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Recently a new uncertainty relation was found as an alternative to a number-phase uncertainty relation for
a harmonic oscillator. In this paper we determine numerically, via the discrete-variable-representation method
known from quantum chemistry, the exact states that saturate this new uncertainty relation. We analyze the
physical properties of the states and compare them to the intelligent states of the Pegg-Barnett uncertainty
relation. We find that for a given set of expectation values of the physical parameters, which are the particle
number and the two quadratures, the two kinds of intelligent states are equivalent. The intelligent states are
the eigenstates corresponding to the lowest eigenvalue of a Hermitian operator, which, when interpreted as
a Hamiltonian of a physical sytem, describes a nonlinear driven harmonic oscillator, for example, a Duffing
oscillator for a certain parameter range. Hence, our results can be interpreted as the determination of the ground
state of such physical systems in an explicit analytic form as well. As the Pegg-Barnett intelligent states we use
are expressed in terms of a coherent-state superposition facilitating experimental synthesis, we relate the states
determined here to experimentally feasible ones.
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I. INTRODUCTION

Defining a phase operator for a quantum harmonic oscillator
which is satisfactory from both physical and mathematical
points of view is still an intriguing and not completely solved
problem of quantum mechanics. As is well known, it is
not possible to introduce a phase operator conjugate to the
excitation number operator which satisfies all the requirements
of Hermiticity, experimental measurability, calculability, and
soundness of definition in an infinite-dimensional separable
Hilbert space simultaneously. Due to this fact and the fun-
damental relevance of phase, especially in quantum optics,
several proposals exist in the literature for the definition of a
suitable phase operator conjugate to the number operator (such
as, e.g., the Susskind-Glogower [1], the Pegg-Barnett [2] or
the Garrison-Wong [3] operator), albeit all of the operators
fail to satisfy some of the aforementioned properties. The
relevance of the problem is also justified by the fact that
the quantum harmonic oscillator is experimentally feasible
in many physical systems including light, vibrational degrees
of freedom of ions, etc.

The existence of a pair of canonically conjugate observables
implies an uncertainty relation that quantifies their comple-
mentarity, which is maybe the most fundamental feature of
quantum mechanics. In the case of the number-phase pair
also, the corresponding number-phase uncertainty relations
have been constructed for the introduced operators [1,2,4–8].
Entropic uncertainty relations have also been introduced for
describing number-phase uncertainty [9–13].

The states saturating a number-phase uncertainty relation
are called number-phase intelligent states. Intelligent states
for the Susskind-Glogower [1] and for the Pegg-Barnett [2]
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number-phase uncertainty relations have been found pre-
viously [14,15]. Uncertainty relations and the respective
intelligent states constitute the starting point for the discussion
of squeezing phenomena. Finding the intelligent states for an
uncertainty relation is crucial in order to characterize quantum
states prepared in experiments with a reduced uncertainty
of one of the given physical quantities [16,17]. States of
harmonic oscillator systems with reduced number uncertainty
are called amplitude-squeezed states. Amplitude squeezing
of light and its generation have been widely studied in the
literature because of the potential application in quantum
metrology, quantum information processing, and optical com-
munication [18–22].

Recently an uncertainty relation involving the number
operator N and annihilation operator a was proposed as a well-
behaved alternative to known number-phase relations [23].
This expression reads

[
(�N )2 + 1

4

][
(�a)2 + 1

2

]
� 〈N〉

4
+ 1

8
, (1)

and we shall refer to it as the N -a uncertainty relation in what
follows. The physical relevance of this uncertainty relation is
that it makes it possible to define amplitude squeezing without
reference to a phase operator, hence avoiding the problem of its
introduction in a rather elegant manner. The quantities found in
this uncertainty relation can be measured easily with relatively
low experimental requirements [24,25]. We note that a family
of uncertainty relations with N and a has already been used
for the detection of quantum entanglement [26,27].

In this article we determine the number-phase intelligent
states saturating the N -a uncertainty relation. It was already
conjectured in Ref. [23] that they coincide with those of
the Pegg-Barnett case; however, it was not proven there.
Nevertheless, it was derived that that these states are the
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eigenstates of the operator
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λ
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Y√

2

)
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with the smallest eigenvalue. In Eq. (2), the Lagrange multipli-
ers λX, λY , and λN are there to set the appropriate expectation
values of the quadratures 〈X〉 and 〈Y 〉 and that of the particle
number 〈N〉 in the resulting intelligent state. This is the starting
point of our present considerations. We determine the N -a
intelligent states, as the respective eigenstates of the operator
in Eq. (2), by a method which is known in quantum chem-
istry, namely, the discrete-variable-representation method (see
Refs. [28–33] and references therein).

The solution to the eigenvalue problem described above
appears to be useful also in a completely different context.
The Hermitian operator O given in Eq. (2) describes a
nonlinear driven harmonic oscillator when it is considered as
the Hamiltonian of a physical system. As noted in Ref. [23] it
also appears as a system Hamiltonian in self-consistent calcu-
lations for the Bose-Hubbard model based on the Gutzwiller
ansatz [34–38]. The operator O, as a Hamiltonian, also de-
scribes a Duffing oscillator in a frame rotating with the driving
frequency when the detuning of the driving and the nonlinear-
ity for typical values of the position are small [39]. This system
can be realized in circuit QED experiments based on Josephson
junctions in superconducting circuits [40,41]. Hence, the
eigenstate of the operator in Eq. (2) for the smallest eigenvalue
describes the ground state of a physically interesting quantum
system characterized by the operator O as a Hamiltonian.

We compare the numerically obtained ideal intelligent
states to the intelligent states of the Pegg-Barnett number-
phase uncertainty relation defined by a one-dimensional
coherent-state superposition [15]

|α0,u,δ〉 = c

∫
exp

(
−1

2
u2φ2 − iδφ

)
|α0 exp(iφ)〉dφ. (3)

In addition to the calculational convenience, the one-
dimensional coherent-state representation has a further impor-
tant benefit: in various physical systems it is relatively easy to
prepare experimentally discrete coherent-state superpositions
derived from the continuous superposition that generate the
original state [42–50]. Hence, the expression in (3) warrants
the practical feasibility of the Pegg-Barnett states. The states
defined in Eq. (3) interpolate between coherent states and Fock
states and describe amplitude-squeezed states [51] between
these two limits for a given parameter set. As the states in
Eq. (3) have three parameters u, δ, and α0 which affect the
expectation values of the particle number and quadratures, the
proper means of a comparison of the states in (3) and the ones
found numerically and described in this paper is to compare
the difference in the two sides of the uncertainty relation in
Eq. (1), for a fixed set of expectation values of the particle
number and the two quadratures. Were this difference equal
for the two kinds of states, we could conclude that the states
in (3) are intelligent states for Eq. (1) as well. In what follows
we shall show that this is indeed the case, within numerical
precision.

The paper is organized as follows. In Sec. II we present
the numerical method for solving the eigenvalue equation for
the operator of Eq. (2) and analyze the physical properties
of the determined ideal intelligent states for the number-
operator–annihilation-operator uncertainty relation. In Sec. III
we compare these ideal states to the intelligent states for the
Pegg-Barnett uncertainty relation. Finally, Sec. IV summarizes
the results.

II. IDEAL INTELLIGENT STATES

The analytical solution of the eigenvalue problem of the
operator O (and the Hamiltonians of the same form) is not
known. Therefore we apply a numerical method for obtaining
its ground state. A numerically exact approximation to the
ground state of the operator O can be obtained by expanding
the ground state in terms of a truncated, orthonormal basis.
In addition to determining the ground state, the ground-state
expectation values of the quadrature operators X = (a +
a†)/

√
2, Y = (a − a†)/i

√
2, and that of the number operator

N and other quantities appearing in Eq. (1) are also required.
Both the ground state and the ground-state expectation values
of operators can be calculated conveniently by employing the
discrete-variable-representation (DVR) method [28–33].

When calculating the expectation values an interesting
property of the DVR method is exploited. Namely, the αi th el-
ement of the ith eigenvector corresponding to the numerically
converged ith eigenvalue obtained in a DVR calculation is pro-
portional to the value of the ith eigenfunction taken at the αth
DVR grid point. The proportionality factor is just the square
root of the αth quadrature weight. This property makes the
calculation of expectation values of operators over converged
eigenstates very simple once the DVR of these operators have
been calculated. The DVR of the operators X, Y , and N can be
constructed either numerically, by employing the transforma-
tion method [52–54], or analytically [55,56]. The form of O

suggests that harmonic oscillator eigenstates may be a suitable
basis. Therefore the Gauss-Hermite DVR is employed in our
calculations. The calculations proceed as follows.

Given a truncated basis formed by the first N harmonic
oscillator eigenstates χn(X), n = 0,1, . . . ,N − 1, Gauss-
Hermite DVR basis functions φα(X), α = 1, . . . ,N, are de-
fined as

φα(X) =
∑

n

χn(X)Tnα, (4)

where Tnα are elements of the matrix T diagonalizing the
matrix X of the operator X formed in the truncated harmonic
oscillator basis. It has been shown [53,54] that, with Xα

denoting the αth eigenvalue of X , Tnα = w
1/2
α χn(Xα) and Xα

and wα are just the points and weights, respectively, of the
N-point Gauss-Hermite quadrature.

Since the operator O can be expressed in terms of the
operators N , X, and Y as

O = λNN + N2 + λXX − λY Y, (5)

and Y = −i(d/dX), one can set up its matrix representation
O readily in the Gauss-Hermite DVR basis. The βαth element
reads as

Oβα = λNNβα + (N2)βα + λXXαδβα − λY Yβα, (6)
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where δβα is the Kronecker delta symbol, and Aβα denotes the
βα element of an operator A in the DVR basis. The diagonal-
ization of O gives approximate eigenvalues and eigenfunctions
of O. To make sure that the ground state has converged
at least within ten significant digits, the first 400 harmonic
oscillator eigenstates were used as a truncated basis along
with the corresponding 400-point Gauss-Hermite quadrature
points (and weights) as the DVR grid. Convergence has been
checked by increasing the size of the DVR basis to 500.

Truncation of the basis set amounts to approximating the
eigenfunctions by finite linear combinations of the basis func-
tions. In particular, the ith eigenfunction is approximated as

	i(X) ≈
∑

α

cαiφα(X). (7)

One of the points of employing the DVR even for such
a relatively simple operator as O is that for converged
eigenfunctions, i.e., when there is equality in Eq. (7),

cαi = w1/2
α 	i(Xα) (8)

holds. Then, once O has been diagonalized one can
immediately plot the eigenfunctions and the calculation of the
expectation value of an operator A(X) reduces to the simple
Gaussian quadrature, i.e.,

〈A〉 = 〈	i |A|	i〉
=

∑
β

∑
α

w
1/2
β 	∗

i (Xβ)Aβαw1/2
α 	i(Xα)

≈
∑

α

wα	∗
i (Xα)A(Xα)	i(Xα). (9)

Using the procedure described above we have determined
the wave functions of the ideal intelligent states for the pa-
rameter ranges λN,λX,λY = [−100,100] with average density
�λi = 4. Then we calculated all relevant physical quantities,
i.e., mean values of the particle number 〈N〉 and the quadrature
operators 〈X〉 and 〈Y 〉, and the uncertainties �N and �a.

Figure 1 shows the mean value of the particle number
as a function of the parameters λX and λY for λN = −100.

FIG. 1. The mean value of the number operator 〈N〉 as a function
of the parameters λX and λY for λN = −100.

FIG. 2. The mean value of the quadrature operator 〈X〉 as a
function of the parameters λX and λY for λN = −1.

The symmetry in λX and λY follows from the corresponding
symmetry of Eq. (2). The mean value of the quadrature
operator 〈X〉 as a function of the parameters λX and λY is
presented in Fig. 2 for λN = −1.

Figures 3 and 4 show the mean values of the quadrature
operators 〈X〉 and 〈Y 〉, respectively, as functions of λN and
λY for λX = −1. Due to the mutual correspondence of the
parameters λX and λY from now on we can choose λY = 0
without loss of generality. In Fig. 4 one can see that the mean
value of the quadrature operator Y equals to zero in this case.

After calculating all physical quantities as functions of
the parameters λX,λY ,λN we checked that the dependence
is monovalent. This means that one point in the three-
dimensional parameter space yields only one point in the space
of the physical quantities 〈N〉, 〈X〉, and 〈Y 〉. As a consequence
we can examine the properties of the intelligent states as a
function of the physical quantities.

At this point we should note that there is an interesting
property of the uncertainty relation (1), namely, it does not

FIG. 3. The mean value of the quadrature operator 〈X〉 as a
function of the parameters λN and λY for λX = −1.
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FIG. 4. The mean value of the quadrature operator 〈Y 〉 as a
function of the parameters λN and λY for λX = −1.

FIG. 5. The difference �ε between the left-hand side and the
right-hand side of Eq. (1) as a function of the mean value of the
number operator 〈N〉 and the quadrature operator 〈X〉 for (a) λX =
[−20, − 40, − 60, − 80, − 100] from bottom to top and (b) λX =
[0, − 0.1, − 0.5, − 1, − 6, − 10] from right to left.

FIG. 6. The mean value of the number operator 〈N〉 as a
function of the mean value of the quadrature operator 〈X〉 for λX =
[0, − 0.1, − 0.5, − 1, − 6, − 100] from left to right.

lead to equality even for an obviously number-phase intelligent
state, e.g., for a coherent state with a large amplitude.
Moreover, having predefined expectation values of the particle
number 〈N〉, and the two quadratures 〈X〉 and 〈Y 〉, there
might even not exist a state for which (1) holds as an equality.
Hence, by saturation of the inequality, the minimization of the
difference of the left- and right-hand sides of the inequality is
meant. Also, an intelligent state is one which minimizes this
difference. We note that the same definition holds for the case
of the uncertainty relation involving the particle number and
the Pegg-Barnett phase operator.

In Fig. 5 we show the difference between the left-hand
side and the right-hand side of Eq. (1), �ε, as a function
of the mean values 〈X〉 and 〈N〉 for various values of the
parameter λX. We note that the straight line in Fig. 5(b) at
λX = 0, 〈X〉 = 0 corresponds to Fock states. For these states
obviously �ε = 0. One can see that the intelligent states of
the uncertainty relation Eq. (1) generally do not yield equality
corresponding to �ε = 0. As shown in Ref. [23], even for
coherent states |α0〉, which are obviously intelligent states for
this uncertainty relation, �ε = √

α0/4.
Figure 6 shows the mean value of the number operator 〈N〉

as a function of the mean value of the quadrature operator 〈X〉
for various values of the parameter λX corresponding to the
projection of the functions �ε of Fig. 5(b) on the parameter
plane of 〈N〉 and 〈X〉.

In the next section we will show that the same range of the
expectation values 〈N〉 and 〈X〉 can be achieved by adjusting
the parameters u, δ, and α0 in the intelligent states of the
Pegg-Barnett uncertainty relation defined in Eq. (3).

III. COMPARISON TO THE INTELLIGENT STATES FOR
THE PEGG-BARNETT UNCERTAINTY RELATION

In Ref. [15] number-phase intelligent states were de-
termined for the number-phase uncertainty relation de-
fined through the Pegg-Barnett Hermitian phase operator.
These states have been defined as continuous coherent-
state superpositions on a circle according to Eq. (3)
and they have the following expansion in the number
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FIG. 7. The mean value of the number operator 〈N〉 as a
function of the mean value of the quadrature operator 〈X〉 for
δ = 1,2,3,4,5 and a series of α0 parameter values. (For δ =
1,3,5 only the case α0 = √

δ is plotted while for δ = 4, α0 =
[0.1,0.5,1,1.5,1.7,1.9,2,2.1,2.3,2.5,5,10,20], and for δ = 2, α0 =
[0.1,0.5,1,1.2,

√
2,1.6,1.8,2,5,10,15] are plotted. In these latter

cases the curve belonging to a lower α0 runs always below the one
with a greater α0.)

states:

|α0,u,δ〉 = c

∞∑
n=0

exp

(
−α2

0

2

)
αn

0√
n!

√
2π

u

× exp

(
− (δ − n)2

2u2

)
|n〉. (10)

These states lead to the coherent state |α0〉 in the limit
u → ∞ and yield the number state |δ〉 when δ is a non-
negative integer in the limit u → 0. We note that the state
of Eq. (10) corresponds to the most illustratively parametrized
version of the mathematically obtained intelligent state for
the Pegg-Barnett uncertainty relation. For further calculations
we choose α0 to be real, which corresponds to the choice of
λY = 0 in the case of the ideal intelligent states.

In Fig. 7 we present the mean value of the particle number
〈N〉 as a function of the mean value of the quadrature operator
〈X〉 for some values of the parameter δ and various values
of α0. Comparing this figure to Fig. 6, it is easy to conclude
that the ideal intelligent states and the ones defined by Eq. (3)
cover the same domain of the 〈X〉-〈N〉 plane. The area of the
possible values of 〈X〉 and 〈N〉 is bounded by a parabolic curve
corresponding to the values of these quantities in coherent
states. When 〈X〉 = 0 we have the number states. Note that
some of the curves corresponding to the different parameters
in Fig. 7 eventually intersect. Indeed, different parameter sets
can produce states with the same expectation values. Moreover,
we have checked that in such cases not only the expectation
values but all the coefficients in the number-state expansion
of the states are the same within numerical precision, hence,
different parameter sets may yield the same state.

Figure 8 shows the difference �ε between the left-hand
side and the right-hand side of Eq. (1) as a function of the
mean value of the number operator 〈N〉 for various values
of u. For comparison we present the same function for the
ideal intelligent state for various values of λX (Fig. 9). From

FIG. 8. The difference �ε between the left-hand side and the
right-hand side of Eq. (1), as a function of the mean value of the
number operator 〈N〉 for various values of u.

the similarity of the curves it is clear that the parameter λX

plays the same role for the ideal intelligent states as does the
parameter u for the states |α0,u,δ〉. Of course, the points of a
curve in Fig. 8 correspond to different values of the parameters
δ and α0 (here δ = α2

0), and the points of a curve in Fig. 9
correspond to different values of the parameter λN .

In the end, we have verified numerically that for the states
|α0,u,δ〉 it is easy to reach with high precision all discrete
values of 〈N〉 and 〈X〉 calculated numerically for the ideal
intelligent states for the considered parameter range of λX, λY ,
and λN by adjusting the values of u, δ, and α0. In this way
the states |α0,u,δ〉 can be compared to the ideal intelligent
state. We have found that the difference �ε between the
two sides of the uncertainty relation of Eq. (1) for a fixed
set of expectation values of the particle number and the two
quadratures is equal for the two kind of states within numerical
precision. In Table I we present the mean values of the particle
number 〈N〉 and the quadrature 〈X〉 and the precision of the
equivalence of the difference ��ε between the two sides of the
uncertainty relation of Eq. (1) for five different corresponding
parameter sets of the two kind of states. It means that the ideal
intelligent states of the number-operator–annihilation-operator

FIG. 9. The difference �ε between the left-hand side and the
right-hand side of Eq. (1) as a function of the mean value of the
number operator 〈N〉 for various values of λX .
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TABLE I. The mean values of the particle number 〈N〉 and the
quadrature 〈X〉 and the precision of the equivalence of the difference
��ε between the two sides of the uncertainty relation of Eq. (1) for
five different corresponding parameter sets of the two kinds of states.

λX λN u δ α0 〈N〉 〈X〉 ��ε

−20 4 1.789 3 1.48 2.32 2.14 11 × 10−4

−6 2 2.31 1 0.99 0.89 1.32 2 × 10−4

−10 −4 2.396 4 1.877 3.666 2.644 3 × 10−4

−20 −28 3.02 16 3.88 15.70 5.49 16 × 10−4

−0.5 −12 0.94 6 2.534 6.02 2.64 14 × 10−4

relation coincide with the intelligent states of the Pegg-Barnett
uncertainty relation when the mean values of the physical
quantities 〈N〉, 〈X〉, and 〈Y 〉 are equal.

As a straightforward consequence of this result, the coher-
ent superposition states defined in Eq. (3) approximate with
high precision the ground-state wave function of nonlinear
driven harmonic oscillators described by the Hamiltonian
of the form of Eq. (2). This bears additional experimental
relevance, as we have already discussed in the Introduction.

IV. CONCLUSION

We have determined numerically the exact states that sat-
urate the number-operator–annihilation-operator uncertainty

relation that has been introduced recently in Ref. [23] as
an alternative approach to the problem of the number-phase
uncertainty relation. We proved that these ideal intelligent
states coincide with the intelligent states of the Pegg-Barnett
number-phase uncertainty relation. This result justifies the
correctness of the alternative uncertainty relation introduced
in Ref. [23] and establishes its relation to the the Pegg-
Barnett formalism which, due to its ease in calculation, is
applied in most of the quantum optics literature. Moreover,
as Pegg-Barnett intelligent states are expressed in the form
of a one-dimensional coherent-state representation, we have
related the newly determined states to experimentally feasible
ones.

We have also recognized that the operator in the eigen-
value equation yielding the ideal intelligent state coincides
with the Hamiltonian of nonlinear driven harmonic os-
cillator systems realized recently in circuit QED experi-
ments. Therefore our result implies that the ground state
of such system is the intelligent state of the Pegg-Barnett
and the number-operator–annihilation-operator uncertainty
relations.
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