

)2 + ω2λ2
. (66)

In Fig. 9 we plot the time evolution of the population difference
〈σz〉 for three typical spectral widths λ. Interestingly, in
Fig. 9(a), i.e., for large λ = 25�, the population difference 〈σz〉
decays monotonically for both the spin-boson and Lorentzian
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FIG. 9. (Color online) Comparison of the exact dynamics (28)
for the Lorentzian (red solid line) and spin-boson (blue dashed line)
spectral densities. The parameters in (a)–(c) are the same as in
Figs. 2(a), 3(a), and 5(a), respectively. The other parameter is
M = 5�.

spectral densities; the difference is that the former decays
more slowly than the latter. This corresponds to the Markovian
case [see the discussion regarding Eq. (47)]. For λ = �, small
oscillations can be observed in the case with a spin-boson
spectral density, while it is not obvious in the case with a
Lorentzian spectral density [see Fig. 9(b)]. For small λ =
0.05�, oscillations in the population difference can be found in
both cases with the spin-boson spectral density and Lorentzian
spectral density [see Fig. 9(c)]. These oscillations correspond
to a rapid exchange of energy and information between the
two-level atom and reservoir.

Spectral density is a key feature for environments. It charac-
terizes the correlation among the particles in the environment
and determines the dynamics of an open system, as we have
shown in this section.

VII. CONCLUSION

For a driven two-level quantum system, secular and
weak-coupling approximations break down when the system-
environment coupling varies significantly on the scale of the
Rabi frequency. In this paper we avoided these approximations
and have studied the non-Markovian dynamics of the driven
two-level system coupled to a bosonic reservoir at zero
temperature. Making use of the Feynman-Vernon influence
functional theory in the coherent-state representation, we
derived an exact non-Markovian master equation for the driven
two-level system. We compared this exact master equation
with the other equations describing non-Markovian dynamics,
i.e., the Nakajima-Zwanzig and the time-convolutionless
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non-Markovian master equations. It was found that the TCL
approach is valid for a range of parameters much wider than
that for the NZ master equation. This is reasonable since the
latter may violate the positivity of the dynamical map when
the correlation in the reservoir is strong. By using the exact
master equation, we have also given the analytical condition
of validity of the secular approximation and shown how it
depends on the environmental spectral density. We found that
the nonsecular terms have significant corrections to the results
obtained by the secular approximation when the relaxation
time of the environment is less than or equal to that of the
system, i.e., τR � τS .

The limitation of this representation is the state of the
bath; here we only consider the bath initially at vacuum.
Although the zero-temperature case is problematic for getting
reduced dynamics as the bath correlation functions may decay
slowly, the zero-temperature reservoir is a good approximation
for many problems in physics. For the reservoir initially
in a thermal state, the question becomes complicated since
the influence functional in the Feynman-Vernon influence
functional theory is very involved.
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APPENDIX: DERIVATION OF THE
INFLUENCE FUNCTIONAL

The propagating function controlling the time evolution of
the reduced density matrix is given by Eq. (14), where the gen-
eralized Feynman-Vernon influence functional is defined by

F [ζ̄ ,ζ,ζ̄ ′,ζ ′] =
∫

dϕ(zf )dϕ(zi)dϕ(z′
i)D

2zD2z′

× ρE(z̄i ,z′
i ; 0) exp{i(SE[z̄,z]

− S∗
E[z̄′,z′] + SI [z̄,z,ζ̄ ,ζ ] − S∗

I [z̄′,z′,ζ̄ ′,ζ ′])},
(A1)

where SS , SI , and SE are the actions corresponding to HS , HI ,
and HE , respectively,

SS[ζ̄ ,ζ ] = −i[ζ̄f ζ (t) + ζ̄ (t0)ζi]/2 +
∫ t

t0

dτ {i[ζ̄ (τ )ζ̇ (τ )

− ˙̄ζ (τ )ζ (τ )]/2−HS(ζ̄ ,ζ )},

SE[z̄,z] =
∑

k

−iz̄kzk(t) +
∫ t

t0

dτ [iz̄k żk(τ ) − HE(z̄,z)],

SI [z̄,z,ζ̄ ,ζ ] = −
∫ t

t0

dτ HI [z̄,z,ζ̄ ,ζ ]. (A2)

All the functional integrations are worked out over paths z̄(τ ),
z(τ ), ζ̄ (τ ), and ζ (τ ); the end points are z̄(t) ≡ z̄f , z(t0) ≡ zi ,
ζ̄ (t) ≡ ζf , and ζ (t0) ≡ ζi .

Now we can calculate explicitly the influence functional
of our model using the coherent-state path-integral formalism.
Substituting Eq. (10) into the actions of Eq. (A2), we obtain
the explicit form of the propagator. The path integral of the
environmental part in the propagator can be exactly done by the
stationary phase method [33,70] with the boundary conditions
zk(t0) = zki and z̄k(t) = z̄kf . This method needs the equations
of motion of the path

żk + i�kzk = −ig∗
k ζ, ˙̄zk − i�kz̄k = igkζ̄ , (A3)

where ζ and ζ̄ are treated as external sources. By formally
integrating Eq. (A3), we obtain

zk(τ ) = zkie
−i�kτ − ig∗

k

∫ τ

0
dτ ′e−i�k (τ−τ ′)ζ (τ ′),

z̄k(τ ) = z̄kf ei�k (τ−t) + igk

∫ t

τ

dτ ′ei�k(τ−τ ′)ζ̄ (τ ′). (A4)

By taking the reservoir to be initially at zero temperature
(15), i.e., ρE(z̄i ,z′

i ; 0) = 1, we finally can obtain Eq. (16) after
substituting the result and Eq. (A4) into Eq. (A1).
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