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Interferometry with relativistic electrons
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We propose an experiment to test the influence of Lorentz contraction on the interference pattern of a beam of
electrons. The electron beam is split and recombined by two pairs of bichromatic laser pulses, using a variation
of the Kapitza-Dirac effect. Between the pairs, the electrons are accelerated to relativistic speed. We show that
Lorentz contraction of the distance between two partial beams will then lead to a reduction of fringe visibility.
The connection of the proposal to Bell’s spaceship paradox is discussed.
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I. INTRODUCTION

The influence of special relativity on matter-wave inter-
ference is a long-established fact. For instance, the spatial
interference pattern of atom interferometers that are based
on optical Ramsey fringes [1] can only be fully explained if
the relativistic Doppler effect is taken into account [2]. This
effect is relevant even for nonrelativistic velocities because
the fringe pattern is very sensitive to differences between
the dynamical phase factors exp(−iEt/�) of different partial
beams in the interferometer. The relativistic Doppler effect
essentially takes into account time dilation in the dynamical
phase.

On the other hand, the consequences of Lorentz contraction
in matter-wave interference are much more difficult to detect.
Lorentz contraction generally has only been confirmed indi-
rectly, for instance through the compressed charge distribution
in high-energy ion collisions [3] and the wavelength of free-
electron lasers [4]. The Michelson-Morley experiment, which
was the reason for the introduction of Lorentz contraction, may
also be considered as an indirect confirmation. An overview
about experimental tests of Lorentz contraction can be found
in Ref. [5].

In this paper, we suggest an experiment to observe the
impact of Lorentz contraction on the spatial interference
pattern of an electron interferometer. The principle idea of
the proposal is that an electron beam is split, accelerated to
relativistic speed, and then recombined. Lorentz contraction
of the distance between two partial beams will then lead to a
reduction of fringe visibility. In Sec. II, we will outline how to
realize this scheme using a modification of the Kapitza-Dirac
effect. A theoretical analysis of the interference pattern based
on the Dirac equation in Sec. III is followed by an analysis
of the beam-splitting process in Sec. IV. Numerical results for
the interference pattern are presented in Sec. V, and in Sec. VI
the connection of the proposal to Bell’s spaceship paradox is
discussed.

II. SKETCH OF PROPOSED EXPERIMENT

Our proposal employs the general principles of Ramsey-
Bordé interferometers [1,6–8], in which an atomic beam is
split and recombined by a sequence of laser pulses. When
passing through a laser pulse, the atoms absorb photons so

that momentum is transferred from the pulse to the atoms.
This change in the atomic center-of-mass dynamics can be
used to construct atom beam splitters. In a similar way,
the Kapitza-Dirac effect [9–12] can be used to transfer
momentum from a standing light wave to electrons. A
Ramsey-Bordé interferometer for (nonrelativistic) electrons
that employs bichromatic laser pulses as beam splitters has
been described in Ref. [13]. Our proposal builds on this
work.

A sketch of the suggested experiment is shown in Fig. 1(a).
An electron beam initially moves in the x direction and is then
coherently split into two beams, A and B, that are spatially
separated by a distance �z. The splitting is accomplished
by two bichromatic laser pulses, which are represented as
dashed vertical red lines in Fig. 1(a). The first pulse (leftmost
dashed line) splits the electron beam into two partial beams and
transfers momentum to one of the beams, thus changing their
relative velocity �v. Between the first two pulses, electrons
travel freely for a time T so that they acquire a distance �z =
T �v. The second laser pulse reverses the momentum transfer
so that beams A and B have the same momentum.

The split electron beam then enters a region with a strong
electric field that accelerates it in the z direction for a time
T ′. After the electrons have passed through the electric field
and obtained a relativistic speed v = βc, the electrons are
recombined in such a way that the spatial distance between the
two beams is reduced by an amount �z in their rest frame. For
nonrelativistic electrons, this would lead to a perfect overlap,
resulting in an interference pattern with high fringe visibility,
but, at relativistic speed, Lorentz contraction changes this
conclusion.

To understand this, consider the space-time diagram of
the interferometer in Fig. 1(b), which shows that in the
laboratory frame, the distance between beams A and B
remains unchanged during the acceleration. However, once
the electrons are moving at speed v, the proper distance
�z′ in their rest frame has to be measured simultaneously
in that frame, i.e., along the lower red dashed line in
Fig. 1(b) (see also Sec. VI). We then have �z′ = γ�z >

�z, where γ = 1/
√

1 − β2, because �z is the Lorentz
contraction of �z′. Consequently, after the recombination,
beams A and B would miss each other by a distance
�z′ − �z = (γ − 1)�z, which would lead to reduced fringe
visibility.
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FIG. 1. (Color online) (a) Sketch of the proposed experiment. An
electron beam is split and recombined using four bichromatic laser
pulses and accelerated to relativistic speed. Lorentz contraction of the
beam separation reduces fringe visibility. (b) Space-time diagram of
the split electron beam.

III. THEORETICAL ANALYSIS
OF THE INTERFEROMETER

To estimate the achievable magnitude of the beam separa-
tion, �z′ − �z, we extend the description of a Ramsey-Bordé
interferometer for electrons [13] to the relativistic regime.
It is assumed that the beam intensity is low enough so that
space-charge effects can be neglected [14]. We first summarize
the key points of the nonrelativistic description.

(i) The initial electron state is expanded in terms of
momentum eigenstates φp(z) as

ψinit(z) =
∫

dp ψ̃(p)φp(z). (1)

It is sufficient to describe the motion along the z axis because
all forces point along this direction. We consider states for
which ψ̃(p) is negligible if not |p| � �kL, with kL the wave
number of the laser pulses.

(ii) The free evolution of the electrons for a time T

between two laser pulses amounts to the replacement of ψ̃(p)
by exp[−iT E(p)/�] ψ̃(p), where E(p) is the energy of an
electron with momentum p.

(iii) Acceleration for a time T ′ amounts to a unitary
transformation Ûa(T ′) of the form

Ûa(T ′)φp(z) = e−iτ (p) φp+maT ′(z), (2)

τ (p) = 1

�

∫ T ′

0
dt ′ E(p + mat ′). (3)

(iv) The first and second laser pulses induce a unitary
transformation,

Û−φp(z) = 1√
2

[φp(z) + φp+2�kL
(z)], (4)

Û−φp+2�kL
(z) = 1√

2
[−φp(z) + φp−2�kL

(z)]. (5)

The last two laser pulses produce a similar unitary transforma-
tion Û+, which is equal to Û− with kL replaced by −k̃L. These
transformations are not accurate but provide a reasonable

approximation for nonrelativistic electrons. We will give a
detailed description of the splitting process below.

(v) Using points (i)–(iv), the electron state after passing
through the interferometer evaluates to [13]

ψfinal(z) = 1

4

∫
dp ψ̃(p)φp+maT ′(z)

× e−iτ (p,T ′)[e− iT
�

E(p+2�kL)e− iT̃
�

E(p−2�γ k̃L+maT ′)

+ e− iT
�

E(p)e− iT̃
�

E(p+maT ′)] + rest. (6)

The first term in parentheses corresponds to beam A in
Fig. 1(a), i.e., to electrons which receive momentum transfers
2�kL, −2�kL, −2�k̃L, 2�k̃L at the four laser pulses. The
second term in parentheses corresponds to beam B, with
electrons that travel through the laser pulses without changing
their momentum. “Rest” refers to (seven) other partial beams
that are produced in addition to beams A and B. For brevity,
these beams will only be included in the numerical analysis
given below.

We now adapt this derivation to relativistic electrons
described by the Dirac equation i�∂tψ = Ĥψ , with

Ĥ = mc2β + Ĥ0 + qV − c

3∑
i=1

(p̂i − qAi)αi. (7)

The 4 × 4 matrices β and αi take their standard form [15].
The initial state can still be expanded as in Eq. (1), with
φp(z) replaced by spinor momentum eigenstates φ(r)

p (z) =
exp(ipz/�) θ (r)(p), where

θ (1)(p) = 1√
2

[√
1 + m

E
,0,

p√
E(m + E)

,0

]
, (8)

θ (2)(p) = 1√
2

[
0,

√
1 + m

E
,0,

−p√
E(m + E)

]
, (9)

θ (3)(p) = 1√
2

[√
1 − m

E
,0, − p√

E(E − m)
,0

]
, (10)

θ (4)(p) = 1√
2

[
0,

√
1 − m

E
,0,

p√
E(E − m)

]
, (11)

with the relativistic energy E(p) =
√

p2c2 + m2c4. Using this
expression for E(p), the free evolution rule (ii) can also be used
for relativistic electrons.

To see that the acceleration rule (iii) can still be applied, we
have to solve the Dirac equation with constant acceleration
a [16–21], corresponding to Ai = 0 and qV = −maz in
Eq. (7). To keep a close analogy to the nonrelativistic treatment
of Ref. [13], we expand the wave function as

ψ(z,t) =
4∑

r=1

ψ̃r (t)φ(r)
p(t)(z), (12)

with p(t) = p + mat . Inserting this into the Dirac equation
and exploiting the orthonormality of the spinors θ (r)(p), we
obtain

i∂t ψ̃r = εr

E(p(t))
�

ψ̃r − iεr (−1)rη(t)ψ̃r+2εr
, (13)
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with

η(t) ≡ a

2c

[
mc2

E(p(t))

]2

, (14)

and εr = 1(−1) for r = 1,2 (3,4), respectively. η(t) describes
a coupling between positive- and negative-energy solutions
that is maximal for E(p(t)) ≈ mc2. For constant values of η

and E(p), we find that the maximal transition probability is
given by �

2η2/[E(p)2 + �
2η2], which is only significant for

extreme accelerations of a ≈ 1030 m/s2 or larger. For realistic
accelerations, η(t) is negligible, so that the solution to the
accelerated Dirac equation can be approximated by

ψ̃r (t) ≈ e− i
�

εr

∫ t

0 dt ′E(p(t ′))ψ̃r (0). (15)

Consequently, Eq. (2) can also be used to describe the
accelerated evolution of relativistic electron wave packets.

In Sec. IV, it will be shown that beam-splitting rule (iv) also
applies to relativistic electrons if specific conditions are met.
Hence, with the appropriate replacements, rules (i)–(iv) and,
hence, final state (6) are still valid for relativistic electrons.
Compared to Ref. [13], we have admitted that the time T̃

between the last two pulses, and the momentum transfer 2�k̃L

in the electron rest frame, differ from the respective values for
the first two pulses. A factor of γ appears in Eq. (6), which
is formulated in the laboratory frame, because we have to
perform a Lorentz transformation of the momentum transfer
to obtain the momentum transfer in the laboratory frame.

In the nonrelativistic case, it is possible to evaluate Eq. (6)
analytically for a Gaussian initial wave packet of spatial width
w, for which

ψ̃(p) =
√√

2

π

w

�
e−p2w2/�

2
. (16)

In the relativistic case, we can obtain an approximate solution
by exploiting that the momentum width of the wave packets
is still small after the acceleration. We can, therefore, expand
all exponentials to second order in p and replace the spinor
θ (r)(p + maT ′) by θ (r)(maT ′). Then all integrals in Eq. (6)
are of Gaussian form and can be solved analytically, leading
to partial beams with a Gaussian spatial structure. The final
mean positions of the two partial beams in the laboratory frame
evaluate to

zA = �z + c2

a
(γ − 1) + T̃

(
βc − 1

γ 2

2�k̃L

m

)
, (17)

zB = c2

a
(γ − 1) + T̃ βc, (18)

where we have used �z = T �v = 2T �kL/m for the sepa-
ration induced by the first pair of laser pulses. These mean
positions agree with relativistic trajectories of classical point
particles in the laboratory frame. c2(γ − 1)/a corresponds to
the distance traveled by the electrons during the acceleration
phase. For γ = 5/4 and an acceleration of 1.8 × 1016 m/s2,
which corresponds to an electric-field strength of 105 V/m,
this distance is about 1.3 m.

Terms proportional to T̃ correspond to the distance traveled
by the partial beams between the last two laser pulses. βc is the
velocity of electrons with momentum p = mγβc, which have
not received a momentum kick. Electrons that have received
a momentum kick �p̃ = −2�k̃L in their rest frame possess a

momentum p + γ�p̃ in the laboratory frame. The relativistic
relation between velocity and momentum is given by β(p) =
p/

√
p2 + m2c2. Expanding β(p + γ�p̃) to first order in �p̃

produces the terms proportional to T̃ in Eq. (17).
To realize the proposal presented in Sec. II, T̃ has to be

chosen in such a way that the distance between beams A and B
is reduced by an amount �z between the last two laser pulses. If
�ṽ = 2�k̃L/m denotes the relative velocity of the two partial
beams in their rest frame, the proper time needed to cover
this distance is given by τ = �z/�ṽ. In the laboratory frame,
the time between the two pulses must therefore be chosen
as T̃ = γ τ = γ�z m/(2�k̃L). The final distance between the
two beams in the laboratory frame is then given by zA − zB =
�z(1 − γ −1). Lorentz contraction implies that in the rest frame
of the electrons, the distance is then given by γ (zA − zB) =
(γ − 1)�z, which corresponds to the mismatch discussed in
Sec. II.

IV. KAPITZA-DIRAC BEAM SPLITTER
FOR RELATIVISTIC ELECTRONS

The analysis given in Sec. III employs rule (iv), which
has been derived for nonrelativistic electrons [13] using a
modified Kapitza-Dirac effect and is only correct in the limit
of very short laser pulses. Rule (iv) is sufficient to give a
rough description of the interaction of electrons with the
first two laser pulses, but it needs to be reconsidered for
relativistic electrons interacting with the two laser pulses
after the acceleration. The relativistic Kapitza-Dirac effect
has been studied in Ref. [22]. To describe the modified
relativistic Kapitza-Dirac effect for each of the four pulses,
we need to solve the Dirac equation (7) in the presence of two
counterpropagating laser fields with different frequencies. The
corresponding electromagnetic potentials are given by V = 0
and �A = �ε(A(+) + A(−)), where

A(+) = − iE1e
ik1z−itω1+iθ1

4ω1
− iE2e

−ik2z−itω2+iθ2

4ω2
(19)

is the positive-frequency part of the vector potential in the
laboratory frame and A(−) = (A(+))∗. Ei and ωi (i = 1,2) are
electric-field amplitude and frequency of the two counterprop-
agating fields and ki = ωi/c is their wave number. The unit
vector �ε describes the polarization direction in the x-y plane
and θi are phase factors.

For nonrelativistic velocities, the Dirac equation can be
solved using a Foldy-Wouthuysen transformation [15]. The
large components of the Dirac spinor are then of the form ψ =
exp(−imc2t/�)ψ̃ , where ψ̃ is a solution to the Schrödinger
equation with the same vector potential. The analysis of
Ref. [13] can therefore be applied to the first two laser pulses.

To describe the last two laser pulses, we can exploit that
despite the relativistic mean electron velocity, the velocity
spread is still nonrelativistic. We therefore can perform a
Lorentz boost of the Dirac equation along the z axis into the
(mean) electron rest frame. Because of the covariance of the
Dirac equation, the result will still be of the form (7), but with
a transformed vector potential.

The Lorentz transformation of the four-vector potential
(0, �A) can be easily accomplished by noting that its polarization
is perpendicular to the direction of the boost. Consequently,
the vector potential still has the form (19), except that in the
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exponentials, we have to make the replacements ω1 → ω̃1 ≡
(1 − β)γω1 and ω2 → ω̃2 ≡ (1 + β)γω2. Therefore, detuning
�ω ≡ ω2 − ω1 and average wave number kL ≡ (k1 + k2)/2
in the laboratory frame need to be replaced by the respective
values in the electron rest frame,

�ω̃ = γ [�ω + β(ω2 + ω1)], (20)

k̃L = γ

2c
[(1 + β)ω2 + (1 − β)ω1]. (21)

It was shown in Ref. [13] that rule (iv) provides a reasonable
approximation for the evolution of the electron state inside a
bichromatic laser pulse if the resonance condition

�ω̃ = ∓2
�

m
k̃2
L (22)

is fulfilled. For relativistic electrons, this poses a practical
limitation: because of the Doppler effect [terms proportional
to β in Eq. (20)], the detuning �ω̃ in the electron rest frame
may be very large. However, the Kapitza-Dirac effect requires
phase locking, i.e., there must be a stable relation between
the phases of the two counterpropagating laser fields [12]. In
current experiments, such a relation can only be established
for small detunings [23] or in harmonic generation [24].
We therefore propose the following setup: laser field 2 with
frequency ω2 is detuned by a small amount δω from, and phase
locked to, a pump laser of frequency ω2 − δω. Laser field 1
corresponds to the nth harmonic frequency of the pump laser,
so that ω1 = n(ω2 − δω). We then obtain

�ω̃ = n(1 − β)γ δω + [1 + β − n(1 − β)]γω2, (23)

k̃L = γ

2c
{[1 + β + n(1 − β)]ω2 − (1 − β)δω}. (24)

If the final velocity of the electrons takes the value β =
(n − 1)/(n + 1), then these relations simplify to �ω̃ = √

nδω

and k̃L ≈ √
nω2/c = √

nk2. The resonance condition can then
easily be fulfilled by choosing δω = ∓2�

√
nk2

2/m, which
apart from a factor of

√
n is the same condition as in the

nonrelativistic case. Hence, if the electrons are accelerated to
a specific velocity, rule (iv) can still be used to describe the
beam splitters.

V. NUMERICAL RESULTS

In Fig. 2, we show a full numerical simulation of the
interference pattern, including the full Kapitza-Dirac effect
as described in Ref. [13] instead of the simplified rule
(iv). We assume fourth-order harmonic generation (n = 4),
which corresponds to β = 3/5, so that electrons need to
travel through an electric potential difference of 127.75 kV
(see Fig. 1). The flight durations used in the simulation
are T = 50 ns, T ′ = 12.5 ns, and T̃ = 31 ns. The distance
between wave packets A and B of about 15 μm corresponds
to the spatial mismatch induced by Lorentz contraction. Wave
packets with Roman numbers are labeled in the same way as
in Ref. [13] and represent other partial beams.

The details of the numerical simulation are as follows. We
performed all calculations in momentum space and used a
grid of 10 000 points for a Fourier transformation of the final
wave function to obtain the spatial density shown in Fig. 2.

FIG. 2. (Color online) Numerical simulation of the split electron
beam after the last laser pulse. The offset between beams A and B is
a consequence of Lorentz contraction. See Sec. V for further details.

Rules (i) and (ii) can be evaluated exactly in momentum space.
For the acceleration of 1.8 × 1016 m/s2 that we considered,
rule (iii) provides an excellent approximation and can also be
evaluated directly. To implement an accurate description of
rule (iv), we use the result that each bichromatic pulse couples
a wave function with momentum p to wave functions with
momentum p ± 2�kL [13]. As these momenta are coupled to
other momenta, one obtains a coupling between an infinite
set of momenta separated by multiples of 2�kL. However, for
a pulse duration of tL = π/(4g1g2) = 1.56 ns, where gi is
defined in Eq. (7) of Ref. [13], the laser intensities are so low
that this coupling is very weak and can be neglected except
when resonance condition (22) [or Eq. (12) of Ref. [13] for
nonrelativistic electrons] is fulfilled. We therefore only need to
take into account the coupling between two resonant momenta,
so that the unitary time evolution operator during a laser pulse
can be found analytically by diagonalizing a 2 × 2 matrix. We
remark that this procedure is more accurate than Eq. (5), which
neglects the actual time evolution during the laser pulses and
only describes how the electron momentum is changed.

The method presented in the preceding paragraph is
nonrelativistic and provides an accurate description of the
electron dynamics during the first two laser pulses. To apply
this procedure to the last two laser pulses, we performed a
Lorentz transformation of the numerical wave function at the
end of the acceleration phase into the (mean) rest frame of
the electrons in beam B, taking into account the changes
to the vector potential discussed in Sec. IV. The evolution
during the last two laser pulses and the free evolution between
these pulses is then evaluated in the rest frame of beam B.
Figure 2 shows the final wave function in this frame.

To check the numerical results, we have verified that the
wave function is normalized and the mean position of all
partial beams agrees with the position (in the rest frame of
beam B) of a classical relativistic point particle that receives a
specific momentum kick at each laser pulse. We remark that
the distance between wave packets A and B in Fig. 2 is not
exactly equal to the shift (γ − 1)�z derived in Sec. II, but is
rather given by

zA − zB = (γ − 1)�z + γ tL
2�kL

m
− tL

2�k̃L

m
. (25)
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The reason is that Eq. (25) takes into account the finite
duration tL of the laser pulses, while the discussion in Secs. II
and III assumes that the momentum of the electrons changes
instantaneously.

VI. BELL’S SPACESHIP PARADOX

Bell’s spaceship paradox, which was popularized by
Bell [25] but originally suggested by Dewan and Beran [26],
is one of the thought experiments illustrating the subtleties
of special relativity. Two spaceships are initially at rest
and connected by a taut thread. They undergo the same
acceleration until they reach relativistic speed. An observer
in the laboratory frame would conclude that the thread will
not break because the distance between the spaceships would
never change. However, in the reference frame of the ships,
Lorentz contraction would imply that the thread should break.

The paradox can be explained using the space-time diagram
shown in Fig. 3. Blue solid lines describe the trajectories
of two spaceships (A and B), which are initially separated
by a distance �z. They are accelerated until they reach
relativistic speed. After the acceleration, an observer in the
laboratory frame would measure the distance between the ships
simultaneously in her frame, along the horizontal black dashed
line in Fig. 3. She would conclude that the distance is still given
by �z, which is the proper distance between the end points of
the black dashed line. An observer on a ship would measure the
distance simultaneously in his frame, along the bold dashed
red line in the figure. The reason for the change in the distance
is the relativity of simultaneity. In the reference frame of ship
A, ship B stopped to accelerate earlier and thus had more time
to travel to the right.

To analyze the paradox, some authors use space-time
diagrams only [27–30]. Other authors address the question
of whether Lorentz contraction will cause stress forces in the
string to occur, which may trigger the string to break and
thus provide a physical signal that resolves the paradox. The
answer to this question is much more involved due to the
subtleties of relativistic rigid-body dynamics and has been
addressed with different methods and results [25,26,31–36].
Most authors came to the conclusion that the string would
break.

Δz

Δz'

A B
z

c t

FIG. 3. (Color online) Space-time diagram of Bell’s spaceship
paradox. Solid blue lines correspond to the world line of the two
ships. Dashed red lines (dotted blue lines) are the spatial (temporal)
coordinate lines, respectively, in the reference frame of the spaceships
after they were accelerated.

Comparing Figs. 1(b) and 3, one can see that Bell’s paradox
and the proposed interference experiment are closely related.
Except for the parts in which electron beams A and B are
split and recombined, the two space-time diagrams coincide.
In both cases, it is Lorentz contraction of the final separation
�z′ that is responsible for a physical effect: the mismatch
between the final positions of beams A and B in the electron
interferometer and the breaking of the string in Bell’s paradox.
One may say that the mismatch in the interference experiment
replaces the breaking of the string as a physical signature for
the resolution of the paradox.

VII. DISCUSSION

The theoretical analysis that we have presented above
is based on several simplifying assumptions, including a
homogeneous electric field, laser pulses that are switched on
and off at specific times, and a one-dimensional analysis that
ignores forces in the x and y direction. In this section, we
estimate how deviations from these assumptions may affect
the proposed experiment. In doing so, it is important to keep
the following points in mind:

(i) Strictly speaking, the proposed experiment is not an
interference experiment. The measured quantity is a dis-
placement between two partial beams, which would also be
produced for incoherent electron beams. However, if the two
partial beams are partially overlapping, the fringe visibility
can provide information about the displacement. Coherence is
therefore helpful but not essential.

(ii) The measured observable is a relative displacement
of two partial beams along the direction of the laser pulses.
Any effects that affect the motion in other directions, such
as forces in the x or y direction, do not, therefore, affect the
result. Similarly, forces in the z direction that affect both partial
beams in the same way will not affect the displacement.

(iii) The beam-splitting process is velocity selective, i.e.,
the electron beam is only split or recombined for electrons
within a specific velocity range.

With these remarks, we can address a number of experi-
mentally relevant questions.

Pulse timing. In our theoretical analysis, the counterprop-
agating light pulses are switched on and off simultaneously
everywhere in space. In reality, the pulses are propagating in
opposite directions and will hit the fast-moving partial electron
beams at different times. In the proposed setup, this is not a
problem because only partial beam A actually interacts with
the pulses, while partial beam B does not obtain a momentum
transfer. In an experiment, pulse timing should therefore be
designed in such a way that partial beam A interacts with the
pulses at the correct time.

Pulse shape. The spatial shape of a light pulse also affects
the force that light exerts on charged particles. Because of
point (ii) above, the transverse pulse profile will not have a
significant influence on the displacement between beams A
and B. As a rule of thumb, the magnitude of the momentum
change due to the envelope E of a pulse is much smaller than
the momentum transfer in a resonant absorption or emission
process, as long as the envelope changes slowly over the range
of one wavelength λ, so that λ|∇E | � |E | [37]. The transverse
profile would therefore only generate a displacement in the
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x-y plane that is much smaller than the displacement of partial
beam VIII in Fig. 2. Similar remarks apply to the longitudinal
pulse profile. However, the longitudinal profile must be shaped
in such a way that the electron-pulse interaction is not switched
on adiabatically [38].

Photon emission. It is well known that accelerated charges
emit radiation. In matter-wave interferometry, even the emis-
sion of a single photon may lead to a loss of coherence [39].
While point (i) implies that this loss of coherence is not a
fundamental problem, the associated change in the electron
momentum may nevertheless affect the displacement between
partial beams A and B. It is, therefore, worthwhile to estimate
the probability of photon emission during the acceleration.

The photon emission probability for an accelerated electron
per unit time and transverse momentum px,py is given by [40]

P (px,py) = q2c2

π2aε0�
3

∣∣∣∣K1

(
c2

�a

√
p2

x + p2
y

)∣∣∣∣
2

, (26)

where K1 denotes the modified Bessel function of the second
kind. The total probability to emit a photon can then be
estimated by

Pem = T ′
∫

dpx dpyP (px,py) (27)

= 2πT ′
∫ ∞

0
dk⊥

q2c2

π2aε0�

∣∣∣∣K1

(
c2

a
k⊥

)∣∣∣∣
2

, (28)

with k⊥ =
√

p2
x + p2

y/� the transverse wave number of the
electron. This integral is logarithmically divergent for large
wavelengths, k⊥ → 0. We regularize it by replacing the lower
boundary by u a/c2, where u > 0 parametrizes the value of
the cutoff and c2/a corresponds to the maximal distance (the
largest wavelength) that fits into a Rindler wedge [41] in the
reference frame of an accelerated observer. The integral can
then be performed numerically. For the parameters used in
Sec. V, Pem(u) varies very slowly with u and is less than 5%
for u > 10−4. We therefore expect that photon emission will
not pose a problem for the proposed experiment.

Spatial field fluctuations. In the previous sections, we have
assumed that the electric field is homogeneous and time
independent. Spatial homogeneity is not a critical assumption
because it only matters that both partial beams achieve the
same Lorentz factor γ at the end of the acceleration phase.
Because both partial beams essentially follow the same path
and are only separated along the z axis, both beams would
undergo the same (nonconstant) acceleration before they
are recombined. Hence, field fluctuations along the z axis
would not affect the experimental outcome. Transverse field
fluctuations in the x or y direction could result in different
acceleration for both beams, but this would be accompanied by
a displacement of the beams in the x-y plane. For a given point
in the x-y plane, the z displacement should still be the same.
The only spatial field fluctuations that would be of concern are
those which couple transverse and longitudinal motion of the
electrons. They can be dealt with in a similar way as temporal
fluctuations (see below).

Temporal field fluctuations. To avoid electric forces be-
tween two partial beams, the experiment should be performed

in such a way that only one electron passes through the
interferometer in each run. Temporal fluctuations in the electric
field could significantly change the dynamics of the electrons
between different runs and thus make it impossible to measure
the beam displacement. Fortunately, point (iii) provides a way
to overcome this problem: only electrons that are at the right
time, and with the correct velocity, at the location of the laser
pulse will interact with it. Thus, the resonant interaction with
laser pulses selects those electrons which have obtained the
proper velocity and position to contribute to the measured
observable.

In the setup shown in Fig. 1, velocity selection would only
apply to partial beam A because beam B does not interact with
the laser pulses. The setup could be modified in such a way
that both beams A and B would receive a momentum transfer
from (possibly different) laser pulses after the acceleration. In
this way, both beams would be subject to velocity selection.
Furthermore, such a modification could be used to move beams
A and B away from background electrons that do not interact
with the laser pulses, similarly to beam VIII in Fig. 2. A
disadvantage of velocity selection is that runs in which an
electron has the wrong velocity will not contribute to the
measurement. The total number of experimental runs needed
will therefore be increased.

Detection. To detect the interference pattern of electrons
moving at relativistic speed, a time-of-flight measurement may
be needed. Alternatively, it would be possible to decelerate the
electrons after the last laser pulse and detect the electrons
when they obtained nonrelativistic speed. Such a deceleration
phase would lead to a Lorentz contraction of the distance
between the two electron beams, but it would not undo the
separation.

VIII. CONCLUSION

We have proposed an experiment in which Lorentz
contraction changes the interference pattern in an electron
interferometer. Two partial beams, which would be perfectly
overlapping for nonrelativistic electrons, will miss each other
by an amount �z(γ − 1), with �z the beam separation in
the interferometer. The experiment is closely related to Bell’s
spaceship paradox, with the mismatch of the beams replacing
the breaking of a string as physical evidence for Lorentz
contraction.

The key element of our proposal is the use of laser pulses
to modify the electron motion via the Kapitza-Dirac effect.
Using fields instead of gratings as beam splitters enables us
to fix time and location of the splitting process in the rest
frame of the electrons, rather than in the laboratory frame. In
combination with the large accelerations that can be achieved
for charged elementary particles in general, this method may
pave the way to further tests of relativity, such as local Lorentz
invariance [42] or extended relativity [43].
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