
PHYSICAL REVIEW A 89, 062106 (2014)

Space-time dynamics of the vacuum’s polarization charge density
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Using numerical solutions to the quantum-field theoretical Dirac equation, we study the space-time evolution
of the vacuum’s polarization charge and current densities induced by an external electric force in one spatial
dimension. We discuss a simple analytical model that can predict the dynamics of the polarization dynamics
for arbitrary external force configurations. We then study the corrections to these predictions when the external
force becomes supercritical and real electron-positron pairs can be created. By coupling the Dirac equation to
the Maxwell equations, we examine how the dynamics of the polarization density is affected, if we allow the
corresponding induced charges to interact with each other.
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I. INTRODUCTION

The vacuum state plays a central role in quantum elec-
trodynamics (QED). It is associated with the lowest-energy
eigenstate in the interacting theory and is visualized as a state
where none of the possible fermionic and bosonic states are
excited, corresponding to the absence of any physical particles.
Despite the absence of real particles, the vacuum has a rich
structure, as revealed by many QED studies [1–7]. A fun-
damental property that characterizes any quantum theoretical
state is the possibility of an induced charge displacement,
i.e., the polarizability. In a pictorial sense, the vacuum can be
thought of as an infinite reservoir of virtual photons, electrons
and positrons that appear and disappear on short temporal
and spatial scales. The vacuum polarization density can be
modified due to the presence of a highly charged nucleus. If
the nuclear charge is sufficiently large, the associated electric
force can split the two fermions irreversibly, leading to the
spontaneous pair creation from the vacuum as described in the
pioneering work by Schwinger [8]. This breakdown process
of the vacuum is predicted to emit positrons and captured
electrons and establishes a new state in the supercritical field
[3,9] called the charged vacuum. Due to its polarizability
[10,11], the vacuum is sometimes compared to a dielectric
medium. It has also been suggested that due to this polarization
the vacuum is able to partially screen off any nucleus such that
its effective charge, which is observed at distances farther than
the electron’s Compton wavelength, is typically smaller than
the bare charge. This effect is also believed to contribute to a
certain degree to the hydrogenic Lamb energy shift and is a
main contributor to the corresponding energy shift of muonic
helium [12,13]. This screening is interpreted as a consequence
of the virtual pair production in the Coulombic background
field of the charge.

The impact of the polarization has been examined on
corrections to the binding energies of electrons or energies
of positronic resonances in the static region, where the
polarization is fully established. In this work we will examine
the mechanisms leading to the occurrence and the space-time
evolution of the polarization. If the polarization is based on
electron and positron pairs, does their nonvanishing mass
put a constraint on the maximum propagation speed of the
polarization density? This question becomes more relevant as

newly developed high-power laser sources will make direct
experimental tests of the vacuum structure possible in this
nonequilibrium regime [14].

The paper is structured as follows. In Sec. II we briefly
review the framework of computational quantum-field theory
that permits us to calculate the vacuum’s charge and current
densities for a one-dimensional system. We also show how to
approximate the backreaction by coupling the Dirac equation
to the Maxwell equations. In Sec. III we present the main
finding of this work. In the absence of any real pair creation
or backreaction the polarization density can be described by
a remarkably simple wave equation, where the source term is
directly proportional to the external charge distribution that
was responsible for the external field. The proportionality
constant (the vacuum’s dynamical linear susceptibility) can
be determined numerically. In Secs. IV and V we show how
the polarization density is modified if the dynamics permits
the creation of real electron-positron pairs or if the field’s
backreaction is taken into account. We finish with a brief
summary and an outlook.

II. COMPUTATIONAL QUANTUM-FIELD THEORY
IN ONE SPATIAL DIMENSION

We model the pair-creation process of the electron-positron
pairs by the time-dependent Dirac Hamiltonian in one spatial
dimension [15]:

H = cσ1[p − q/cA(z,t)] + σ3mc2 + qV (z,t), (2.1)

where q = −1 is the electronic charge, and σ1 and σ3 are
the two Pauli matrices. In our numerical simulations below we
use atomic and cgs units, where the four fundamental constants
[amount of the electron charge |q|, the electron mass m, and
Coulomb’s and Planck’s constants 1/(4πε0) and �] are all unity
by definition. As a result, the speed of light is c = 137.036
atomic units (a.u.).

The energy eigenstates of the force-free Hamiltonian
(denoted by H0) with positive energy wp ≡ [m2c4 +
c2p2]1/2 and momentum p in the positive (up) energy
continuum are denoted by H0 |u; p〉 = wp |u; p〉, whereas
those in the negative (down) continuum are denoted
by H0 |d; p〉 = −wp |d; p〉. Their spatial representation is
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given by

〈z|u; p〉 ≡ Wp(u; z) = η[1,cp/(mc2 + wp)] exp[ipz],

(2.2a)

〈z|d; p〉 ≡ Wp(d; z) = η[−cp/(mc2 + wp),1] exp[ipz],

(2.2b)

where η ≡ (2π )−1/2[1 + c2p2/(wp + mc2)2]−1/2 denotes
the normalization factor.

The vector and scalar potentials A(z,t) and V (z,t) in
Eq. (2.1) represent the fields whose dynamical evolution is
determined by the space-time–dependent charges and current
densities Q(z,t) and J (z,t). In the Lorenz gauge [∂zA =
−∂ctV ] the Maxwell equations read(

∂ct
2 − ∂z

2
)
V (z,t) = 4πQ(z,t), (2.3a)(

∂ct
2 − ∂z

2
)
A(z,t) = 4πc−1J (z,t). (2.3b)

Below we analyze several physical scenarios. The induced
electric charge and current densities due to the polarization
of the vacuum, denoted by ρpol(z,t) and jpol(z,t), can be
calculated from the space-time–evolved quantum operator
for the electron-positron field �(z,t). These densities are
calculated from the expectation value of the corresponding
operators as

ρpol(z,t) ≡ 〈vac|q[�(z,t)†�(z,t) − �(z,t)�(z,t)†]/2|vac〉,
(2.4a)

jpol(z,t) ≡ 〈vac|qc[�(z,t)†σ1�(z,t)

−�(z,t)σ1�(z,t)†]/2|vac〉. (2.4b)

If we express the time evolution of the field operators in
terms of �(z,t) and �(z,t)† by the solutions to the Dirac
equation, we obtain [16]

ρpol(z,t) = q	p[Wp(d; z,t)†Wp(d; z,t)

−Wp(u; z,t)†Wp(u; z,t)]/2, (2.5a)

jpol(z,t) = qc	p[Wp(d; z,t)†σ1Wp(d; z,t)

−Wp(u; z,t)†σ1Wp(u; z,t)]/2, (2.5b)

where each state is evolved under the Dirac Hamiltonian of
Eq. (2.1). These solutions can be obtained on a space-time
lattice with Nt temporal and Nz spatial grid points us-
ing a fast-Fourier-transformation–based split-operator scheme
[17–21]. We truncated the energy sums 	p above a cut-off
energy, denoted by Ecut.

There are two different mathematical mechanisms by which
each density vanishes initially. At the initial time t = 0,
the states Wp(u; z,t) and Wp(d; z,t) are identical to the
energy eigenstates defined in Eq. (2.2). As a result, each
term Wp(z,t)† Wp(z,t) = (2π )−1 is spatially constant and the
difference of the (infinite) sums 	p over all states with positive
and negative energies is zero, leading to ρpol(z,t = 0) = 0.
As each energy is doubly degenerate, we have states with
positive and negative current densities per energy. As a result,
the vanishing total current density jpol(z,t = 0) = 0 is based
on a cancellation within each pair of degenerate energy states.
The computation of ρpol(z,t) and especially jpol(z,t) therefore

requires us to truncate the momentum states symmetrically.
We note that FFT-based grid methods naturally require an
unbalanced manifold of momenta due to the Nyquist state.

It is also interesting that in this particular quantum-field
theoretical framework the time evolution of states of initially
positive free energy Wp(u; z,t) seems to contribute to the
positive sign of the charge density (note that q = −1 a.u.),
whereas the negative energy states contribute with a negative
sign. If we had replaced the initial bare vacuum state |vac〉
in the expectation value in Eq. (2.4a) with a single electron
state with momentum P , |P 〉, the resulting time evolution of
ρpol(z,t) would be identical to the solution given in Eq. (2.5a),
except for an additional negative term qWP (u; z,t)†WP (u; z,t),
reflecting correctly the negative charge of an electron, which
is simply superimposed on the vacuum’s density. In the Dirac
sea picture, the depletion (transition to positive energy states)
of the negative energy states is usually associated with the
occurrence of a positive charge (positron).

III. SIMPLE ANALYTICAL MODELS FOR ρpol(z,t)
AND jpol(z,t)

In Sec. III A we outline a simple analytical model that
permits us to predict the space-time evolution of the vacuum’s
polarization density for arbitrary configurations of static
external fields. In Sec. III B we find another model that
predicts this density for the case in which a charge was
placed at location z = 0 at time t = 0. In contrast to the
first case, where the steady-state electric field was established
before the vacuum polarization began to develop, here the
vacuum’s polarization is established simultaneously with the
propagating external field.

A. Formation of the vaccum’s polarization in a given external
field configuration

Here we assume that we have a given (time-independent)
charge density Qext(z). According to the steady-state Maxwell
equation [−∂z

2Vext = 4πQext(z)], this can be associated with
an external (steady-state) scalar potential Vext(z). The associ-
ated electric field Eext(z)[= − ∂zVext(z)] induces a polarization
charge density of the QED vacuum that we have denoted by
ρpol(z,t). In the prior section we showed that this vacuum
polarization density is obtained as a solution to the Dirac
equation, which depends on the external potential Vext(z). We
argue below that one can find a new description in which
the potential acts only as an intermediary agent and where
the resulting time-evolved density ρpol(z,t) can be obtained
directly from the original distribution of the externally given
charge Qext(z). Similarly to an electromagnetic field, in this
description the polarization charge density can be modeled by
a simple wave equation, where a term that is proportional to
Qext(z) acts as a source term:

(
∂ct

2 − ∂z
2
)
ρpol(z,t) = 8πχdQext(z). (3.1)

This equation is just a postulate, whose validity needs
to be established below. We denote the proportional-
ity constant χd as the vacuum’s linear susceptibility.
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If we assume the two initial conditions ρpol(z,t = 0) = ∂t ρpol(z,t = 0) = 0, the inhomogeneous solution reads

ρpol(z,t) = (c/2)
∫ t

0
dt ′

∫ z+c(t−t ′)

z−c(t−t ′)
dz′[8πχdQext(z

′)]

= (c/2)
∫ t

0
dt ′

∫ z+c(t−t ′)

z−c(t−t ′)
dz′ 2χd

[ − ∂z′ 2Vext(z
′)
]

= −χdc

∫ t

0
dt ′{∂zVext[z + c(t − t ′)] − ∂zVext[z − c(t − t ′)]}

= −χd

∫ t

0
dt ′{−∂t ′Vext[z + c(t − t ′)] − ∂t ′Vext[z − c(t − t ′)]}

= χd [2Vext(z) − Vext(z − ct) − Vext(z + ct)], (3.2)

where we have used −∂z′ 2Vext = 4πQext.
This simple solution can also be derived phenomenolog-

ically, if we assume that the corresponding external force
on a charge q, Fext = −q∂zVext(z) plays two roles. First,
it continuously separates the virtual electrons and positrons
and then secondly, shifts them apart with velocities ±c.
If we postulate that the separated charge per unit time at
each location is directly proportional to the external force,
then the accumulated charge would simply grow linearly in
time, χd Eext(z)t . However, in a region where Eext(z) > 0,
the virtual positrons [associated with the positive portion of
ρpol(z)] evolve with a speed c to the left whereas virtual
electrons move to the right, leading to the instantaneous
density proportional to {Eext[z + ct] − Eext[z − ct]}. If we
sum (integrate) over layers separated at different creation
times t ′, we would obtain ρpol(z,t) = χd c

∫ t
dt ′ {Eext[z +

c(t − t ′)] − Eext[z − c(t − t ′)]}. Furthermore, if we use
Eext(z) = −∂zVext(z) and ∂ctAext(z) = 0, this expression can
be simplified to the solution given by Eq. (3.2).

In one spatial dimension the corresponding electric current
density can be determined directly from the charge-density
solution (3.2) using the continuity equation ∂zjpol(z,t) =
−∂t ρpol(z,t). If we replace ∂tVext(z ± ct) by ±∂z Vext(z ±
ct)c and assume j (z,t = 0) = 0, we obtain

jpol(z,t) = χdc[Vext(z + ct) − Vext(z − ct)]. (3.3)

In order to test the numerical accuracy of this remarkably
simple model, we have used two external scalar potentials. The

first one, Vext(z) = −Q2π |z|, describes a steady-state electric
field E(z) = −Q2π + Q4π U (z) associated with a spatially
localized point charge Qext(z) = Qδ(z). Here and below we
denote with U a generalized unit step function that is 1 if each
argument is positive and vanishes if any argument is negative.
We neglect here the fact that in quantum-field theory a charge
density cannot be localized within more than the electron’s
Compton wavelength [22,23], which is much smaller than the
spatial range of interest here. We will return to this important
point in Sec. III C.

If we insert the specific form Vext(z) = −Q2π |z| into
Eq. (3.2), we obtain ρpol(z,t) = χdQ4π (ct − |z|) U (ct −
|z|) and similarly, from Eq. (3.3) we obtain jpol(z,t) =
χdQ4π [zU (ct − |z|) + t |z|/z U (|z| − ct)]. The spatially
constant but temporally growing portion of jpol(z,t) outside
the light cone (|z| > ct) confirms that the constant electric
field Eext = 2πQ|z|/z can separate the charges everywhere
in space with equal strength. In order to obtain the total
induced charge around z = 0, we integrate ρpol(z,t) and obtain
Qind (t) = ∫ dzρpol(z,t) = χdQ4π t2.

In Fig. 1 we compare the dynamics of the charge and current
densities from Eqs. (3.2) and (3.3), with the exact ones obtained
numerically from the full quantum-field theoretical calculation
via Eq. (2.4). We found that for charges Q < 105 a.u., the
agreement is superb.

There are five observations in order. First, we note that the
current density jpol(z,t) is a better diagnostic tool to examine
the polarization dynamics than ρpol(z,t). While the charge

FIG. 1. Three snapshots of the vacuum’s charge (left) and current (right) spatial densities ρpol(z,t) and jpol(z,t) induced by the (long-range)
electric field of a positive charge Q = 2 × 104 placed at z = 0. The three times are tn = n × 0.1/c. For comparison, the circles are the model
densities obtained from Eqs. (3.2) and (3.3). [The numerical parameters are the box length L = 1.6 a.u., the number of temporal grid points
Nt = 400, the number of spatial grid points Nz = 1024, and the cut-off energy was chosen Ecut = 7.3c2.]
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FIG. 2. Three snapshots of the vacuum’s charge (left) and current (right) spatial densities ρpol(z,t) and jpol(z,t) induced by the (short-range)
electric field of a dipole distribution. The three times are tn = n × 0.1/c. The positive (negative) charge cloud Q was placed at z = −0.658w

(0.658w). The corresponding external potential is given by a smooth barrier Vext(z) = V0[1 + tanh(z/w)]/2, with V0 = 6 × 104 and w =
0.04 a.u. For comparison, the circles are the model densities obtained from Eqs. (3.2) and (3.3). [Parameters are L = 1.6 a.u., Nt = 400, Nz =
1024, Ecut = 7.3c2.]

density seems to originate from the location of the field-
generating charge Qext, the current density grows simultane-
ously everywhere, while the total charge density remains zero
outside the light cone (defined by z = ±ct). The nonvanishing
jpol(z,t) nicely illustrates the interpretation of a separation
of opposite charges and their subsequent motion in opposite
directions, as assumed in the justification of our model.

Second, while real physical electrons and positrons have a
finite mass 1 a.u., the polarization density propagates precisely
with the speed of light, as already suggested by the arguments
z ± ct in Eqs. (3.2) and (3.3). This is even true if the external
field was due to an arbitrarily small external charge Qext, whose
associated electric force field would take forever to accelerate
a single physical electron or positron to a speed close to c.

The third observation concerns the sign of the polarization
charge density. While we chose a positive external charge
Qext, the polarization charge is positive close to it, as if
the virtual positrons are attracted by it. This counterintu-
itive behavior was already noticed in the early 1970s by
Greiner and colleagues. The same behavior is observed if
instead of Eq. (2.4a) the density was computed from the
unsymmetrized form 〈vac| q�(z,t)† �(z,t) |vac〉, except that
here we have to subtract out the infinite back ground value
〈vac| q�(z = ∞,t)† �(z = ∞,t) |vac〉. We will return to
this rather puzzling point in Sec. IV, where, in addition to
the polarization based on the separation of virtual particles,
real physical particles are produced which show the expected
opposite behavior.

Fourth, the accumulation of positive charges close to z = 0
is accompanied by an equal but opposite density close to the
physical boundaries of our numerical box (not shown in the
figure). So the total charge is actually conserved, as expected.

Fifth, the fact that the polarization growth continues forever
is expected, as in this simulation we have assumed the presence
of an external (permanent) charge Qext. The unexpected effect
of any backreaction (as described by the Maxwell equation) is
addressed in Sec. V.

Let us now study a second test case for the model predictions
of ρpol(z,t) and jpol(z,t),where we chose a dipole distribution
of 2 localized by finitely extended charge clouds with total
charge ±Q, each that are about 1.3 w apart from each other.

The corresponding potential is short range and given by a
smooth potential barrier Vext(z) = V0[1 + tanh(z/w)]/2 with
an amplitude V0 = 8πQ/w and spatial width w [24,25].
The charge density associated with this potential [Qext(z) =
−∂z

2 Vext/(4π )] = V0 sech(z/w)2tanh(z/w)/(4πw2) has its
extremes at z = ±arcsech[(2/3)1/2]w = ± 0.658w, with a
total area ∫ dz |Qext(z)| = 2Q.

In Fig. 2 we compare the (numerically) determined po-
larization charge and current densities for the short-range
field with the model predictions according to Eqs. (3.2) and
(3.3). The agreement is again excellent. In contrast to the
infinite growth of ρpol(z,t) and jpol(z,t) for the long-range
case, the short-range field induces only a finite polarization
that propagates with speed c to z = ±∞.

In Figs. 1 and 2 we have used the ratio of the predicted
and exact densities to determine the unknown proportionality
factor χd , which we can associate with the dynamical linear
susceptibility for the one-dimensional QED vacuum. We find
the same numerical value χd = 1.15 × 10−3 a.u. for both
systems. We should stress that this value for a dynamical
situation is different from the one obtained from static
considerations, as we discuss below in Sec. III C. For the
dipole field we have varied the amplitude from V0 = 1000
to 6 × 104 for w = 0.04 a.u. and found that precisely the same
value χd = 1.15 × 10−3 a.u. describes the entire range rather
accurately.

B. The formation of a polarization in a given external charge
configuration

In our first model we have assumed that the field-generating
charge Qext(z) was created at time t = −�, such that
the resulting electric field had sufficient time to reach its
asymptotic distribution Vext(z) before we allowed the vacuum
to begin to react to it at time t = 0. We note that this situation is
generic to most QED calculations that use the external strong
field approximation.

In this section we analyze the case where the external
charge Q is placed at z = 0 at time t = 0. By solving
the Maxwell equation (∂ct

2 − ∂z
2)Vext(z,t) = 4π Qδ(z) with

Vext(z,t = 0) = ∂tVext(z,t = 0) = 0, we obtain the solution
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FIG. 3. Three snapshots of the vacuum’s charge (left) and current (right) spatial densities ρpol(z,t) and jpol(z,t) induced by a positive charge
Q = 2 × 104 placed at t = 0 at location z = 0. In contrast to the data in Fig. 1, here the external field is not established at t = 0. The three
times are tn = n × 0.1/c. For comparison, the circles are the model densities obtained from Eqs. (3.5). [Parameters are L = 1.6 a.u., Nt = 400,
Nz = 1024, Ecut = 7.3c2.]

describing the propagation of the external field,

Vext(z,t) = Q(−2π |z| + 2πct)U (ct − |z|). (3.4)

In the asymptotic long-time limit t → ∞, the unit step
function U (ct − |z|) becomes 1 for all finite z, and if we sub-
tract the infinite (physically irrelevant and spatially constant)
V (z = 0,t) = 2π cQt from this potential, we obtain the
simpler asymptotic form Vext(z,t → ∞) = −2πQ|z|, which
we have used above. Generalizing our modeling technique to
a time-dependent external potential, we postulate the solutions
for the induced charge and current density to be

ρpol(z,t) = χdQ(−4π |z| + 2πct)U (ct − |z|), (3.5a)

jpol(z,t) = χdQc(−2πz)U (ct − |z|). (3.5b)

As we believe that the polarization density is linear in the
charge, the more complicated polarization density induced by
an entire distribution of charges can be obtained by summing
the individual contributions.

We note that the limit t → � in Eq. (3.5a) suggests that we
have again an infinite buildup of a positive charge density at the
location of the external charge, ρpol(z = 0,t) = χdQ2πct . In
Fig. 3 we have established the validity of the postulate Eq. (3.5)
based on the same dynamical susceptibility χd = 1.15 × 10−3

a.u. We see that in contrast to the data in Fig. 1 for an infinitely
extended external potential, in Fig. 3 ρ as well as j vanish
outside the light cone, which is fully consistent with causality.
Therefore the polarization density instantaneously follows the
propagating external force field due to the central charge.

C. The vacuum’s polarization density for the steady-state limit

The polarization of the vacuum is usually discussed within
a nondynamical static context in which the density does
not evolve in time. As there are already some works about
this subject [3,26], for completeness we only briefly review
here the steady-state polarization for those two specific field
configurations discussed in this work. To obtain the densities
for the fully dressed (interacting) vacuum state |VAC〉, it is
advantageous to expand the field operator in Eqs. (2.3) in
terms of the creation and annihilation operators for physical
(not bare) electrons and positrons. When these operators act on

the dressed vacuum state |VAC〉, the energy eigenstates of the
coupled Dirac Hamiltonian [which contains Vext(z)] are getting
occupied. In terms of these energy eigenstates, the steady-state
densities are then obtained as

ρpol(z) = q	p[Fp(d; z)†Fp(d; z) − Fp(u; z)†Fp(u; z)]/2,

(3.6a)

jpol(z) = qc	p[Fp(d; z)†σ1Fp(d; z) − Fp(u; z)†σ1Fp(u; z)]/2.

(3.6b)

These expressions are formally similar to Eqs. (2.5), but
here the states Fp(z) are the energy eigenstates of the coupled
Hamiltonian that includes the external potential Vext(z). As
a result, these densities do not change when each state is
(trivially) evolved under the Dirac Hamiltonian. Also note that
in contrast to the states Wp(z,t) of Eqs. (2.4), a distinction
between up-states Fp(u; z) (with energy greater than −c2)
and down-states Fp(d; z) (with energy less than −c2) is no
longer possible when the potential is so strong that the two
energy manifolds begin to overlap with each other. This agrees,
of course, with the onset condition of supercritical behavior
characteristic of the creation of new particles [9].

The required eigenstates can be obtained numeri-
cally by diagonalizing the Hamiltonian in an appropriate
representation. We found that even though we used just a
two-point finite difference formula for the momentum operator
on a spatial grid (which also leads to the well-known fermion
doubling problem), the eigenvectors were numerically useful,
not even requiring any energy cutoff for our parameters. In
fact, the entire Hilbert space had to be taken into account to
obtain convergent results. In Ref. [26] we have derived an
approximate analytical scheme that suggests that the density
ρpol(z,t) is directly proportional to the second derivative of the
external potential,

ρpol(z) = αs∂z
2Vext(z). (3.7)

Based on the nonrelativistic limit, the numerical value of this
static susceptibility was derived in Ref. [26] to take the value
αs = [4(1 + �2)c3]−1 = 4 × 10−8 a.u.

In Fig. 4(a) we have computed the exact steady-state
polarization density based on Eq. (3.6) for our external field
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FIG. 4. The steady-state polarization density ρpol(z) associated with the external charge distribution of a dipole (a) and a sharply located
charge at z = 0 (b) obtained from the eigenvectors of the Dirac Hamiltonian with an external potential Vext(z). The corresponding external
potentials are Vext(z) = V0[1 + tanh(z/w)]/2, withV0 = 1000 and w = 0.04 a.u., and Vext(z) = −Q2π |z| with Q = 0.1 a.u. For comparison,
the circles in the left figure are the model densities predicted according to Eqs. (3.7) and (3.8). [Numerical parameters are L = 1.6 a.u., Nz =
1000, no energy cutoff.]

describing the dipole charge distribution. The agreement with
the analytical formula Eq. (3.7) is again excellent. In direct
contrast to the finding about the dynamical polarization, we
observe (and fully consistent with a prior work [26]) that
the positive virtual charge cloud is attracted to those spatial
regions where the external charge is negative, similar to the true
attraction among real physical particles of opposite charges.
As we have indicated above, the density of the external charge
configuration density associated with this potential is given by
the steady-state Maxwell equation, Qext(z) = −∂z

2Vext/(4π ).
Combining this with our analytical estimate of Eq. (3.7), we
obtain

ρpol(z) = −αs4πQext(z). (3.8)

In other words, up to the overall universal reduction factor
of 4παs = 5 × 10−7 a.u., the spatial distribution of the
induced polarization charge density of the dressed vacuum is
identical to the original external charge distribution, except
the reversed sign. For comparison, the amplitude of the
dynamical polarization density [see Fig. 2 and Eq. (3.3)]
was ρpol(z,t → ∞) = χdV0. We have shown above the
relationship of amplitude to the charge and the width w of the
charge distribution, V0 = 8πQ/w. In other words, we have
ρpol(z,t → ∞) = (χd8π/w)Q, representing an attenuation
factor (χd8π/w) that, in contrast to 4παs , does depend on the
distribution of the external charge configuration.

In Fig. 4(b) we have shown the steady-state polarization
charge density induced by a single sharply localized charge
Q at z = 0, corresponding to Qext(z) = Qδ(z) and Vext(z) =
−2πQ|z|. This is an interesting case, as the second spatial
derivative of the potential vanishes here except at z = 0, and
quantum-field theory cannot predict a sharply localized charge
density, ρ(z) 	= Qδ(z). In prior works it was suggested [22,23]
that the narrowest probability and also charge distribution that
can be predicted by relativistic quantum-field theory has to
have a minimum extension given by the electron’s Compton
wavelength, 1/c. This expectation is nicely confirmed by the
graph in Fig. 4(b), where the spatial profile of the induced
charge density is very well matched by the numerically fitted
density ρext(z) = 8 × 10−6 exp(−2.3c|z|).

We note that the corresponding current density for the
dressed vacuum is always zero. This is fully consistent with
the continuity equation and the fact that the polarized virtual
charges in the dressed vacuum are not moving in the steady
state.

IV. THE EFFECT OF THE CREATION OF REAL
PHYSICAL PARTICLES ON THE POLARIZATION

We have seen above that the analytical expressions for
ρpol(z,t) and jpol(z,t) describe the space-time evolution rather
accurately, if the external fields are not too strong and if we
use the numerical value of χd = 1.15 × 10−3 a.u. for the
dynamic linear susceptibility of the vacuum. In this section
we will decrease the distance w between the two external
charges for the dipole configuration discussed above such that
the associated electric field is increased. There are two different
mechanisms that will lead to possible discrepancies between
the exact densities and those postulated by the simple linear
model of Eqs. (3.2) and (3.3). The first one is due to the true
nonlinear nature of the relationship between the external field
and the induced charge for sufficiently large electric fields. In
this case most likely higher-order susceptibilities need to be
invoked, but it is not clear how the simple wave-equation-based
model can be generalized.

The second cause for the inapplicability of the model
is the irreversible breakdown of the vacuum, as indicated
by the occurrence of real electron-positron pairs that are
continuously generated. This will happen if two criteria
are fulfilled. First, the potential has to be supercritical,
i.e., V0 has to exceed twice the rest mass of the electron,
V0 > 2c2. Second, in order for an appreciable particle flux
to be present, we also require that the associated electric
field is sufficiently large, which for a given V0 can be
accomplished by chosen a small distance w, which we have
done.

In Fig. 5 we show how the generation of these physical
particles affects the final polarization charge and current
densities of the vacuum. We see that the charge density is
decreased significantly compared to the model prediction if
the strength of the potential exceeds V0 = 2c2. The data in
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FIG. 5. Comparison of the exact the vacuum’s charge (left) and current (right) densities ρpol(z,t) and jpol(z,t) induced by the (short-range)
electric field of a dipole distribution and the predictions of Eqs. (3.2) and (3.3) in the pair-creation regime. The interaction time was t = 0.3/c.
The corresponding external potential is given by Vext(z) = V0[1 + tanh(z/w)]/2 with w = 0.5/c a.u. For better comparison the graphs were
divided by V0. The circles are the model densities obtained from Eqs. (3.2) and (3.3). [Parameters are L = 1.6 a.u., Nt = 800, Nz = 2048, Ecut

= 14.6c2.]

Fig. 5 were computed for V0 = 2c2, 3c2, and 4c2, leading to
a total number of created particles of 0.063, 1.63, and 4.76,
respectively, after the interaction. We show below that the
decrease of the observed charge as well as current density is
directly related to the occurrence of real physical electrons and
positrons. In direct contrast to the virtual electrons (positrons)
that are ejected to the right (left) of the dipole field, the
created physical particles evolve in the opposite direction. This
behavior of the real particles is fully expected, as the positive
charge that causes the dipole field is centered around z = −w

while the negative charge is at z = w. The created electrons
(positrons) are accelerated between the charges at z = ±w to
the left (right).

In Fig. 6 we display the time evolution of the charge and
current densities for the same parameters as in Fig. 5 and V0 =
3c2. To reduce the spatial oscillations following the front edge
of the densities shown in Fig. 5, we have turned the external
potential on smoothly for a time interval Ton = 0.02/c. As a
result, the front edge is also less steep but still almost entirely
associated with the propagating vacuum’s polarization charge.
Only after a time does the dipole region turn into a source

for a constant flux, as also indicated by the current density
displayed in the right Fig. 6.

To examine the relationship between the vacuum polar-
ization and the pair creation more quantitatively, we have
computed the mass density of the created real electrons and
positrons directly [16,22]. The total charge density ρpol(z)
does not allow us to distinguish between the density of the
individual electrons and positrons. For example, if an electron
and a positron have identical spatial probability densities,
then the total charge density is zero, as if there were no
particles at all. It is therefore not possible to compute the
total number of created electron-positron pairs directly from
ρpol(z). In order to be able to distinguish both cases, we have
to compute also a spatial probability density for both particles.
Consistent with prior works [16], we define spatial probability
densities that are based on the assumption that we can separate
the total electron-positron field operator into a positronic and
electronic portion �(z,t) = �(e−; z,t) + C�(e+; z,t) using
the charge-conjugation operator C. This definition of �(e−; t)
allows us to compute the total number of particles as well as
the spatial particle number density of the created electrons and

FIG. 6. Four snapshots of the vacuum’s charge (left) and current (right) spatial densities ρpol(z,t) and jpol(z,t) induced by the (short-range)
electric field of a dipole distribution corresponding to an external potential Vext(z) = V0[1 + tanh(z/w)]/2 with w = 0.5/c a.u. and V0 = 3c2.
The four times are tn = (3n − 2) 1.37 × 10−4 a.u.. [Parameters are L = 1.6 a.u., Nt = 800, Nz = 2048, Ecut = 14.6c2, Ton = 0.02/c.]
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FIG. 7. Comparison of the charge density that is exclusively
associated with created real electrons and positrons, defined as
ρ(e+; z,t) − ρ(e−; z,t), and the difference between the total observed
charge density ρpol(z,t) and its analytical model estimate of Eq. (3.2).
The dynamics is the same as in Fig. 5 for V0 = 4c2. [Parameters are
L = 1.6 a.u., Nt = 1600, Nz = 2048, Ecut = 14.6c2.]

positrons:

ρ(e− ; z,t) = 〈vac|�(e−; z,t)†�(e−; z,t)|vac〉, (4.1a)

ρ(e+ ; z,t) = 〈vac|�(e+; z,t)†�(e+; z,t)|vac〉. (4.1b)

If we use again the time-evolved Hilbert space states and the
matrix elements of the time evolution operator U (t) between
them, we can calculate these densities as

ρ(e−; z,t) = 	p′ |	p〈u; p|U (t)|d; p′〉Wp(u; z)|2, (4.2a)

ρ(e+; z,t) = 	p′ |	p〈d; p|U (t)|u; p′〉Wp(d; z)|2. (4.2b)

In Fig. 7 we have taken the data from Fig. 5 for V0 =
4c2 and graphed for each location z the difference between
the exact density ρpol(z,t) and the prediction of our simple
model ρmodel(z,t) = χd [2Vext(z) − Vext(z − ct) − Vext(z +
ct)]. These data are shown together with the corresponding
charge density, that is exclusively associated with the created
real particles and defined as

ρreal(z,t) ≡ ρ(e+; z,t) − ρ(e−; z,t). (4.3)

The agreement between both curves is superb and clearly
confirms that the main modification of the polarization density
can be directly associated with the creation of real electron-
positron particle pairs. We note that in contrast to the virtual
particles that propagate with the speed of light c, leading to
the spatially constant density, the created physical particles
are massive and evolve with a distribution of velocities
bound by c. As a result, the front portion of the density
ρreal(z,t) contains fewer particles and is more curved than the
practically rectangular-shaped ρpol(z,t). We also note that the
spatial integral over ρ(e−; z,t)[ρ(e+; z,t)] is identical to the
number of created electrons [positrons] after the interaction.
The spike in the front portions of ρ(e−; z,t)[ρ(e+; z,t)] is a
well-known phenomenon and is associated with the temporally
induced pair creation [27,28] due to the sudden turn-on
of the external potential. The difference inside the dipole

region −w < z < w is more difficult to interpret [29], as
the very definition of ρ(e+; z,t) − ρ(e−; z,t) is based on the
projection on field-free energy eigenstates and therefore can
be interpreted unambiguously as a real particle density only
outside the supercritical region, z < −w and w < z.

V. THE EFFECT ON POLARIZATION DUE TO THE
INTERACTION AMONG VIRTUAL PARTICLES

So far each calculation above has excluded the backreaction
of the induced charge clouds on the internal electric fields.
As a result, the virtual as well as created electron-positron
pairs were not able to interact with each other, despite their
charges. A fundamentally correct description would require
us to take the photon as a second-quantized particle into
account. Unfortunately, this is presently beyond computational
feasibility. However, if the interacting field is approximated by
a classical field whose evolution is governed by the Maxwell
equations, the interfermionic forces can be modeled [30–32].
The accuracy of this approximation, however, is presently
not known. In a recent work we have pointed out [32]
that the unavoidable self-energy in this approach can lead
to an unphysical self-repulsion of a single electron, whose
significance is still not clear. While a single electron or positron
modeled by a quantum-mechanical wave function should not
be able to interact with itself, the present description permits
such an “unphysical” interaction due to the intrinsic statistical
meaning of a wave packet. While according to the Born
interpretation the spatial probability density represents only a
temporal average of infinitely many measurements of the same
single particle, in our approach (where the Maxwell field was
not second quantized) the whole spatial density acts as a source
term in Maxwell equations, which then produces a field with
which all portions of the wave function act simultaneously.
In other words, different portions of the same particle wave
packet can interact with themselves like particles in a classical
ensemble of many particles or in a charge cloud.

We would like to point out that our model described in
Sec. III A leads to an interesting coupled set of inhomoge-
neous wave equations. The wave equation (3.1) replaced the
quantum-field theoretical Dirac equation for the charge density
ρpol(z). If we replace the source term Qext(z) in Eq. (3.1) by
−∂z

2V/(4π ) we obtain

(
∂ct

2 − ∂z
2
)
ρpol(z,t) = −2χd∂z

2V (z), (5.1a)(
∂ct

2 − ∂z
2
)
V (z,t) = 4πρpol(z,t), (5.1b)

where the Maxwell equation (5.1b) (in the Lorenz gauge)
determines the potential V (z,t) for a given charge distribution
ρpol(z,t). While the validity of the source term V (z) of
Eq. (5.1a) has only been established above for a time-
independent potential, the set of equations can be used
to show that it could be possible to find only a spatially
oscillatory steady-state polarization density that fulfills si-
multaneously the Dirac as well as Maxwell equations. For a
true steady (nonpropagating) state polarization, we would re-
quire ∂ct

2ρpol(z,t) = ∂ct
2V (z,t) = 0, leading to ∂z

2ρpol(z) =
−8πχdρpol(z). This equation, however, has only an infinitely
extended oscillatory solution.
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FIG. 8. Impact of the electron-positron, electron-electron, and positron-positron forces on the vacuum’s charge (left) and current (right)
densities ρpol(z,t) and jpol(z,t) induced by the (short-range) electric field of a dipole distribution. The parameter κ is the interfermionic coupling
strengths. The circles are predictions of Eqs. (3.2) and (3.3) that exclude any particle-particle interaction. The interaction time was t = 0.3/c.
The corresponding external potential is given by Vext(z) = V0[1 + tanh(z/w)]/2 with w = 0.04 a.u. and V0 = 103 a.u.. [Parameters are L =
1.6 a.u., Nt = 8000, Nz = 2048, Ecut = 7.37c2.]

In order to examine the effect of the coupling to the Maxwell
equation on the dynamical polarization density, we have
repeated the simulation leading to the data shown in Fig. 2,
but we have introduced the coupling to the Maxwell equations
as described by Eqs. (2.3). In order to emphasize the effect of
the interaction among the virtual particles, we have introduced
a dimensionless scaling parameter κ between the charge and
current densities obtained from the Dirac equation and source
terms required for the right-hand side of the Maxwell equations
(2.3): Q(z,t) = κρpol(z,t) and similarly, J (z,t) = κjpol(z,t).
As this effectively determines the charge of the virtual pairs, we
have for reasons of consistency included κ also as prefactors
for V (z,t) and A(z,t) in the Dirac equation.

In Fig. 8 we illustrate the impact of the virtual electron-
electron, positron-positron, and electron-positron forces on
the polarization process. We see that if the coupling strength
exceeds κ = 20, ρpol(z,t) as well as jpol(z,t) are significantly
enhanced. As we presently do not have any physical intuition
for these virtual particles, it is hard to say if this result is
expected or not. We reiterate that these “particles” (or better,
solutions to the Dirac equation) seem to evolve like massless
particles with the speed of light and accumulate around an
external charge of equal sign.

VI. SUMMARY AND OUTLOOK

In this work we have shown that the dynamical response of
the bare fermionic Dirac vacuum in one spatial dimension to an
external charge can be characterized by numerical susceptibil-
ities χd . It turns out that quantum-field theoretical formation of
the electric charge and current polarization densities of the bare
vacuum due to an external charge distribution can be modeled
by a remarkably simple inhomogeneous wave equation in
which the external charge configuration acts as a source term.
We have also shown how the predictions of this model need
to be modified, when either real physical electron-positron
pairs are created (for strong external fields) or if the mutual
interaction of the virtual electrons and positrons is taken into
account by the Maxwell equations. Many new questions need
to be addressed in future works.

While the agreement between the model predictions and
the accurate numerical solutions to the full quantum-field
theoretical treatment is of astonishing accuracy, we would
like to point out that we actually have not derived these
equations from first quantum electrodynamical principles. As
a result, the numerical value of the vacuum’s dynamical linear
susceptibility χd was simply obtained from a numerical fit of
the exact data. The numerical value of the static susceptibility
αs, obtained from the physical (not bare) vacuum state,
can be derived analytically [26]. Especially in view of an
important possible generalization of this model to spatially
three-dimensional systems, it would be very worthwhile
to examine if a rigorous theoretical derivation from first
principles could be developed.

We presently also do not understand if the initial bare
vacuum state would evolve under the influence of an external
charge to the physical (steady-state) vacuum state. This
question is interesting, as in the dynamical context (consistent
with Ref. [33]) the positively charged virtual particles seem to
gather around a positive external charge, while in the steady
state of the dressed vacuum, we observe the opposite tendency.

We should note that the observed buildup of the induced
positive charges around the positive external charge and the
resulting increase of the total electric field does not violate
energy conservation. As an example, in the temporal gauge,
the field energy 1

8π

∫
dzE2(z,t) grows in time while the sum

of the particle’s free and interaction energy shrinks.
While the peculiar Coulomb force law in only one spatial

dimension could be responsible for some of the features
(distance-independent forces, finite polarization density at
z = ±∞, etc.), the solutions to the wave equations could
be generalized to two and three dimensions. But here
their validity needs to be established with exact numeri-
cal solutions to the coupled Dirac-Maxwell equations that
are computationally difficult in three dimensions at the
moment.

Due to the unavoidable self-repulsion of a single electron
wave packet due to the coupling to the Maxwell equation
[32], it is still not clear and extremely difficult to analyze how
accurate it actually is to replace the second-quantized photon
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field operator by a simple classical Maxwell field to model the
interaction among virtual and especially physical electrons and
positrons. This problem might also manifest itself in the fact
that the coupled Dirac-Maxwell equations in our model for the
polarization density cannot predict any localized steady-state
solutions.

We should mention that formation of the vacuum’s polariza-
tion density can be studied even for a second-quantized photon
field if we assume that the masses of the fermions vanish. In
this one-dimensional Schwinger model of QED, the screening
of charges due to the vacuum polarization can be examined
analytically [34]. For this model it is even possible to compute
an analytical expression for the electric conductivity of the
one-dimensional vacuum [35] that relates the electric field to
the induced polarization current.

While it is clear that the unavoidable occurrence of the
propagating vacuum polarization charge and current density
can play a major role in ab initio computations for massive
fermions and therefore requires a better understanding, the

main question concerns whether these currents can have a
direct experimental signature. We are hopeful and point to the
rather promising recent developments of very-high-intensity
laser sources at numerous institutions [36–46] that aim at
probing the basic structure of the quantum vacuum and might
verify various predicted new phenomena, such as photon-
photon scattering [47–50], higher harmonics generation [51],
or the spontaneous creation of electron-positron pairs from the
vacuum as predicted by Schwinger [8].
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