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Rabi oscillations, decoherence, and disentanglement in a qubit–spin-bath system
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We examine the influence of environmental interactions on simple quantum systems by obtaining the exact
reduced dynamics of a qubit coupled to a one-dimensional spin bath. In contrast to previous studies, both the
qubit-bath coupling and the nearest-neighbor intrabath couplings are taken as the spin-flip XX type. We first
study the Rabi oscillations of a single qubit with the spin bath prepared in a spin coherent state, finding that
nonresonance and finite intrabath interactions have significant effects on the qubit dynamics. Then we discuss
the bath-induced decoherence of the qubit when the bath is initially in the ground state and show that the
decoherence properties depend on the internal phases of the spin bath. By considering two independent copies
of the qubit-bath system, we finally probe the disentanglement dynamics of two noninteracting entangled qubits.
We find that entanglement sudden death appears when the spin bath is in its critical phase. We show that the
single-qubit decoherence factor is an upper bound for the two-qubit concurrence.
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I. INTRODUCTION

The quantum dynamics of a single qubit or central spin
coupled to a spin environment [1] has been widely studied
theoretically in several different areas, including quantum
information sciences [2–9], quantum decoherence [10–19],
and excitation energy transfer [20–22]. One of the most
promising candidates for quantum computation, solid-state
spin systems are inevitably coupled to their surrounding
environment, usually through interactions with neighboring
nuclear spins [6,23,24]. The coupling of a qubit to a spin
bath can in general lead to non-Markovian behavior [25–27],
causing the usual Markovian quantum master equations to fail
for such models. Most recently, it was demonstrated that a spin
bath can assist coherent transport in a two-level system [21].
Fully understanding the role played by a spin environment is
an interesting and important issue.

One commonly studied qubit-spin bath system is the
so-called spin-star network [2,10–13,21,22,28,29], in which
a preferred central spin is coupled homogeneously to a spin
bath without intrabath interactions. A more realistic type
of environment takes the form of quantum interacting spin
chains [3,30–35], where the decay of the qubit’s coherence
is found to be related to the critical properties of the spin
environments. Most prior work making use of such an
environment considered qubit–spin-bath coupling of the Ising
form, which is spin conserving. As a result, it is much easier
to analytically obtain the full dynamics of the system, in
contrast to the situation where a spin-flip coupling is present.
Exceptions include Refs. [31,32], where the authors consid-
ered the spin-flip XX-type qubit-bath coupling but with a
spin bath having homogeneous self-interactions, and Ref. [33],
where the authors use the time-dependent density-matrix
renormalization-group method to study the reduced dynamics
of a qubit coupled locally to an XXZ spin chain via the
Heisenberg-type qubit-bath interaction. It should be noted that,
in general, both the spin-star network and the homogeneously
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coupled spin bath can be treated by introducing collective
angular momentum operators, which facilitates the analytical
treatment. In this work we focus on a more realistic system with
a (not necessarily uniform) spin-flip qubit-bath interaction as
well as short-range XX-type intrabath interactions. The exact
dynamics of such a model is one step closer to faithfully
representing environmental spins interacting via fully general
Heisenberg-type interactions.

The collapse and revival (CR) behavior of Rabi oscillations
of a qubit coupled to a single bosonic field mode, described
by the Jaynes-Cummings (JC) model, is a fundamental
consequence of field quantization and provides a much-studied
illustration of the quantum nature of qubit-field systems [36].
Using a correspondence between the JC model and a spin-star
network with a large number of spins, it is found in Ref. [28]
that within a certain parameter regime, CR phenomena also
appear in a qubit–big-spin model. Reference [37] goes beyond
the resonant JC model to the nonresonant Dicke model and
notes that the dynamics depends on the sign of the detuning
between the qubit and field frequency. In this work we extend
the model studied in Ref. [28] to the nonresonant case with
a self-interacting spin bath modeled by the periodic XX

spin chain. It is found that both nonzero detuning and the
nearest-neighbor coupling within the XX bath can have an
effect on the qubit’s dynamics. In particular, the interplay
between nonresonance and intrabath interaction is able to
reproduce CR behavior even for a spin bath with a relatively
small number of sites.

In addition, the dynamics of entanglement in many-body
systems has recently been studied from different perspec-
tives [38]. As interacting quantum spin systems are believed
to be paradigmatic for quantum information processing [39],
their entanglement dynamics has attracted much attention
[40–49]. In prior works, the dynamical behavior of pairwise
entanglement was found to be related to quantum phase
transitions of the spin chains. Another emerging focus is on the
evolution of the entanglement of a pair of qubits exposed to
noisy environments. In a seminal work, Yu and Eberly [50]
found that the Markovian dynamics of the entanglement
between two qubits coupled to individual bosonic baths can
behave in sharp contrast to single-qubit decoherence: The
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pairwise entanglement of two initially entangled two-level
atoms suddenly disappears in a finite time proportional to the
spontaneous lifetime of single atoms, while the single-atom
coherence only vanishes asymptotically. This phenomenon
is called entanglement sudden death (ESD). More recently,
it was shown in the same setup that there exists a revival
of the vanished entanglement if non-Markovian effects are
taken into account [51,52]. As mentioned earlier, the non-
Markovian behavior caused by the spin environment may
result in alternative dynamics of the pairwise entanglement of
two qubits each coupled to their own spin bath, as observed in a
locally interacting qubit-spin-bath system [33]. Entanglement
sudden death and subsequent revivals have also been observed
to occur in two qubits when they are coupled to classical
interacting spin baths [53] and external fields [54], the latter
of which has been demonstrated experimentally [55], and
to stochastic noise sources [56]. Furthermore, understanding
the relation between decoherence and disentanglement is
believed to be of importance both for the foundations of
quantum mechanics and for practical applications in quantum
information science [50,57–60]. In this work, by taking the
bath’s initial state as the ground state of the XX chain, we
first study the decoherence of a single qubit immersed in the
XX bath. The decoherence dynamics is found to depend on
the internal phases of the XX bath. The short-time dynamics
of the decoherence factor behaves like a Gaussian function,
with the decay rate only depending on the filling number of
the ground state of the bath. By considering two copies of
our qubit-bath systems, we further study the disentanglement
dynamics of the two initially entangled qubits coupled to their
individual baths. We analytically show that the concurrence
is bounded from above by the decoherence factor of a single
qubit at all times. The initial Bell state considered suffers from
ESD when the XX bath is in its critical phase. We also obtain
the disentanglement time in the sudden death region and find
that ESD always occurs earlier than the onset of decoherence
in a single qubit.

The rest of the paper is structured as follows. In Sec. II
we introduce our model Hamiltonian and describe how to
obtain the exact qubit-bath time-dependent wave functions in
the momentum space of the XX spin chain. The components
of the Bloch vector of the qubit are obtained by tracing out the
bath degrees of freedom over these total wave functions. The
results for the nonresonant and interacting cases are presented.
In Sec. III we study single-qubit decoherence in a single qubit-
bath system and disentanglement of two initially entangled
qubits in two independent qubit-bath systems. A summary is
given and conclusions are drawn in Sec. IV.

II. MODEL AND RABI OSCILLATIONS OF A SINGLE
QUBIT

Our model consists of a single qubit coupled to a spin bath
of N spins 1/2 via the Hamiltonian

H = HS + HB + HSB,

HS = ω

2
(σz + 1),

HB = 1

2

N∑
i,j=1

Jijσ
+
i σ−

j − h

2

N∑
j=1

(
σ z

j + 1
)
,

HSB =
N∑

j=1

gj (σ+
j σ− + σ−

j σ+), (1)

where σ±
j = (σx

j ± iσ
y

j )/2 and σ± = (σx ± iσy)/2 are the
Pauli matrices for spin j in the spin bath and the central
spin, respectively, ω is the energy difference of the two levels
of the single qubit, and Jij is the interaction between bath
spins i and j . An external magnetic field h in the spin bath
is also included. The single qubit is coupled with spin j in
the spin bath via XX-type interactions with coupling strength
gj . We introduce the collective angular momentum operator
L = ∑

i �σi/2, where �σi = (σx
i ,σ

y

i ,σ z
i ). Note that our HSB takes

the same form as that in Refs. [28,31]. However, there is
no intrabath interaction in Ref. [28] and uniform intrabath
interactions in Ref. [31]. In this work we will choose as the spin
bath a periodic one-dimensional chain with nearest-neighbor
interaction Jij = Jji = Jδi+1,j , namely, an XX spin chain
with periodic boundary conditions. For this system, it can be
easily checked that the total magnetization M = σz/2 + Lz is a
good quantum number. However, the total angular momentum
L2 = L2

x + L2
y + L2

z of the spin bath is not conserved due
to either the finite interaction J or the inhomogeneous
coupling gj .

A spin coherent state of the spin bath, which exists in
the l = N/2 subspace and is parametrized by the unit vector
�̂ = (sin θ cos φ, sin θ sin φ, cos θ ), can be written as [61]

|�̂〉 = e−iLzφe−iLyθ

∣∣∣∣N2 ,
N

2

〉
=

N∑
n=0

Cn

∣∣D(N/2)
n

〉
, (2)

where Cn = zn

(1+|z|2)N/2

√
Cn

N , with z = cot θ
2 e−iφ , and |D(l)

n 〉 =
|l,n − l〉 (n ∈ {0,1, . . . ,2l}) are the fully symmetric Dicke
states [61], which are simultaneous eigenstates of L2 and Lz

with eigenvalues l(l + 1) and n − l. To study the Rabi oscilla-
tions of the qubit, the initial state is chosen as the product state

|ψ(0)〉 = |1〉 ⊗ |�̂〉, (3)

with the qubit in its up-state |1〉. (The down-state will be
denoted by |1̄〉.)

It will be convenient to work in the interaction picture
with respect to HS + HB . The energy levels and eigenstates of
HB can be obtained by using the Jordan-Wigner transforma-
tion σ−

i = ∏i−1
j=1(1 − 2c

†
j cj )ci,σ

z
i = 2c

†
i ci − 1, where ci are

fermionic operators. Then H describes a qubit immersed in a
spinless fermion bath

H = ω

2
(σz + 1) + J

2

N∑
j=1

(c†j cj+1 + c
†
j+1cj ) − h

N∑
j=1

c
†
j cj

+
N∑

j=1

gj (c†j Tjσ− + cjT
†
j σ+), (4)

with the string operators Tj = exp(iπ
∑j−1

l=1 c
†
l cl). One can de-

fine two projection operators, P+ = 1+TN+1

2 and P− = 1−TN+1

2 ,
which project onto subspaces where the total fermion number
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operator Nf = ∑N
l=1 c

†
l cl has even or odd eigenvalues Nf .

For even or odd Nf , antiperiodic cN+1 = −c1 or periodic
boundary conditions cN+1 = c1, respectively, are imposed on
the fermions. As a result, we can introduce the two sets of
Fourier transformations

cj = 1√
N

∑
k∈K+

eikj ck = 1√
N

∑
k∈K−

eikj dk, (5)

where {ck} and {dk} are Fourier modes with wave num-
bers surviving in K+ = {−π + π

N
, . . . , − π

N
, π
N

, . . . ,π − π
N

}
and K− = {−π, − π + 2π

N
, . . . ,0, . . . ,π − 2π

N
}, respectively.

Now HB is diagonalized as

HB = P+H+P+ + P−H−P−,
(6)

H+ =
∑
k∈K+

εkc
†
kck, H− =

∑
k∈K−

εkd
†
kdk,

with εk = J cos k − h the single-particle spectrum. By direct
calculation, we arrive at the interaction picture Hamiltonian

HI (t) = ei(HS+HB )tHSBe−i(HS+HB )t

=
N∑

j=1

gj [(P−eiH−t c
†
j Tj e

−iH+tP+

+P+eiH+t c
†
j Tj e

−iH−tP−)σ−e−iωt + H.c.], (7)

where H.c. stands for the Hermitian conjugate. Since M is
a conserved quantity, it is sufficient to study time evolution
from the states |ψ (n)(0)〉 = |1〉 ⊗ |D(N/2)

n 〉. In the interac-
tion picture, the state evolved from the initial state in
Eq. (3) then reads |ψI (t)〉 = ∑

n Cn|ψ (n)(t)〉, with |ψ (n)(t)〉 =
T exp[−i

∫ t

0 ds HI (s)ds]|ψ (n)(0)〉. In general, the structure of
this state is highly complicated due to the nonconservation of
the total angular momentum of the spin bath (see Appendix A).
To this end, we represent the Dicke states in terms of the
momentum space fermion operators

∣∣D(N/2)
n

〉 = 1√
Cn

N

∑
j1<j2<···<jn

σ+
j1

· · · σ+
jn

|1̄ · · · 1̄〉

= 1√
Cn

N

∑
j1<j2<···<jn

c
†
j1

· · · c†jn
|0〉

= 1√
Cn

N

∑
k1<k2···<kn

∑
j1<j2<···<jn

× S∗(k1, . . . ,kn; j1, . . . ,jn)a†
k1

· · · a†
kn

|0〉, (8)

where ak = ck (dk) for even (odd) n. Here |0〉 is the vacuum
state of the fermions, which corresponds to the state with all
bath spins in their down-states |1̄ · · · 1̄〉. The function

S(k1, . . . ,km; j1, . . . ,jm)

=
(

1√
N

)m

det

⎛
⎜⎜⎜⎝

eik1j1 eik1j2 · · · eik1jm

eik2j1 eik2j2 · · · eik2jm

...
...

. . .
...

eikmj1 eikmj2 · · · eikmjm

⎞
⎟⎟⎟⎠ (9)

is the Slater determinant made up of plane waves.

Therefore, |ψ (n)(t)〉 can be written as a linear combination
of free fermion states. In the following we treat even n or odd
n separately.

(i) n is even. It is easily seen that the most general form of
|ψ (n)(t)〉 is

|ψ (n)(t)〉 = |1〉 ⊗
∑

k1<···<kn

B(k1, . . . ,kn; t)
n∏

l=1

c
†
kl
|0〉

+ |1̄〉 ⊗
∑

k1<···<kn+1

D(k1, . . . ,kn+1; t)
n+1∏
l=1

d
†
kl
|0〉,

(10)

where B(k1, . . . ,kn; t) and D(k1, . . . ,kn+1; t) are coefficients
to be determined by the time-dependent Schrödinger equation
i∂t |ψ (n)(t)〉 = HI (t)|ψ (n)(t)〉. After a straightforward calcula-
tion (see Appendix B), we arrive at the following two sets of
equations of motion for the coefficients B and D:

iḊ(p1, . . . ,pn+1; t)

= e−iωt exp

(
i

n+1∑
l=1

εpl
t

) ∑
k1<···<kn

exp

(
−i

n∑
l=1

εkl
t

)

×B(k1, . . . ,kn; t)f̃ ∗(p1, . . . ,pn+1; k1, . . . ,kn; {gj }),
(11)

iḂ(p1, . . . ,pn; t)

= eiωt exp

(
i

n∑
l=1

εpl
t

) ∑
k1<···<kn+1

exp

(
−i

n+1∑
l=1

εkl
t

)

×D(k1, . . . ,kn+1; t)f̃ (k1, . . . ,kn+1; p1, . . . ,pn; {gj }),
(12)

where the auxiliary function f̃ is defined to be

f̃ (k1, . . . ,km+1; p1, . . . ,pm; {gj })
=

∑
j1<j2<···<jm+1

S(k1, . . . ,km+1; j1, . . . ,jm+1)

×
m+1∑
l=1

gjl
S∗(p1, . . . ,pm; j1, . . . ,jl, . . . ,jm+1). (13)

Here (j1, . . . ,jl, . . . ,jm+1) is the string of length m,
(j1, . . . ,jl−1,jl+1, . . . ,jm+1), where jl has been removed.
Note that the qubit-bath coupling configuration {gj } is
completely incorporated into the f̃ functions. For sim-
plicity, we take uniform coupling g = gj in the fol-
lowing numerical calculations. In this case, Eq. (13)
can be factorized as f̃ (k1, . . . ,km+1; p1, . . . ,pm; g) =
gf (k1, . . . ,km+1; p1, . . . ,pm), where f is the interaction-
independent part of the f̃ function.

Equations (11) and (12) imply that h and ω only enter
the equations of motion through their sum h + ω, the de-
tuning. The initial values of the B and D can be read off

062105-3



NING WU, ARUN NANDURI, AND HERSCHEL RABITZ PHYSICAL REVIEW A 89, 062105 (2014)

from Eq. (8):

B(k1, . . . ,kn; 0) = 1√
Cn

N

∑
j1<j2<···<jn

S∗(k1, . . . ,kn; j1, . . . ,jn),

D(k1, . . . ,kn; 0) = 0. (14)

Note that the above equations also include the case of n = 0,
where there are no k arguments for B(; t). The corresponding
f function is defined by f (k; ) = ∑

j S(k; j ).
(ii) n is odd. Similarly, the time-evolved states for odd n

are of the form

|ψ (n)(t)〉 = |1〉 ⊗
∑

k1<···<kn

B ′(k1, . . . ,kn; t)
n∏

l=1

d
†
kl
|0〉

+ |1̄〉 ⊗
∑

k1<···<kn+1

D′(k1, . . . ,kn+1; t)
n+1∏
l=1

c
†
kl
|0〉,

(15)

where the coefficients B ′ and D′ obey the same sets of
equations of motion (11) and (12), except the number of
arguments for the B ′ and D′ change.

To get an intuitive understanding of the dynamics, we first
consider the noninteracting case J = 0. In this case the total
angular momentum L2 is conserved and the analytical expres-
sion for the Bloch vector 〈�σ (t)〉 = {〈σx(t)〉,〈σy(t)〉,〈σz(t)〉}
and the qubit purity Pqb(t) = 1

2 [1 + ∑
i=x,y,z〈σi(t)〉2] can be

easily calculated (see Appendix A). It turns out that 〈σx(t)〉
and 〈σx(t)〉 depend on both the detuning h + ω and the qubit
energy difference ω, but 〈σz(t)〉 and Pqb(t) depend only on
h + ω. Figure 1 shows the dynamics of these four quantities in

FIG. 1. (Color online) Dynamics of 〈σx(t)〉 (red dashed line),
〈σy(t)〉 (green curve), 〈σz(t)〉 (blue curve collapsing at gt ≈ 2), and
purity Pqb(t) (topmost black curve) in the resonant case (h + ω)/g =
0 for four different sets of parameters: (a) ω/g = 0,z = 0.6; (b)
ω/g = 1,z = 0.6; (c) ω/g = 10,z = 0.6; and (d) ω/g = 0,z = 1.6.
Here Pqb(t) and 〈σz(t)〉 do not depend on ω/g, so they are the same
for all four panels; however, the oscillation frequency of 〈σx(t)〉 and
〈σy(t)〉 changes with ω/g.

the resonant case h + ω = 0, where clear CR behavior appears
for the polarization dynamics 〈σz(t)〉. This observation was
recently made in Ref. [28] via a correspondence between the
noninteracting qubit–spin-bath system and the JC model at
large N . As in the JC model [36], in the collapse regime gt ≈
2.5 the polarization only undergoes very small oscillations
with nearly vanishing amplitudes, but is accompanied by a
maximum of the purity. We will refer to such CR behavior as
conventional CR dynamics observed in the qubit-field system.
This behavior can be understood from examining the dynamics
of 〈σx(t)〉 and 〈σy(t)〉. For example, 〈σx(t)〉 always vanishes
for ω = 0 [Fig. 1(a)], while 〈σy(t)〉 reaches its maximum in
the collapse regime, indicating the approximate creation of a
pure state |ŷ〉 with the qubit pointing along the ŷ direction. We
observe that ω controls the frequency of rotation of the Bloch
vector in the x-y plane in the conventional collapse region.
It was argued in Ref. [28] that the correspondence between
the qubit–spin-bath model and the JC model only holds for
the parameter regime |z|2 � 1 � N and may break down for
|z|2 � 1. In Fig. 1(d) we display the dynamics for z = 1.6 with
all the other parameters the same as in Fig. 1(a). We see that
the CR dynamics still survives and that the behavior of 〈σz(t)〉
and purity is almost the same as in Fig. 1(a), but with the qubit
evolving into state |−ŷ〉 in the collapse regime.

Figure 2 shows the results for the nonresonant and non-
interacting case (h + ω)/g �= 0,J/g = 0. From examining
different values of the detuning h + ω, we observe that it
controls both the amplitude and period of the oscillations of
the envelope of 〈σz(t)〉. Larger values of (h + ω)/g lead to
longer periods and smaller amplitudes of these oscillations,

FIG. 2. (Color online) (a) Dynamics of 〈σx(t)〉 (red dashed line),
〈σy(t)〉 (green curve), 〈σz(t)〉 (blue curve, second from top), and purity
Pqb(t) (topmost black curve) in the nonresonant case. Here 〈σx(t)〉
and 〈σy(t)〉 oscillate about zero. The parameters are (h + ω)/g = 15,
N = 10, J/g = 0, z = 1, and ω = 0. (b) Magnification of the interval
gt ∈ [52,62], where approximate pure states are sustained during the
evolution.
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FIG. 3. (Color online) Dynamics of 〈σx(t)〉 (red dashed line),
〈σy(t)〉 (green curve), 〈σz(t)〉 (blue curve, second from top), and
purity Pqb(t) (topmost black curve) in the nonresonant regime, with
(h + ω)/g = 10, when the interbath interactions are present for (a)
and (b) J = 0.5 and (c) J = 1.0. (b) Conventional collapse region
that appears when the interactions are turned on even for N = 10.
The other parameters are ω/g = 0 and z = 1.

as can also be seen from Eq. (A4). Interestingly, the CR
dynamics emerges even for a relatively small number of bath
spins N = 10, which would not occur in the resonant case.
However, this is not the conventional CR dynamics as seen
in the resonant case. For (h + ω)/g = 15, there is a collapse
region for 〈σx〉 and 〈σy〉 at gt ≈ 30, where both the purity and
〈σz(t)〉 suffer from rapid oscillations between 0.5 and 1. More
interesting dynamics appears at gt ≈ 55 [Fig. 2(b)], where
the purity undergoes small oscillations but remains close in
absolute value to unity. We will refer to the behavior in both
these regions as unconventional CR dynamics. Unlike in the
resonant case, where the pure state of the qubit rotates in
the x-y plane, here the qubit moves along the surface of the
northern hemisphere of the Bloch sphere.

For finite J , although a closed-form solution to the
equations of motion cannot be obtained, we have been able to
solve Eqs. (11) and (12) numerically for finite N . To carry out
the integration in a reasonable amount of time, it is necessary
to solve for the auxiliary f functions beforehand and we were
able to write a recursive function to do so. This was the most
time consuming step in the numerics and prevented us from
examining systems with larger N . Based upon the zeros of the
f functions, one can also decouple the system of equations in
both Eqs. (11) and (12). Doing so allows each component to be
solved in parallel, resulting in a great speedup of the numerical
integration.

The three components of the Bloch vector can be calculated
from Eqs. (10) and (15) and their expressions in terms of
the coefficients B, D, B ′, and D′ are listed in Appendix A.
Numerical results for finite intrabath interaction and finite
detuning with J/g = 0.5 and (h + ω)/g = 10 are plotted in
Fig. 3(a). Comparing with Fig. 2, we see that conventional CR
dynamics in 〈σz(t)〉 reappears after introducing finite intrabath
coupling. This is shown more clearly in Fig. 3(b). Except
for the facts that the oscillation center of 〈σz(t)〉 moves to
around 0.5 and the peaks of the purity are below 1.0 in this
case, the dynamics in the collapse region closely mimics that
in Fig. 1(c). This is an intriguing observation, considering
that our spin bath contains only a relatively small number
of spins (N = 10). However, not every peak of the purity is
accompanied by the collapse of 〈σz(t)〉, as can be seen from
the first and third peaks in Fig. 3(a). In Fig. 3(c) we display the
same plot for J/g = 1.0. We see that increasing the coupling
strength J/g causes the period between successive peaks of
the purity to decrease. These revivals in the purity also appear
to wash out more quickly than they do in Fig. 3(a).

Finally, we note that for J = 0 the polarization dynamics
〈σz(t)〉 is symmetric under changing the sign of the detuning
h + ω → −(h + ω) for fixed ω [cf. Eq. (A4)]. However, this
is not the case for finite J and only the relative sign between
h + ω and J is relevant (see the end of Appendix A for an
example of N = 2).

III. ENTANGLEMENT DYNAMICS OF TWO QUBITS
COUPLED TO TWO INDIVIDUAL SPIN BATHS

In the previous section we studied the reduced dynamics of
a single qubit coupled to an interacting spin bath, with the bath
initially prepared in the spin coherent state. Now we consider
two such copies of the qubit-bath system, between which there
is no direct interaction:

H =
∑
q=1,2

(
H

(q)
S + H

(q)
B + H

(q)
SB

)
, (16)

with H
(q)
S ,H

(q)
B , and H

(q)
SB given by Eq. (1) and the upper index

indicating the operators for copies q = 1 or 2.
As shown in Ref. [51], the reduced dynamics of the two

qubits can be determined completely from that of only one of
the two copies. Explicitly, let ρ(t) denote the reduced density
matrix of the two qubits. Assuming a separable initial state
ρtot(0) = ρ(0) ⊗ ρ

(1)
B ρ

(2)
B , ρ(t) can be written in the basis of

the two qubits {|11〉,|11̄〉,|1̄1〉,|1̄1̄〉} as

ρaa′,bb′ (t) =
∑

cc′,dd ′
W

(1)
abcd (t)W (2)

a′b′c′d ′ (t)ρcc′,dd ′ (0), (17)

where W
(q)
abcd (t) is determined by the dynamics of each part

through

ρ
(q)
ab (t) =

∑
cd

W
(q)
abcd (t)ρ(q)

cd (0), q = 1,2 (18)

for an initial state ρ(q)(0) ⊗ ρ
(q)
B of copy q.

Thus, in the following we focus on the dynamics of a single
qubit coupled to a single bath described by Eq. (1) and drop the
upper index q for simplicity. Obviously, the dynamics depends
on the initial state of the bath ρB . In this section we will
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choose the ground state of the isolated XX chain as the bath’s
initial state. We set J = −1 and h � 0 henceforth. For a chain
with a finite number of sites, lowering h from the critical field
hc = 1 to h = 0 causes N/2 level crossings, which correspond
to transitions between different parity sectors. This leads to
the Kosterlitz-Thouless phase transition in the thermodynamic
limit. Correspondingly, the ground states are filled by Nf =
m + 1 d fermions (c fermions) for m even (odd). The detailed
ground-state structure of the periodic XX chain can be found
in Appendix C.

In order to get a better understanding of the relationship be-
tween decoherence and disentanglement, which is believed to
be of importance for both the foundation of quantum mechan-
ics and practical applications of quantum information [50], we
first study the decoherence dynamics of a single qubit.

A. Single-qubit decoherence

We suppose that initially the qubit is not entangled with the
XX bath. That is,

|φ(0)〉 = (a1̄|1̄〉 + a1|1〉) ⊗ |gXX〉, (19)

where |gXX〉 is the ground state of the XX chain. The
coefficients a1̄ and a1 satisfy |a1̄|2 + |a1|2 = 1. Note that |gXX〉
is not an eigenstate of Eq. (1), so the evolution starting from
|φ(0)〉 is nontrivial. The spin-flip qubit-bath coupling will
induce entanglement between the qubit and spins in the XX
chain. The ground state |gXX〉 characterized by the number
of excitations Nf will evolve into superpositions of states
within subspaces with Nf ± 1 excitations due to the interaction
term HSB.

Let us first focus on the case of 0 < h < 1, where the
excitation number N = m + 1 � N − 1. Depending on the
parity of the filling number m, we will use indices o or e

to indicate quantities corresponding to odd or even m. For
|gXX〉 = |gm〉o [see Eq. (C5)] with m odd, the most general
form of |φI (t)〉 will be

|φI (t)〉o =
∑

k1<···<km+1

[a1̄A(k1, . . . ,km+1; t)|1̄〉

+ a1B(k1, . . . ,km+1; t)|1〉]
m+1∏
l=1

c
†
kl
|0〉

+
∑

k1<···<km+2

a1D(k1, . . . ,km+2; t)|1̄〉
m+2∏
l=1

d
†
kl
|0〉

+
∑

k1<···<km

a1̄C(k1, . . . ,km; t)|1〉
m∏

l=1

d
†
kl
|0〉. (20)

By similar calculations as in the spin coherent state case, we
find that B and D obey the same set equations of motion as
Eqs. (11) and (12). In addition, the equations of motion for A

and C read

iĊ(p1, . . . ,pm; t)

= geiωt exp

(
i

m∑
l=1

εpl
t

) ∑
k1<···<km+1

exp

(
−i

m+1∑
l=1

εkl
t

)

×A(k1, . . . ,km+1; t)f (k1, . . . ,km+1; p1, . . . ,pm), (21)

iȦ(p1, . . . ,pm+1; t)

= ge−iωt exp

(
i

m+1∑
l=1

εpl
t

)

×
∑

k1<···<km

exp

(
−i

m∑
l=1

εkl
t

)
C(k1, . . . ,km; t)

× f ∗(p1, . . . ,pm+1; k1, . . . ,km). (22)

The nonzero initial values of these variables can be read from
Eqs. (C3) and (C5):

A

(
− m

π

N
, . . . ,m

π

N
; 0

)
= B

(
− m

π

N
, . . . ,m

π

N
; 0

)
= 1.

(23)

All other initial values of A, B, C, and D vanish. For h � 1,
the ground state is the fully polarized state with m = N − 1,
which can be included in Eq. (20).

The reduced density matrix of the qubit, and hence the W

factors in Eq. (18), can be obtained by tracing out the bath
degrees of freedom. Note that [P+H+P+,P−H−P−] = 0, so
the trace can be taken over c fermions and d fermions inde-
pendently: ρo(t) = trc,d [|φS(t)〉oo〈φS(t)|] with the Schrödinger
picture state given by |φS(t)〉o = e−i(HS+HB )t |φI (t)〉o. By using
Eq. (18), we obtain the W factors

W
(o)
1111(t) =

∑
k1<···<km+1

|B(k1, . . . ,km+1; t)|2,

W
(o)
111̄1̄(t) =

∑
k1<···<km

|C(k1, . . . ,km; t)|2,

W
(o)
1̄1̄11(t) =

∑
k1<···<km

|D(k1, . . . ,km+2; t)|2,

W
(o)
1̄1̄1̄1̄(t) =

∑
k1<···<km+1

|A(k1, . . . ,km+1; t)|2,

W
(o)
11̄11̄(t) = e−iωt

∑
k1<···<km+1

A∗(k1, . . . ,km+1; t)

×B(k1, . . . ,km+1; t),

W
(o)
1̄11̄1(t) = W

(o)∗
11̄11̄(t), (24)

with all other elements vanishing. A similar analysis can be
carried out for m even where |gXX〉 = |gm〉e (see Appendix C).
We recognize the decoherence factor of a single qubit [62] r(t)
from Eq. (18) as

r(t) = W
(o)
11̄11̄(t), (25)

whose absolute value is bounded by 0 � |r(t)|2 � 1, corre-
sponding to complete decoherence and no loss of coherence,
respectively.

In Fig. 4 we plot the temporal evolution of the decoherence
factor |r(t)|2 for different values of nearest-neighbor couplings
J/g in the weak qubit-bath coupling regime |J/g|,h/g � 1.
The revival of coherence occurs since the bath is finite.
The loss of coherence is modest for the smallest value of
|J/h| = 0.5 and |r(t)|2 approaches zero only for values
J/h < −1, namely, in the critical regime of the XX chain.
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FIG. 4. (Color online) Decoherence factor shown for different
values of nearest-neighbor coupling J/h in the weak-coupling regime
with h/g = 10. The other parameters are N = 10 and ω/g = 0.

As the intrabath interaction strength |J/h| is increased, the
coherence of the qubit is first suppressed, as can be seen by
comparing the curves for J/h = −1.05 and J/h = −0.5, and
then enhanced, as can be seen by examining the curves for
J/h = −1.5 and J/h = −6.0. These observations indicate
that the relationship between decoherence and interaction
strength is not straightforward.

Figure 5(a) displays the short-time behavior of the decoher-
ence factor |r(t)|2. It can be seen that when gt is small, |r(t)|2
decays as a Gaussian function

|r(t)|2 ∼ e−α(gt)2
. (26)

In Fig. 5(b) we display several values of the exponent α for
different values of |J/h| as blue dots, which were numerically
fit to |r(t)|2 for small times. Interestingly, we note that α

exhibits plateaus as a function of |J/h|. This behavior can
be understood from second-order time-dependent perturbation
theory in the qubit-bath coupling g/J . It turns out that the
initial Gaussian rate is given by (see Appendix D for the
derivation)

α =
∑

p1<···<pm

|f (k1, . . . ,km+1; p1, . . . ,pm)|2

+
∑

p1<···<pm+2

|f (p1, . . . ,pm+2; k1, . . . ,km+1)|2, (27)

where (k1, . . . ,km+1) = (−m π
N

, . . . ,m π
N

) or (−m π
N

, . . . ,

0, . . . ,m π
N

) for initial states with |gXX〉 = |gm〉o or |gm〉e. This
perturbative result is displayed as the red set of plateaus in
Fig. 5(b). Note that the f functions, and hence the rate α,
have nothing to do with the system’s parameters and only
depend on the filling number m, which explains the presence
of plateaus. In Fig. 5(a) two curves are plotted for each value
of m and for gt < 0.03 the ten curves are seen to collapse into
five groups corresponding to the five different values of m.
The first divergence within a group can be seen for the m = 5
sector, where the curves for J/h = −4.0 and −6.0 separate
past gt ≈ 0.03.

FIG. 5. (Color online) (a) Short-time behavior of the decoher-
ence factor |r(t)|2. For gt � 1, the curves collapse onto five Gaussian
functions with decay rates that depend only the value of m, the filling
number. Two curves within each group of two lines have been plotted
with their own line style and for gt < 0.03, the five groups can
be made out. (b) Dependence of the decay rate α on the intrabath
interaction strength |J/h|. The red line is the theoretical calculation
of Eq. (27) and the blue dots are numerical fits at small times to the
decoherence factor for different values of J/h. The other parameters
are N = 10 and ω/g = 0.

The short-time behavior of the decoherence factor for
intermediate qubit-bath coupling, with h/g = 1, and strong
qubit-bath coupling, with h/g = 0.1 (not shown here), is
similar to that of weak qubit-bath coupling. In particular, they
are also characterized by Gaussian behavior. However, the
behavior at longer times, as |J/h| is increased, changes. In
order to quantitatively compare the behavior of |r(t)|2 in these
three regimes, in Fig. 6 we plot the value of the first maximum
of the decoherence factor |r|2max [aside from the initial value
|r(0)|2 = 1] as a function of the intrabath interaction strength
|J/h| for the three coupling regimes examined above. This
quantity is representative of the extent to which coherence
is maintained in the qubit [63]. For all three regimes, when
the bath is in a polarized phase |J/h| < 1, the decoherence
factor returns to unity after one oscillation and indeed it
appears that the periodic revival of the coherence continues
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FIG. 6. (Color online) The first maximum the decoherence factor
reaches, |r|2max, plotted against the value of |J/h| for different values
of h/g corresponding to different qubit-bath couplings. The other
parameters are N = 10 and ω/g = 0.

for all times. All of the curves exhibit a sudden drop at
|J/h| = 1, reflecting the transition to the critical phase of
the bath. Interestingly, in the critical region |J/h| > 1, |r|2max
displays markedly different behavior in each regime. For
weak qubit-bath coupling, |r|2max behaves nonmonotonically
and oscillates about high values. However, |r|2max appears to
monotonically increase for h/g = 1 and 0.1, albeit very slowly
for the latter. These results seem to show that strong intrabath
interaction strength suppresses the decoherence of the qubit, a
result that has been observed for a qubit coupled to a spin bath
with homogeneous self-interaction [64,65].

As another means of assessing the effect of intrabath
interactions on the coherence of the qubit, in Fig. 7 we plot
the time gt at which the decoherence factor |r(t)|2 reaches its

FIG. 7. (Color online) Time gt at which the decoherence factor
|r(t)|2 reaches its first minimum plotted against the intrabath
interaction strength |J/h| for the three qubit-bath coupling regimes.
The other parameters are N = 10 and ω/g = 0.

first minimum as a function of |J/h| for the three qubit-bath
coupling regimes. We focus on the critical region |J/h| > 1,
as the time of the first minimum for |J/h| � 1 is much larger
and does not display much variation. Interestingly, the green
curve, for which h/g = 10, initially decreases sharply with
each successive sector and then displays a global minimum at
|J/h| ≈ 3.8, where the decoherence disappears the quickest.
For intermediate and strong qubit-bath coupling h/g = 1
and 0.1, as |J/h| is increased and successive magnetization
sectors of the bath are encountered, the time gt of the
first minimum drops. However, unlike the weak-coupling
case, gt increases monotonically within each sector, agreeing
with previous results that strong interactions within the bath
suppress decoherence of the qubit [64].

B. Disentanglement of two initially entangled qubits

Now we turn to the study of the disentanglement of two
qubits interacting with independent XX baths. We focus on one
type of initial state for the two-qubit system |�〉 = α|1̄1〉 +
β|11̄〉 with α real and α2 + |β|2 = 1. From Eq. (17) it follows
that the time-evolved reduced density matrix for the two qubits
reads

ρ(t) =

⎛
⎜⎜⎝

ρ11,11(t) 0 0 0
0 ρ11̄,11̄(t) ρ11̄,1̄1(t) 0
0 ρ∗

11̄,1̄1(t) ρ1̄1,1̄1(t) 0
0 0 0 ρ1̄1̄,1̄1̄(t)

⎞
⎟⎟⎠ , (28)

with

ρ11,11(t) = W111̄1̄(t)W1111(t),

ρ11̄,11̄(t) = α2W111̄1̄(t)W1̄1̄11(t) + |β|2W1111(t)W1̄1̄1̄1̄(t),

ρ11̄,1̄1(t) = αβW11̄11̄(t)W1̄11̄1(t),

ρ1̄1,1̄1(t) = α2W1̄1̄1̄1̄(t)W1111(t) + |β|2W1̄1̄11(t)W111̄1̄(t),

ρ1̄1̄,1̄1̄(t) = W1̄1̄1̄1̄(t)W1̄1̄11(t), (29)

where we have assumed that the two environments are
identical so that Wabcd (t) = W

(1)
abcd (t) = W

(2)
abcd (t). We use

the concurrence [66] to measure the bipartite entanglement
between the two qubits. The concurrence is defined as

C(t) = max{0,2λmax(t) − tr
√

ρ(t)ρ̃(t)},
(30)

ρ̃(t) = σy ⊗ σyρ
∗(t)σy ⊗ σy,

where λmax is the largest eigenvalue of the matrix
√

ρ(t)ρ̃(t).
The concurrence for state ρ(t) reads

C(t) = max{0,2|αβ||r(t)|2 − 2
√

ρ11,11(t)ρ1̄1̄,1̄1̄(t)}, (31)

where |r(t)|2 is the single-qubit decoherence factor in Eq. (25).
In Fig. 8 we plot the evolution of concurrence as a

function of gt from the maximally entangled Bell state
(|11̄〉 + |1̄1〉)/√2. In order to make a comparison between the
disentanglement dynamics and the decoherence of a single
qubit, we set all parameters to be the same as those in
Fig. 4. The concurrence appears to be bounded from above
by the corresponding decoherence factor |r(t)|2 for all time.
For 0 > J/h > −1, the XX chain is in the fully polarized state
along the ẑ direction. The concurrence shows regular oscilla-
tions about a high value and never vanishes in this regime. In
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FIG. 8. (Color online) Concurrence dynamics for the initial state
|�〉 = (|11̄〉 + |1̄1〉)/√2 for different values of nearest-neighbor
coupling J/h. The corresponding decoherence factors, plotted in
Fig. 4, are an upper bound for these curves. When entanglement
sudden death is present, it always occurs before the qubits’ individual
decoherence factors reach a minimum. The other parameters are
N = 10, h/g = 10, and ω/g = 0.

fact, we have seen that the two-qubit concurrence C(t) exactly
coincides with the single qubit decoherence factor |r(t)|2 here.
This relation can be understood by examining Eq. (31): For
2|αβ||r(t)|2 − 2

√
ρ11,11(t)ρ1̄1̄,1̄1̄(t) � 0 we have C(t) = 0 �

|r(t)|2, while for 2|αβ||r(t)|2 − 2
√

ρ11,11(t)ρ1̄1̄,1̄1̄(t) > 0 we
have

C(t) = 2|αβ||r(t)|2 − 2
√

ρ11,11(t)ρ1̄1̄,1̄1̄(t)

� 2|αβ||r(t)|2 � |r(t)|2. (32)

Hence, the concurrence is always bounded from above by
|r(t)|2. When the spin bath is in a polarized state, we always
have D({ki}; t) = 0, as can be seen from Eq. (20). Therefore,
C(t) = 2|αβ||r(t)|2 = |r(t)|2 for the Bell state with α = β =
1/

√
2. A similar conclusion also holds for the other type

of entangled state α|1̄1̄〉 + β|11〉. This relationship between
decoherence and disentanglement has also been observed
before in spin-boson-type models when the two qubits are
coupled to separate bosonic baths [57,58].

On the other hand, ESD always exists in the critical regime
J/h < −1. This is consistent with the result for two distant
qubits coupled locally to an XXZ spin chain via isotropic
Heisenberg qubit-bath coupling [33], where it was found that
ESD is absent in the ferromagnetic or polarized phase of the
spin bath. We also observe that ESD always occurs earlier than
the minimum of the corresponding single-qubit decoherence
factor, a result in agreement with the case of qubits coupled
to independent bosonic baths [50]. In the sudden death region,
revival of the entanglement appears a period of time after
disentanglement, which is also observed in Ref. [33]. This
revival phenomenon is induced by the non-Markovian nature
of the spin bath [10].

In order to compare the entanglement dynamics with the
decoherence of a single qubit, we plot the disentanglement

FIG. 9. (Color online) Time gt at which the concurrence first
vanishes plotted against intrabath interaction strength |J/h|. The
other parameters are N = 10 and ω/g = 0.

time, which is defined as the time when the concurrence first
vanishes, as a function of intrabath coupling |J/h| in the
sudden death region |J/h| > 1 in Fig. 9. The time gt until
ESD occurs decreases as sectors with lower filling factors
m are encountered, but within each sector, gt increases as
J/h is increased, although this effect is only pronounced
for weak qubit-bath coupling h/g = 10. This plot displays
many similarities to Fig. 7. However, for the green curve
with h/g = 10, increasing |J/h| only causes an increase
in gt with each sector, in contrast to the nonmonotonic
behavior of the corresponding curve in Fig. 7. Also, the
intrabath coupling strengths at which the entanglement dies
the fastest and at which the decoherence is minimized most
quickly are not the same. In spite of these differences, there is
qualitative agreement between Figs. 7 and 9, indicating that the
decoherence dynamics of a single qubit and the entanglement
dynamics of two noninteracting qubits are linked, especially
when the qubits are strongly coupled to their respective
baths.

IV. DISCUSSION AND OUTLOOK

In this work we studied the reduced dynamics of a specific
qubit–spin-bath model. Unlike the spin-conserving Ising-type
qubit-bath coupling utilized in most previous works, we
considered an XX-type spin-flip qubit-bath coupling, which
complicates the analytical analysis, since the system-bath
interaction term does not commute with the rest of the
Hamiltonian. In addition, we model interactions in the bath
by introducing nearest-neighbor XX-type couplings among
the bath spins. Such a model may be more physical than the
noninteracting spin star and homogeneously interacting spin
baths that have been examined before, but is more difficult to
treat analytically. However, by mapping this XX chain into
momentum space via the Jordan-Wigner transformation, we
have shown how to obtain the equations of motion for the
time-dependent total wave functions in momentum space. The
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reduced dynamics of a single qubit is then obtained by tracing
out the bath degrees of freedom.

Using the above results, we first studied the Rabi os-
cillations of the qubit with the bath initially prepared in
a spin coherent state. Interestingly, the interplay between
off-resonance and intrabath interactions was found to produce
conventional collapse and revival behavior even for a relatively
small spin-bath size. We further discussed the bath-induced
decoherence of a single qubit with the bath’s initial state
taken to be its ground state. We found that the decoherence
properties of the qubit depend on the internal phases of the XX

bath. Specifically, the short-time decay rate of the decoherence
factor only depends on the filling number of the bath ground
state. This result was confirmed through second-order time-
dependent perturbation theory. Finally, we considered two
independent copies of such qubit-bath subsystems and studied
the disentanglement dynamics of two initially entangled
qubits. The two qubits are always entangled if the XX bath is in
its polarized state, whereas entanglement sudden death appears
in the critical phase. Qualitative similarities were observed
between the time dependence of the two-qubit entanglement
and the single-qubit decoherence factor and we showed that the
concurrence is bounded from above by the decoherence factor
of the single qubit. However, for spin-boson-type systems, it
has been shown that this is not the case when the two qubits
share a common bosonic bath [67,68]. We believe that such
a relation between single-qubit decoherence and two-qubit
disentanglement might also break down for two qubits coupled
to a common XX bath. This deserves further study based on
our model system.

The XX spin chain in our model is equivalent to the one-
dimensional Bose-Hubbard model in the hard-core limit [69],
which can be realized using a cold atomic gas contained
in an optical lattice [70,71]. Correspondingly, the qubit–
spin-bath coupling HSB can be mapped to a conventional
spin-boson coupling within the rotating-wave approximation∑

j gj (b†j σ− + bjσ+), where bj are bosonic operators. Re-
garding the methodology used in this work, we note that
the only requirement for our formalism is the conservation
of the total magnetization M . Thus, our method can also be
applied to the nonuniform Heisenberg-type qubit–spin-bath
coupling [15,29], where the total magnetization is conserved.

Our results suggest that turning on interactions among bath
spins can have markedly different effects on the decoherence
and entanglement properties of the central spins, depending on
how strongly they are coupled to their environment. Therefore,
this work may be of relevance to all efforts aimed at using
such systems to construct quantum information processing
devices.
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APPENDIX A: STRUCTURE OF |ψ (n)(t)〉 AND
EXPRESSIONS FOR THE BLOCH VECTOR 〈�σ 〉

In the noninteracting case J = 0 with uniform coupling
gj = g, the total angular momentum of the spin bath is
conserved, so

|ψ (n)(t)〉 = T exp

(
− i

∫ t

0
ds HI (s)ds

)
|1〉 ⊗ ∣∣D(N/2)

n

〉
takes the simple form

|ψ (n)(t)〉 = an(t)|1〉∣∣D(N/2)
n

〉 + bn(t)|1̄〉∣∣D(N/2)
n+1

〉
. (A1)

By applying the Schrödinger operator (7) to the above
equation, we obtain the following equations of motion for
the coefficients an(t) and bn(t):

iȧn(t) = g̃ne
i(h+ω)t bn(t),

(A2)
iḃn(t) = g̃ne

−i(h+ω)t an(t),

with initial conditions an(0) = 1, bn(0) = 0, and g̃n =
g
√

(n + 1)(N − n). The solutions are

an(t) = e(i/2)(h+ω)t

(
− i(h + ω)

sin t
2

√
4g̃2

n + (h + ω)2√
4g̃2

n + (h + ω)2

+ cos
t

2

√
4g̃2

n + (h + ω)2

)
,

bn(t) = −2ig̃ne
−(i/2)(h+ω)t sin 1

2

√
4g̃2

n + (h + ω)2t√
4g̃2

n + (h + ω)2
. (A3)

The polarization dynamics is given by

〈σz(t)〉 =
N∑

n=0

|Cn|2[|an(t)|2 − |bn(t)|2]

= 1 − 8
N∑

n=0

g̃2
n|Cn|2 sin2 t

2

√
4g̃2

n + (h + ω)2

4g̃2
n + (h + ω)2

. (A4)

The other two components can be calculated directly from
Eq. (A1),

〈σx(t)〉 = 2 Re

(
e−iωt

N∑
n=1

C∗
n−1Cnb

∗
n−1an

)
,

(A5)

〈σy(t)〉 = −2 Im

(
e−iωt

N∑
n=1

C∗
n−1Cnb

∗
n−1an

)
.

We also monitor the purity dynamics of the qubit

Pqb(t) = 1

2

⎛
⎝1 +

∑
i=x,y,z

〈σi(t)〉2

⎞
⎠

= 1 + 〈σz(t)〉2

2
+ 2

∣∣∣∣∣
N∑

n=1

C∗
n−1Cnb

∗
n−1an

∣∣∣∣∣
2

. (A6)

Although 〈σx(t)〉 and 〈σy(t)〉 depend on both h + ω and ω,
〈σz(t)〉 and Pqb(t) depend only on h + ω. Also, note that 〈σz(t)〉
is symmetric under changing the sign of the detuning: h +
ω → −(h + ω).
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For finite J and/or nonuniform coupling gj , the total
angular momentum L of the spin bath is not conserved. So

|ψ (n)(t)〉 will be driven into other l subspaces under the action
of HI (t):

|ψ (n)(t)〉 = |1〉
N/2∑

m=|n−N/2|
a(m)

n (t)
∣∣D(m)

n

〉 + |1̄〉
N/2∑

m=|n+1−N/2|
b(m)

n (t)
∣∣D(m)

n+1

〉
, (A7)

which complicates the analysis. In this case, the dynamics of the Bloch vector can be obtained from Eqs. (10) and (15) as

〈σx(t)〉 = 2 Re[e−iωtZ(t)], 〈σy(t)〉 = −2 Im[e−iωtZ(t)], (A8)

with

Z(t) =
N/2∑
n=1

C∗
2n−1C2n

∑
k1<···<k2n

D′∗(k1, . . . ,k2n; t)B(k1, . . . ,k2n; t)

+
N/2−1∑
n=0

C∗
2nC2n+1

∑
k1<···<k2n+1

D∗(k1, . . . ,k2n+1; t)B ′(k1, . . . ,k2n+1; t) (A9)

and

〈σz(t)〉 = 〈ψI (t)|σz|ψI (t)〉

=
N/2∑
n=0

|C2n|2
⎛
⎝ ∑

k1<···<k2n

|B(k1, . . . ,k2n; t)|2 −
∑

k1<···<k2n+1

|D(k1, . . . ,k2n+1; t)|2
⎞
⎠

+
N/2−1∑
n=0

|C2n+1|2
⎛
⎝ ∑

k1<···<k2n+1

|B ′(k1, . . . ,k2n+1; t)|2 −
∑

k1<···<k2n+2

|D′(k1, . . . ,k2n+2; t)|2
⎞
⎠ . (A10)

Unlike the noninteracting and uniform coupling case, the dynamics of 〈σz(t)〉 is no longer symmetric under h + ω → −(h + ω),
as can be seen from the simple example of N = 2, i.e., for a spin bath made up of only two spins, where an analytical expression
can be obtained (with equal qubit-bath coupling g)

〈σz(t)〉 = |C0|2
8g2 cos t

√
8g2 + J 2− + J 2

−
8g2 + J 2−

+ |C1|2
8g2 cos t

√
8g2 + J 2+ + J 2

+
8g2 + J 2+

+ |C2|2,

with J± = h + ω ± J . Note that only the relative sign between h + ω and J is relevant.

APPENDIX B: DERIVATION OF EQS. (11) AND (12)

Equations (11) and (12) can be derived by inserting Eq. (10) into the time-dependent Schrödinger equation

i∂t |ψ (n)(t)〉 = HI (t)|ψ (n)(t)〉. (B1)

After acting with HI (t) on |ψ (n)(t)〉, only two terms survive:

HI (t)|ψ (n)(t)〉 = ∣∣ψ (n)
c (t)

〉 + ∣∣ψ (n)
d (t)

〉
,

∣∣ψ (n)
c (t)

〉 =
N∑

j=1

gjP−eiH−t c
†
j Tj e

−iH+tP+σ−e−iωt |1〉
∑

k1<···<kn

B(k1, . . . ,kn; t)
n∏

l=1

c
†
kl
|0〉, (B2)

∣∣ψ (n)
d (t)

〉 =
N∑

j=1

gjP+eiH+t cjTj e
−iH−tP−σ+eiωt |1̄〉

∑
k1<···<kn+1

D(k1, . . . ,kn+1; t)
n+1∏
l=1

d
†
kl
|0〉,

where |ψ (n)
c (t)〉 can be calculated as

∣∣ψ (n)
c (t)

〉 = e−iωt |1̄〉eiH−t
∑

k1<···<kn

exp

(
−i

n∑
l=1

εklt

)
B(k1, . . . ,kn; t)

∣∣χk1,...,kn

〉
, (B3)
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with

|χk1,...,kn
〉 =

N∑
j=1

gjc
†
j Tj

n∏
l=1

c
†
kl
|0〉

=
N∑

j=1

gjTj c
†
j

∑
j1<j2···<jn

S(k1, . . . ,kn; j1, . . . ,jn)c†j1
· · · c†jn

|0〉

=
∑

j<j1<j2···<jn

gjS(k1, . . . ,kn; j1, . . . ,jn)c†j c
†
j1

· · · c†jn
|0〉 + · · ·

+
∑

j1<···<jl<j<jl+1···<jn

gjS(k1, . . . ,kn; j1, . . . ,jn)c†j1
· · · c†jl

c
†
j c

†
jl+1

· · · c†jn
|0〉 + · · ·

=
∑

j<j1<j2···<jn

gjS(k1, . . . ,kn; j1, . . . ,jn)c†j c
†
j1

· · · c†jn
|0〉 + · · ·

+
∑

j<j1<j2···<jn

gjl
S(k1, . . . ,kn; j,j1, . . . ,jl−1,jl+1, . . . ,jn)c†j c

†
j1
...c

†
jn

|0〉 + · · ·

=
∑

j<j1<j2···<jn

(
n∑

l=1

gjl
S(k1, . . . ,kn; j,j1, . . . ,jl, . . . ,jn)

+ gjS(k1, . . . ,kn; j1, . . . ,jn)

⎞
⎠ ∑

p1<···<pn+1

S∗(p1, . . . ,pn+1; j,j1, . . . ,jn)d†
p1

· · · d†
pn+1

|0〉

=
∑

j1<j2<···<jn+1

(
n+1∑
l=1

gjl
S(k1, . . . ,kn; j1,j2, . . . ,jl, . . . ,jn+1)

)

×
∑

p1<···<pn+1

S∗(p1, . . . ,pn+1; j1,j2, . . . ,jn+1)d†
p1

· · · d†
pn+1

|0〉

=
∑

p1<···<pn+1

f̃ ∗(p1, . . . ,pn+1; k1, . . . ,kn; {gj })d†
p1

· · · d†
pn+1

|0〉. (B4)

Here (j1, . . . ,jl, . . . ,jm+1) is the string of length m with
the element jl removed from the sequence (j1, . . . ,jm+1) and
the coupling configuration-dependent auxiliary f̃ function is
given by Eq. (13) in the main text. By invoking Eq. (B1), we
obtain Eq. (11). The equations of motion for the B [Eq. (12)]
can be derived similarly.

APPENDIX C: GROUND-STATE STRUCTURE OF
THE PERIODIC X X CHAIN

For a periodic XX chain described by HB with J = −1
and h � 0, lowering h from hc = 1 to h = 0 will cause N/2
level crossings or parity changing at the following N/2 critical
fields:

hm = −cos
(
m + 1

2

)
π
N

cos 1
2

π
N

, m = N

2
,
N

2
+ 1, . . . ,N − 1. (C1)

Note that hN−1 = hc = 1, so the region h ∈ [0, + ∞) is
divided into the following intervals:

(i) hm � h � hm+1, m = N

2
,
N

2
+ 1, . . . ,N − 2,

(ii) 1 � h, (C2)

(iii) 0 � h � hN/2.

For fields within interval (i) and with m even, the ground state
is filled by m + 1 d fermions

|gm〉e = d
†
−m(π/N)d

†
−(m−2)(π/N) · · · d†

0 · · · d†
(m−2)(π/N)d

†
m(π/N)|0〉

(C3)

and possesses an energy

E(e)
m = −(h + 1) − 2

m/2∑
l=1

(
cos

2πl

N
+ h

)
. (C4)

Similarly, for odd m, the ground state is filled by m + 1 c

fermions

|gm〉o = c
†
−m(π/N)c

†
−(m−2)(π/N) · · · c†m(π/N)|0〉, (C5)

with energy

E(o)
m = −2

(m+1)/2∑
l=1

(
cos

(2l − 1)π

N
+ h

)
. (C6)

For fields within interval (ii), the ground state is always the
fully polarized state with all spins pointing in the ẑ direction. In
the fermionic picture, this state corresponds to the completely
occupied state |gN−1〉o, which is filled by the c fermions and
has an energy −hN . Depending on whether N = 4n or 4n + 2,
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the ground state for fields within interval (iii) will be either
|gN/2−1〉o or |gN/2−1〉e.

For the initial state Eq. (19) with |gXX〉 = |gm〉e (even m),
|φI (t)〉e has a form similar to Eq. (20),

|φI (t)〉e =
∑

k1<···<km+1

[a1̄A
′(k1, . . . ,km+1; t)|1̄〉

+ a1B
′(k1, . . . ,km+1; t)|1〉]

m+1∏
l=1

d
†
kl
|0〉

+
∑

k1<···<km+2

a1D
′(k1, . . . ,km+2; t)|1̄〉

m+2∏
l=1

c
†
kl
|0〉

+
∑

k1<...<km

a1̄C
′(k1, . . . ,km; t)|1〉

m∏
l=1

c
†
kl
|0〉. (C7)

The coefficients A′, B ′, C ′, and D′ satisfy a set of equations
of motion of the same form as Eqs. (11), (12), (21), and (22),
except that m is now even. Similar expressions for the W factor
also hold, with A, B, C, and D replaced by A′, B ′, C ′, and D′.

APPENDIX D: DERIVATION OF THE SHORT-TIME
BEHAVIOR OF THE DECOHERENCE FACTOR |r(t)|2

EQ. (26)

When the qubit-bath coupling is small compared with
the external field h and interaction J between neighboring
spins in the bath (J/g,h/g � 1), then standard second-order
time-dependent perturbation theory can be applied. The time-
dependent wave function in the interaction picture can be
written to second order in the perturbation as

|ψI (t)〉 = |φ(0)〉 + (−i)
∫ t

0
ds HI (s)|φ(0)〉 + (−i)2

∫ t

0
ds

∫ s

0
ds ′HI (s)HI (s ′)|φ(0)〉, (D1)

with HI (t) and |φ(0)〉 given by Eqs. (7) and (19), respectively. For m even, the initial bath state |gXX〉 = ∏m+1
l=1 c

†
kl
|0〉, with

(k1, . . . ,km+1) =
(

− m
π

N
, . . . ,m

π

N

)
. (D2)

Direct calculation gives

|φI (t)〉o = a1̄

{
|1̄〉

m+1∏
l=1

c
†
kl
|0〉 − g

∑
p1<···<pm

exp
[
i
(
ω + ∑m

l=1 εpl
− ∑m+1

l=1 εkl

)
t
] − 1

ω + ∑m
l=1 εpl

− ∑m+1
l=1 εkl

f (k1, . . . ,km+1; p1, . . . ,pm)

×|1〉
m∏

l=1

d†
pl

|0〉 + g2
∑

p1<···<pm

∑
p′

1<···<p′
m+1

exp
[
i

(∑m+1
l=1

(
εp′

l
−εkl

))
t

]
−1∑m+1

l=1 (εp′
l
−εkl

)
+ exp

[
−i

(
ω+∑m

l=1 εpl
−∑m+1

l=1 εp′
l

)
t

]
−1

ω+∑m
l=1 εpl

−∑m+1
l=1 εp′ l

ω + ∑m
l=1 εpl

− ∑m+1
l=1 εkl

× f (k1, . . . ,km+1; p1, . . . ,pm)f ∗(p′
1, . . . ,p

′
m+1; p1, . . . ,pm)|1̄〉

m+1∏
l=1

c
†
p′

l
|0〉

}

+ a1

{
|1〉

m+1∏
l=1

c
†
kl
|0〉 + g

∑
p1<···<pm+2

exp
[
i
(
ω − ∑m+2

l=1 εpl
+ ∑m+1

l=1 εkl

)
t
] − 1

ω − ∑m+2
l=1 εpl

+ ∑m+1
l=1 εkl

f ∗(p1, . . . ,pm+2; k1, . . . ,km+1)

× |1̄〉
m+2∏
l=1

d†
pl

|0〉 − g2
∑

p1<···<pm+2

∑
p′

1<···<p′
m+1

exp
(
i
∑m+1

l=1

(
εp′

l
−εkl

)
t
)
−1∑m+1

l=1 (εp′
l
−εkl

)
− exp

[
i
(
ω−∑m+2

l=1 εpl
+∑m+1

l=1 εp′
l

)
t
]
−1

ω−∑m+2
l=1 εpl

+∑m+1
l=1 εp′

l

ω − ∑m+2
l=1 εpl

+ ∑m+1
l=1 εkl

× f ∗(p1, . . . ,pm+2; k1, . . . ,km+1)f (p1, . . . ,pm+2; p′
1, . . . ,p

′
m+1)|1〉

m+1∏
l=1

c
†
p′

l
|0〉

}
. (D3)

Comparing with Eq. (20) in the main text, we have

A(k1, . . . ,km+1; t) = 1 + g2
∑

p1<···<pm

exp
[ − i

(
ω + ∑m

l=1 εpl
− ∑m+1

l=1 εkl

)
t
] − 1(

ω + ∑m
l=1 εpl

− ∑m+1
l=1 εkl

)2 |f (k1, . . . ,km+1; p1, . . . ,pm)|2,
(D4)

B(k1, . . . ,km+1; t) = 1 + g2
∑

p1<···<pm+2

exp
[
i
(
ω + ∑m+1

l=1 εkl
− ∑m+2

l=1 εpl

)
t
] − 1(

ω + ∑m+1
l=1 εkl

− ∑m+2
l=1 εpl

)2 |f (p1, . . . ,pm+2; k1, . . . ,km+1)|2,

and

A(p′
1, . . . ,p

′
m+1; t) = O(g2), B(p′

1, . . . ,p
′
m+1; t) = O(g2) (D5)
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for (p′
1, . . . ,p

′
m+1) �= (k1, . . . ,km+1). From Eq. (24) we finally obtain

|r(t)|2 = 1 + 2g2
∑

p1<···<pm

|f (k1, . . . ,km+1; p1, . . . ,pm)|2 cos
(
ω − ∑m+1

l=1 εkl
+ ∑m

l=1 εpl

)
t − 1(

ω + ∑m
l=1 εpl

− ∑m+1
l=1 εkl

)2

+ 2g2
∑

p1<···<pm+2

|f (p1, . . . ,pm+2; k1, . . . ,km+1)|2 cos
(
ω + ∑m+1

l=1 εkl
− ∑m+2

l=1 εpl

)
t − 1(

ω + ∑m+1
l=1 εkl

− ∑m+2
l=1 εpl

)2 . (D6)

For short times (ω − ∑m+1
l=1 εkl

+ ∑m
l=1 εpl

)t,(ω + ∑m+1
l=1 εkl

− ∑m+2
l=1 εpl

)t � 1 we have

|r(t)|2 ≈ 1 − α(gt)2 ≈ e−α(gt)2
, (D7)

with α given by Eq. (27).
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