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We demonstrate the principle of one-sided device-independent continuous-variable (CV) quantum information.
In situations of no trust, we show by enactment how the use of standard CV entanglement criteria can mislead
Charlie into thinking that Alice and Bob share entanglement, when the data are actually generated classically using
a local-hidden-variable theory based on the Wigner function. We distinguish between criteria that demonstrate
CV entanglement, and criteria that demonstrate the CV Einstein-Podolsky-Rosen (EPR) steering paradox. We
show that the latter, but not the former, are necessarily one-sided device-independent entanglement witnesses,
and can be used by Charlie to signify genuine EPR entanglement, if he trusts only Alice. A monogamy result for
the EPR steering paradox confirms the security of the shared amplitude values in that case.
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I. INTRODUCTION

The importance of trust, either of an observer or of
the devices employed, has motivated the emergence of “a
new paradigm” [1] in the field of quantum information:
device-independent (DVI) quantum information processing
[1–7]. In light of this emergence, it is now recognized that
quantum nonlocality has a very special role to play in quantum
information. In a classic scenario, Charlie wants to confirm
whether the qubit values reported to him by Alice and Bob
have been generated from an entangled quantum source. For
quantum key distribution (QKD), this may allow him to deduce
that these values are not known to any eavesdropper Eve
[8,9]. Quite surprisingly, if Charlie uses certain entanglement
criteria, called device-independent entanglement witnesses
(DVIEWs), he does not have to assume anything about the
exact nature of the devices Alice and Bob are using or the
reliability of their measurements [2,3,10,11].

Device-independent entanglement witnesses are those in-
troduced by Bell, that demonstrate not only quantum entan-
glement, but quantum nonlocality [2–4]. If Charlie verifies
violation of a Bell inequality, he can be sure the statistics did
not arise from any local-hidden-variable (LHV) theory [12].
The concept of quantum nonlocality is distinct from that of
entanglement, and DVI security is not given by all entangled
states. A problem for the implementation of DVI quantum in-
formation however is that when most photons are not detected,
not all LHV theories can be eliminated [13–17]. These sorts of
“loophole” issues are often overcome by continuous-variable
(CV) quantum information. Here, information is carried in
the amplitudes of fields, enabling efficient detection and
transmission [18–24]. A second problem then arises. The most
widely used CV entangled resource (the two-mode squeezed
state) has an LHV description, for the results of Alice and
Bob’s amplitude measurements [25,26,28]. This means that
those amplitude values will not violate a Bell inequality.

The amplitude values of the CV entangled resource do
display quantum nonlocality however: namely, the nonlocality
presented by Einstein, Podolsky, and Rosen (EPR) [27] in their
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1935 EPR paradox [29]. EPR’s nonlocality addresses whether
the action of measurement by Bob can immediately influence
the results of Alice’s quantum measurements at another
distant site. EPR demonstrate their paradox, by assuming
that values at Alice’s location arise from measurements of
quantum observables. There is no similar assumption for
Bob’s measurements. The EPR paradox is realized through a
procedure that is “one-sided device-independent,” and criteria
for the EPR paradox, unlike those for “EPR entanglement,”
are “one-sided” DVIEWs.

The concept of one-sided device-independent security has
been pioneered in Refs. [30–32], based on the resource of
quantum steering [33]. In fact, the EPR paradox is an example
of quantum steering [31,32,34]. The analysis [30] focused on
QKD with qubits, but revealed advantages, if one is justified
in assuming trust at one site. The advantages are implicit in
previous work on CV QKD based on criteria that relate to
the EPR paradox [19,20,35]. Clearly, this concept has the
potential to introduce the new DVI paradigm to CV quantum
information.

Here, we demonstrate the principle and feasibility of CV
one-sided DVI quantum information. We do this in three steps:

(1) First, we illustrate the vulnerability of CV quantum
information in situations of no trust, if one uses standard
entanglement criteria such as that derived by Duan et al.
[36] and Simon [37]. Our illustration is by enactment: where
neither Alice and Bob can be trusted, we deceive Charlie by
simulating entanglement trivially using a classical computer.
We next show that even if Alice can be trusted, we can still
deceive Charlie if he uses a criterion that is not a one-sided
DVIEW. The “faked” entanglement can be generated using an
unsophisticated hybrid scheme involving classical computers
and a classical optical source. We also discuss the motivation
by a malicious Eve to fake the entanglement—so that she can
fool Charlie into thinking a set of amplitude values are held
securely between the two parties Alice and Bob, when in fact
they can be distributed by her to an infinite number of parties.

(2) Second, we prove that if Charlie confirms a one-sided
DVI EPR paradox criterion and he trusts Alice, he can be sure
the results do originate from an EPR entangled state.

(3) Lastly, we use a monogamy result [35,38,39] for the
EPR paradox to show that confirmation of the EPR paradox
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criterion is enough to give security against an eavesdropper
Eve possessing a noise-free replica of the amplitude values,
despite the fact that Bob cannot be trusted.

Practical implementation of CV one-sided DV security
requires demonstration of an EPR steering paradox, which is
more generally difficult than entanglement [40]. Nonetheless,
the CV EPR paradox has been verified without fair sampling
loopholes for a range of optical systems [25,26,41]. These
will be briefly discussed in the Conclusion. The elimination
of the “locality” loophole is also important [17], if CV DVI is
to become a reality. Since security is often comprised at one
site only, we expect CV one-sided DVI protocols to become
useful.

II. DETECTING SHARED ENTANGLEMENT

Let Alice and Bob be two spatially separated observers at
stations labeled A and B respectively. Suppose an observer at
a central station sends to Alice one of the quantum subsystems
that comprise a CV EPR state, and to Bob the other. A
sequence of similarly prepared states is transmitted. After
each transmission ti , an observer Charlie selects randomly
to ask Alice and Bob to measure either the position X or the
momentum P of the subsystems at their respective stations (or
sites), and to report to him the values of their measurements
[8,9,19–22]. A CV EPR state is a simultaneous eigenstate
of momentum sum and position difference, and the values
given by Alice and Bob will be accordingly correlated. If
Charlie determines that these values satisfy an entanglement
criterion, then he can confirm that Alice and Bob indeed share
an entangled state.

A. Duan-Simon criteria for CV entanglement

The most widely used CV EPR entanglement criterion is
based on the methods of Duan et al. and Simon [36,37,42].
Entanglement between the systems measured by Alice and
Bob is confirmed if

Ent = 4

(1 + g2)
�(XA − gXB)�(PA + gPB) < 1, (1)

where g is any real constant and we use the notation
(�X)2 ≡ 〈X2〉 − 〈X〉2. Here, XA/B and PA/B are the “posi-
tion” and “momentum” quadratures measured by Alice and
Bob respectively, and we have selected a suitable scaling so
that the Heisenberg quantum uncertainty principle is written
�X�P � 1/4. Clearly, the CV EPR state will satisfy the
condition (1), with g = 1. For more general states, the choice
of g is taken optimally so that the left side of the inequality (1) is
minimized. For the Gaussian systems that are most commonly
utilized for CV quantum information processing (QIP) [18],
and restricting attention to a subclass of Gaussian states
with symmetry between position and momentum correlation,
this criterion can be shown to be necessary and sufficient
for detecting bipartite entanglement [36,38,43]. Generally
speaking, however, an entanglement criterion cannot detect
entanglement for all systems, and is hence only sufficient
to detect (witness) entanglement. Therefore, throughout this
paper, we will use the terms “criterion” and “witness”
interchangeably, to mean the same thing.

Before continuing, it is important to understand the as-
sumptions needed in deriving the criterion (1) (and other very
similar criteria), since it is these assumptions that create the
security loopholes addressed by device-independent quantum
information processing. To derive the criterion (1), one begins
by supposing that the bipartite system of Alice and Bob is
nonentangled. By definition of entanglement, this means that
the bipartite density operator can be written in the separable
form [44]

ρAB =
∑
R

P (R)ρR
AρR

B (2)

where here
∑

R P (R) = 1 and ρR
A and ρR

B are quantum density
operators for Alice’s system A and Bob’s system B alone. The
uncertainty product for the separable mixture is constrained
by the uncertainty product for the product states that are the
components of the mixture. For product states ρR

AρR
B we can

write

�R(XA − gXB)�R(PA + gPB)

� �RXA�RPA + g2�RXB�RPB (3)

where we write the subscript R to remind us that the averages
are with respect to the component state R (see Refs. [36,37,42]
for full details). Using the fact that ρR

A and ρR
B are quantum

states, the Heisenberg uncertainty relation applies to each, and
it follows that

�R(XA − gXB)�R(PA + gPB) � 1
4 (1 + g2). (4)

Thus, if (1) is satisfied, the two systems A and B cannot be
represented by (2) and must therefore be entangled.

The crucial assumption for the practical application of the
criterion by Charlie is that both sets of values XA,PA and
XB,PB , are truly outcomes of measurements of the quantum
observables, and are hence correctly constrained for all
possible local component states ρR

A,ρR
B by the Heisenberg un-

certainty relations: �RXA�RPA � 1/4 and �RXB�RPB �
1/4. If Alice and Bob do not report the results of quantum
measurements, the criterion cannot be applied to faithfully
detect entanglement [4,30,31]. Both Alice and Bob must be
trusted.

We remark that the well-known simple “Duan” criterion
[36] detects entanglement between A and B if

[�(XA − XB)]2 + [�(PA + PB)]2 < 1. (5)

This criterion follows directly from the criterion (1), by taking
g = 1 and noting that for any real numbers x and y, x2 +
y2 � 2xy. Hence, if the simple criterion detects entanglement,
so will the more powerful criterion (1) [42], provided g is
optimally chosen. Thus, the results of this paper are applicable
if criterion (5) is used instead of (1).

B. EPR steering criterion as a one-sided DVI criterion
for entanglement

Entanglement can also be confirmed by the EPR paradox
[26,27]. Such a paradox (also called an EPR steering paradox
[31,32,34]) is realized if [29]

EPRA|B = 4�infXA|B�infPA|B < 1, (6)
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where (�infXA|B)2 is the average variance of the conditional
distribution for the measurement XA given a measurement at
B [26,29,35], and (�infPA)2 is defined similarly. The subscript
“inf” reminds us of the original formulation of the EPR
paradox, in which the emphasis is on an observer, here called
Bob, who can make a near-perfect inference of the outcome of
a measurement by Alice, even though he is spatially separated
from Alice’s measurement station. For Gaussian systems,
meaning Gaussian states and measurements, this criterion has
been shown necessary and sufficient to detect EPR steering
[32].

On selecting (�infXA)2 and (�infPA)2 to be the variances
conditional on measurements XB , and PA, respectively, we
see that the CV EPR state will satisfy this EPR condition. The
EPR paradox criterion can then more specifically be written
as [26,29]

EPRA|B = 4�(XA − gXB)�(PA + gPB) < 1, (7)

where g is a real constant optimized so that the left side of
inequality (7) is minimized.

We now briefly summarize the assumptions needed to
derive the EPR criteria, for comparison with those needed
to derive the Duan-Simon-type entanglement criteria. The
key point is that the EPR steering criteria are based on
fewer assumptions, and are useful for CV one-sided DVI [30]
quantum information processing.

The EPR criteria can be derived using the extension of
EPR’s argument, in which Bob is able to predict the result
for Alice’s XA or PA measurement to an uncertainty given by
�infXA and �infPA, respectively [26,29]. In their argument,
EPR make the assumption that certain premises [referred
to as EPR’s local realism (LR)] will hold. They use these
premises to deduce that there is a local realistic description
for Alice’s measurements, in which the results for XA and
PA are simultaneously predetermined to a precision �infXA

and �infPA, which of course when �infXA�infPA < 1/4
contradicts any local quantum state description. Then the EPR
paradox is established, because LR implies a local description
at A that is inconsistent with (the completeness of) quantum
mechanics.

The alternative approach in which the EPR paradox crite-
rion (6) [or (7)] is proven to be one for EPR steering involves
similar assumptions [34]. In fact, the proofs for EPR steering
follow along parallel lines to those for entanglement. For the
EPR steering proof, separability takes the more general form of
Bell’s local-hidden-variable model [12]. This may be likened
to the first step in the EPR argument, where the assumption of
EPR’s local realism is made [35]. On expansion, we see that
the criteria involve second-order moments such as 〈Xθ

AX
φ

B〉
where Xθ

A/B = XA/B cos θ + PA/B sin θ (θ = 0 or π/2). For
all LHV models, these can be expressed in the separable form

〈
Xθ

AX
φ

B

〉 =
∫

P (λ)
〈
Xθ

A

〉
λ

〈
X

φ

B

〉
λ
dλ, (8)

where λ are classical hidden-variable parameters and P (λ)
is the probability distribution for these parameters. The λ

correspond to the R in (2) and at the various steps in the
proof. 〈Xθ

A〉λ is the average value for the result Xθ
A, given

the hidden-variable state specified by λ. 〈Xφ

B〉λ is defined

similarly. Manipulation based on this LHV assumption reveals
that the result (3) will once more hold, but with λ replacing
R. However, after this step, unlike the proof for entanglement,
the two subsystems are treated asymmetrically. For Alice’s
measurements, consistency with local quantum states ρλ

A is
again assumed, so that the Heisenberg uncertainty relation
holds, i.e., �λXA�λPA � 1

4 . This may be likened to the step
in the EPR argument where the “elements of reality” for
Alice’s local states are compared for consistency with quantum
mechanics [35]. However, no such assumption is made about
Bob’s local system or measurements. It is assumed only that
the variances are positive, i.e., �λXB�λPB � 0. With these
assumptions, we find

�λ(XA − gXB)�λ(PA + gPB) � 1
4 . (9)

The LHV model with the additional constraint for local states
at A is called a local-hidden-state (LHS) model [31]. This
LHS model will imply �(XA − gXB)�(PA + gPB) � 1

4 . The
inequality (7) [as for (6)] therefore implies an EPR paradox
and EPR steering of A by B [31,34].

We see from both derivations that it is necessary to assume
Alice does indeed report the results of the appropriate quantum
measurements, if the EPR steering criterion [(6) or (7)] is
to be valid. However, unlike the Duan-Simon entanglement
criteria, it is not necessary to make this assumption about
Bob’s measurements. Thus, the criterion is independent of the
devices used at Bob’s measurement station. Regardless of the
orgin of Bob’s values, the criterion is still valid for detecting
the EPR steering paradox. Only Alice must be trusted.

In detecting the EPR steering paradox, the EPR criterion
will also detect entanglement [26,31]. This is because any
separable description (2) will also imply the LHV expansion
(8), with or without the assumption of the uncertainty relation
�λXA�λPA � 1

4 , and therefore cannot generate an EPR
steering paradox. Separable models are subsets of LHV and
LHS models. The EPR criterion is therefore a one-sided
device-independent criterion for entanglement.

It has been observed [40,43] that the EPR paradox criterion
(6) is less robust to noise and losses than the Duan-Simon
entanglement criterion (1). The EPR paradox criterion does
not detect all entangled states. This is because of the different
assumptions made about the nature of Bob’s measurements.
For Eq. (1), the measurements XB and PB at Bob’s location
must genuinely correspond to those of the quantum conjugate
observables. For the EPR criterion, this assumption about
Bob’s measurements is not made. The EPR criterion (6) makes
fewer assumptions than can be justified if one can indeed
trust Alice and Bob to make the right measurements, and is
as a consequence a less sensitive witness of entanglement.
The criterion is generally more difficult to satisfy, but has the
advantage of being (equivalent to) a one-sided DVIEW [2–4].

III. FAKING CV ENTANGLEMENT

It may be that Alice and Bob (or their devices) cannot be
trusted, and do not report to Charlie the values of measured
quantum quadrature phase amplitudes. Instead, they may
report values that have been created by a classical computer
simulation. Then, we will show that the entanglement criteria
of the last section can be satisfied even though there is no

062101-3



B. OPANCHUK, L. ARNAUD, AND M. D. REID PHYSICAL REVIEW A 89, 062101 (2014)

FIG. 1. (Color online) Faking the CV entanglement using classi-
cal protocols where the measurement stations of Alice and Bob cannot
be trusted. A sequence of two classical-number pairs representing
position and momentum are generated probabilistically (by Eve)
from the computer using the Wigner function (11). These are sent
to Alice and Bob, where they are stored locally. Alice and Bob fake
entanglement by reporting these numbers to Charlie, who then verifies
“entanglement” using either the Duan-Simon criterion (1) or the EPR
criterion (6) [Fig. 3, curves (a) and (b)]. Security is compromised
because the amplitude values can be shared by an infinite number of
parties in this case.

entanglement. We call this “faked entanglement.” The faking
of the entanglement is possible, because the assumptions made
in the derivation of the criteria are no longer valid. In this paper,
we illustrate the faking of entanglement in two scenarios: first,
where neither Alice nor Bob can be trusted (Fig. 1), in which
case neither criterion (1) nor (6) is valid; and second, where
only Alice can be trusted (Fig. 2), in which case only the EPR
criterion (6) is valid.

The implications can be understood by considering a moti-
vation for the faking protocol. In the scenario of Sec. II, Charlie
has transmitted to Alice and Bob the particles or light fields

FIG. 2. (Color online) Faking the CV entanglement in the case
where Alice can be trusted: The scenario is similar to Fig. 1 but now
Alice can be trusted to report to Charlie the results of measurements
of genuine quantum observables X̂A and P̂A. Bob, however, cannot
be trusted. Entanglement satisfying the Duan-Simon criterion (1)
can still be faked using the asymmetric hybrid protocol depicted,
involving the computer and a coherent-state light source |α〉 (where
α = xA + ipA) that is deviously input to Alice’s site [Fig. 3, curve
(c)]. The entanglement detected by the EPR criterion (6), however,
cannot be faked by one-sided scenarios where Alice is trusted [Fig. 3,
curve (d)]. If violated in the one-sided scenario, the EPR criterion
detects genuine entanglement, and [through the monogamy result
(20)] gives quantifiable security against all processes that would allow
distribution of the amplitude values. In the picture, Alice measures
the quadrature amplitudes X̂A and P̂A of the field at her location
using a standard homodyne measurement scheme, where the field
is combined across a beam splitter with an intense local oscillator
field (denoted ELO). The variable phase shift θ allows her to choose
whether X̂A or P̂A is measured.

that form the two subsystems of an entangled EPR state. He
wants Alice and Bob to report the results of their measurements
of either X or P at each site, for a sequence ti of such trans-
missions, so that he can confirm entanglement by taking the
appropriate averages required by the entanglement criterion (1)
or (6). Once he confirms entanglement, the amplitude values
that are shared by Alice and Bob become useful for QIP tasks,
for example, for CV quantum key distribution [8,21]. The
sequence ti that is used to test for entanglement does not have
to be exhaustive, so a sequence of unrevealed correlated ampli-
tudes can remain secret to the stations of Alice and Bob. Now
suppose a devious Eve seeks to trick Charlie, Alice, and Bob.
We will show how she can create from a computer a sequence
of numbers xA,pA,xB,pB that mimic the results for measure-
ments XA,PA,XB,PB , respectively, in that they will satisfy the
inequalities of the entanglement criteria (1) and (6). We call
these “Eve’s numbers.” Each pair xA,pA of the sequence can
be stored, in order, at Alice’s station, and each associated pair
xB,pB can be stored, in order, at Bob’s station. Alice and Bob
may be accomplices of Eve, or else it may be they are loyal to
Charlie, but that their devices (e.g., a final readout computer)
are tampered with by an infiltrator. Either way, if Charlie trusts
the results that Alice and Bob report and believes they hold a
sequence of values for amplitudes based on an entangled state,
there could be serious consequences. The amplitudes of the
whole sequence are not secure, but can be shared by an infinite
number of parties, since the sequence is formerly known to
Eve and can be distributed by her. The validity of QKD based
on the assumption of an entangled state is destroyed.

We now illustrate by example the method of faking
entanglement. The standard realization of the CV EPR state is
the two-mode squeezed state [45]:

|ψ〉 = sech(r)
∞∑

n=0

tanhn(r)|n〉A|n〉B (10)

where |n〉A/B are the number states of modes at the locations
A and B of Alice and Bob, respectively, and r � 0 is the
squeeze parameter that determines the amount of entanglement
between the modes of Alice and Bob. The Wigner function for
this state is

W (x) = 4

π2
exp{−[(xA − xB)2 + (pA + pB)2]/σ 2

−

− [(xA + xB)2 + (pA − pB)2]/σ 2
+}, (11)

where σ 2
+ = exp(2r) and σ 2

− = exp(−2r) and we introduce
the notation x = (xA,pA,xB,pB) [46]. The moments of the
quadrature phase amplitudes are given directly by the am-
plitude moments of the distribution. The positivity of the
Wigner function allows for a perfectly accurate probabilistic
simulation of the entangled quadrature correlations, based on
the measurements of Xθ

A/B . This fact, pointed out by Bell [47],
is well known [25]. The implication is that if Charlie restricts
himself to a criterion based on quadrature measurements, and
if Alice and Bob or their devices cannot be trusted, he can
be fooled into thinking there is entanglement shared between
them when there is not.

Hence, a classical process that mimics the entangled
correlations given by (1) and (6) is as follows. At transmission
time ti , a central source Eve generates with probability W (x)
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the values xA, pA, xB , and pB , and sends them to Alice and
Bob (Fig. 1). The process is repeated N times, a different set
of numbers being probabilistically generated on each trial ti .
When Charlie calls for the value of transmission ti , Alice
gives to him the value xA or pA, depending on whether
Charlie asked her (and Bob) to measure position or momentum.
Similarly, Bob reports his value, xB or pB . Charlie evaluates
the averages as required for the criteria (1) and (6). The
averages are precisely consistent with the predictions of the
two-mode squeezed state, and both criteria are satisfied for all
r . Specifically, we find [on selecting the optimal value for g in
(1), namely g = 1]

Ent = exp(−2r) (12)

and [on optimizing the choice of measurements at B and
selecting the optimal value for g in (7), namely, g = tanh 2r

[29]]

EPRA|B = sech(2r). (13)

We have carried out the procedure of Fig. 1, and illustrate
the faking of the quantum entanglement by classical means in
Figs. 3–5. A possible set of Eve’s numbers is presented in
Fig. 5. Despite the fact that the data satisfy the entanglement
criteria (1),(5) and (6),(7), there is no possibility of security,

FIG. 3. (Color online) Distinguishing faked from genuine entan-
glement using a one-sided device-independent entanglement crite-
rion: Curves (a) and (b) plot the results for Ent and EPRA|B as realized
by the enactment of the classical protocol of Fig. 1, where neither
Alice nor Bob can be trusted. Here, r is the squeeze parameter used in
the Wigner function and there are N = 1000 trials. The bandwidths
correspond to the sampling errors, centered on the sampled means.
Both the entanglement certified by the Duan-Simon criterion and
that certified by the EPR steering criterion are faked. Charlie can be
fooled into thinking there is entanglement, if he mistakenly trusts
Alice and Bob. Curves (c) and (d) plot the results for the enactment
of the classical hybrid protocol of Fig. 2, where Alice can be trusted.
The Duan-Simon entanglement criterion (1) can be faked [curve
(c)], but not the EPR steering inequality (6) [curve (d)], which is
a one-sided device-independent entanglement criterion. If Charlie
trusts Alice, he can use the EPR criterion to distinguish faked from
genuine entanglement.

FIG. 4. (Color online) Distinguishing faked from genuine entan-
glement using a one-sided device-independent entanglement crite-
rion: Curves as for Fig. 3, but where N = 100.

because the amplitude values can be distributed from the
source (Eve) to an infinite number of other parties.

The undermining of the security occurs because neither
of the entanglement criteria (1) or (6) used by Charlie are
(equivalent to) DVIEWs. The particular moments evaluated

FIG. 5. (Color online) Actual values reported by Alice and Bob:
(a) and (b) give a possible set of x = (xA,pA,xB,pB ) for N = 100
trials where r = 0.7. Here, (a) gives the set of values for Alice, and
(b) those for Bob. These are Eve’s numbers, used for the purpose of
faking entanglement (Fig. 1). (c) shows values for Alice, where the
results are generated by the hybrid protocol of Fig. 2, in which case
the values xA and pA correspond to the results of genuine quantum
measurements X̂A and P̂A. In this case, noise is added to the data.
Triangles correspond to the first subset of ten samples used to calculate
one of the samples for EPRA|B or Ent.
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by Charlie can be constructed using a local-hidden-variable
(LHV) theory [2,3] based on the use of the positive Wigner
function (11) [25,47]. This is true for all Gaussian states,
defined as describable by a positive Gaussian Wigner function
[18]. We give the explicit LHV construction for the moments
as follows. As explained in the last section, the second-order
moments needed for the criteria (1) and (6) are 〈Xθ

AX
φ

B〉 where
Xθ

A/B = XA/B cos θ + PA/B sin θ (θ = 0 or π/2). An LHV
theory can generate these moments, if we can write

〈
Xθ

AX
φ

B

〉 =
∫

P (λ)
〈
Xθ

A

〉
λ

〈
X

φ

B

〉
λ
dλ, (14)

where λ are classical hidden-variable parameters and P (λ)
is the probability distribution for these parameters. P (λ)
is independent of the choice of measurement (θ and φ),
which is made after the generation and separation of the
subsystems. 〈Xθ

A〉λ is the average value for the result Xθ
A,

given the hidden-variable state specified by λ, and 〈Xφ

B〉λ
is defined similarly. For the classical simulation depicted
in Figs. 1, 3, and 4, the Wigner variables x assume the
role of Bell’s hidden variables λ, W (x) becomes P (λ), and
there is a deterministic situation whereby 〈Xθ

A〉λ = xθ
A ≡

xA cos θ + pA sin θ and 〈Xφ

B〉λ = x
φ

B ≡ xB cos φ + pB sin φ,
so that 〈Xθ

AX
φ

B〉 = 〈xθ
Ax

φ

B〉 [25,47].
A DVIEW would, like a Bell inequality, provide a criterion

that if satisfied negates all LHV models. Thus, use of a device-
independent entanglement criterion would allow Charlie to
detect entanglement, by eliminating all of the LHV models,
and therefore represents a more secure test of entanglement
[4]. However, for the CV entanglement generated by the two-
mode squeezed state, a DVIEW cannot be constructed directly
from the amplitude X and P measurements only, since the
LHV model (14) describes the statistics perfectly in this case
[25,47]. We point out that, in view of the work of Banaszek
and Wodkiewicz [48], this does not exclude DVI entanglement
witnesses being constructed from other sorts of measurements.
Also, the violation of a Bell inequality has been shown possible
using quadrature phase amplitudes measurements, for more
complex EPR-type sources [49].

IV. TWO TRUSTED MEASUREMENT STATIONS

It should be emphasised that Charlie can safely conclude
genuine entanglement based on the criterion (1) or (6), if he
can trust that the “measurement values” reported by Alice and
Bob are genuinely the results of the quantum observables X̂A/B

and P̂A/B . Let us reexamine the derivation of the criteria, as
outlined in Sec. II, to clarify this point.

Entanglement is defined as the failure of quantum sep-
arability. For any quantum-separable state [44], ρAB =∑

R P (R)ρR
AρR

B , which implies that the moments can be
expressed as (on identifying R as a hidden variable λ)

〈
Xθ

AX
φ

B

〉 ≡ 〈
X̂θ

AX̂
φ

B

〉 =
∫

P (λ)
〈
xθ

A

〉
λ

〈
x

φ

B

〉
λ
dλ, (15)

where 〈xθ
A〉λ and 〈xφ

B〉λ are additionally constrained to be the
moments of quantum states ρλ

A and ρλ
B . Each predetermined

local state (as specified by λ) is required to satisfy the quantum
uncertainty relations. It is this fact which prevents a perfect

correlation between Alice and Bob’s “real” positions and
momenta—unless there is entanglement. The criteria (1) and
(6) falsify the quantum-separable model (15), but not the
local-hidden-variable model (14) [31,32,34].

In the classical simulation based on (14), the prede-
termined local states are given by the classical numbers
{xA,pA},{xB,pB}, all of which are predetermined with perfect
accuracy: That is, they are not constrained by the uncertainty
relation. If Alice’s and Bob’s detectors have been tampered
with or are unreliable, the values reported could arise from
such a classical simulation in which case there can be an
unlimited number of replica sets {xB,pB} distributed.

V. ONE TRUSTED MEASUREMENT STATION

We now turn to the case where one measurement station,
that of Alice, can be trusted. In this scenario, we will show that
the use of the one-sided DVIEW criterion (6) enables reliable
witnessing of entanglement: That is, faked entanglement is
detected as “not entangled”, and the criterion is satisfied only
when there is genuine entanglement. We expect the one-sided
entanglement witness to be useful to the field of QIP, since
protocols are often asymmetric with one station being more
secure than the other [30,31].

With Bob’s station not being trusted, it is generally more
difficult to verify entanglement, since one cannot assume the
values he reports are necessarily those of genuine quantum
measurements. The conditions on the quantum separable
model (15) are relaxed: For this scenario, we consider moments
given by a separable model

〈
Xθ

AX
φ

B

〉 ≡ 〈
X̂θ

AXB

〉 =
∫

P (λ)
〈
xθ

A

〉
λ

〈
p

φ

B

〉
λ
dλ, (16)

where only 〈xθ
A〉λ is constrained to be consistent with a quan-

tum density operator ρλ
A [31]. Unlike for the model (15), there

is no similar constraint on B. This hybrid separable model,
which is a superset of all quantum separable models (15),
is called a local-hidden-state (LHS) model. The falsification
of this model indicates the nonlocality of quantum (or EPR)
steering [31,32,34], and also entanglement.

It has been proved in Ref. [34] that the EPR inequality
EPRA|B � 1 holds for all LHS models (16). We have outlined
this proof in Sec. II. Hence, the EPR criterion (6) (which
shows an EPR steering of Alice’s system) negates all of the
LHS models (16). In this way, entanglement is demonstrated,
without the assumption of quantum measurements for the
values reported at Bob’s location. On the other hand, the LHS
model (16) does not imply the entanglement criterion (1). In
short, statistics generated by a LHS model (16) can satisfy the
entanglement criterion (1), but cannot satisfy the EPR paradox
criterion (6).

We give a demonstration (Fig. 2) of how Charlie can be
misled into thinking there is entanglement, if he uses the wrong
criterion for this scenario where only Alice can be trusted. Bob
in collusion with Eve may set up the following protocol. Alice
would be expecting (at each trial or time ti of the sequence)
an input to her station, corresponding to the subsystem of the
entangled state sent by Charlie. This subsystem may take the
form of an optical beam or pulse, the mode corresponding
to A in the two-mode squeezed state (10). Her station is
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secure, so Eve and Bob cannot tamper with it. Instead, they
decide to tamper with the input. Input to Alice’s station at
each trial are the values xA,pA that stem from the central
classical computer source, as before. However, these cannot
be the final inputs, as Alice passes on to Charlie only the results
of genuine quantum measurements X̂A,P̂A, made locally on a
real experimental system. Bob then comes up with a hybrid
protocol: Alice’s experimental system is deviously coupled to
the input classical values xA, pA, so that the measurements
she reports are those of X̂A,P̂A on the quantum coherent state
|α〉 where α = xA + ipA. Thus, the optical beam or pulse that
arrives at Alice’s station is not the subsystem A of the entangled
state (10), but the optical coherent state |α〉. The statistics from
this hybrid classical scenario are describable by a LHS model
(16). Although the extra local quantum uncertainty provided
by the coherent state means that Bob and Eve cannot predict
exactly the values that Alice will report, the correlation with
the values xB,pB (which they do know) is good enough that
the inequality of the Duan-Simon criterion (1) is satisfied
(although not maximally). This makes it possible to fake
entanglement certified by the Duan-Simon criterion.

The results of carrying out Bob and Eve’s protocol are given
in Fig. 3. In our simulation, Alice does not actually measure
the amplitudes of the optical coherent state. Instead, we model
the outcomes of her measurement using standard quantum
theory, by adding an appropriate noise source to the input
classical numbers xA, pA. We note that the simulation results
are in agreement with the predictions of a two-mode squeezed
state (10) which is then coupled at Alice’s location to a local
quantum coherent-state noise source. The final mode which
Alice measures is XA′ = XA + Xcoh where 〈Xcoh,Xcoh〉 =
1/4. Calculation of the Duan-Simon–type criterion (1) gives

Ent = 4

(1 + g2)
{n − 2gc + g2m}, (17)

where n = 〈XA′ ,XA′ 〉 = 1
4 {1 + cosh(2r)}, m = 〈XB,XB〉 =

cosh(2r)/4, and c = 〈XAXB〉 = sinh(2r)/4, and 〈X,Y 〉 =
〈XY 〉 − 〈X〉〈Y 〉. The entanglement measured by (1) is opti-
mized for the choice g = [n − m +

√
(n − m)2 + 4c2]/(2c).

For Gaussian distributions, the minimum possible [�inf(XA)]2

is given by the minimum value of 〈[�(XA′ − gEPRXB)]2〉 =
n + g2

EPRm − 2gEPRc where gEPR is a real constant [26,29].
Selecting gEPR = c/m, we find

EPRA|B = 1 + sech(2r) (18)

which, consistent with our knowledge of the LHS model (16),
cannot satisfy the EPR steering criterion (6). Yet we see (Fig. 3)
that the entanglement criterion (1) is satisfied for all values
of r .

We remark that all of the EPR steering inequalities
[34,50,51] that falsify the model (16) will suffice as a one-sided
DVIEW [30]. One such criterion is [26,52]

Ent < 0.5 (19)

as evident in Fig. 3. However, for Gaussian states and
measurements, the EPR criterion (6) has been shown necessary
and sufficient to detect EPR steering, whereas the criterion
(19) is not [31,32]. The EPR criterion is therefore a better
witness, as can be important when asymmetry exists between

the stations of Alice and Bob [53–56]. The entropic EPR
steering criteria of Ref. [51] are likely to be useful in more
complex scenarios.

In summary, if Charlie establishes that the statistics reported
to him give an EPR paradox (EPRA|B < 1) and he trusts Alice’s
values, then he can be sure that there is genuine entanglement
between the two observers. If his data fall in the region of
entanglement but with no EPR paradox, he cannot be sure of
this. The statistics could be consistent with a classical protocol,
and the values xA,pA known to an infinite number of parties
(Fig. 2).

VI. SECURITY AND THE MONOGAMY OF THE
EPR PARADOX

In confirming an EPR paradox between Alice and Bob,
Charlie can deduce the security of the amplitude values,
based on a knowledge of quantum mechanics. As with Bell’s
nonlocality [10,57,58], the EPR paradox satisfies a very strict
form of monogamy [39]. It is always true that (unless quantum
mechanics fails or we cannot trust Alice’s devices)

EPRA|BEPRA|E � 1, (20)

where E is any other system measured by an eavesdropper
Eve [35,38,39]. The monogamy relation (20) is derived
based on the assumption of the uncertainty principle for
X̂A,P̂A, and is one-sided DVI, that is, is valid no matter
what devices or measurements are used by Bob, or Eve.
Similarly to the relations introduced in Refs. [30,59], the
mere measurement of EPRA|B allows Charlie to deduce the
level of security of the correlation between Alice’s and Bob’s
amplitudes. If EPRA|B < 1 then EPRA|E > 1, and the condi-
tional variances that give the noise levels on Eve’s inferences
of Alice’s amplitudes is increased by an amount known to
Charlie.

VII. DISCUSSION AND CONCLUSION

Here, we have demonstrated the principle of one-sided
device-independent quantum security as applied to continuous
variables. We believe this principle could expedite the practical
application of device-independent cryptography and may lead
to more secure protocols in CV quantum information.

We have shown that one-sided device-independent security
is possible, using the widely available two-mode squeezed-
state CV EPR source and quadrature phase amplitude mea-
surements. The detection of entanglement via the EPR steering
criterion is well documented in the literature and has been
achieved without detection loopholes (though not as yet
without locality loopholes). This quadrature amplitude EPR
steering has been realized in a number of different optical
scenarios [25,40,43,60,61], most of which are explained in
the review of Ref. [26]. Also, more recently, very high
degrees of EPR steering correlation have been reported [41].
It is significant for application to quantum communication
protocols that the CV EPR steering criterion has been verified
for pulses propagating through optical fibers [62], and has
now been confirmed for spatially entangled optical modes and
networks [63–65].
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The biggest drawback to any practical implementation is
the relative lack of robustness of the EPR paradox criterion
to losses. It has been shown theoretically using monogamy
relations that the criterion cannot be satisfied when there is
50% or more loss of the intensity received by the steering
(untrusted) party [39]. For losses up to 50% on this chan-
nel, however, the criterion has been experimentally verified
[40,43]. On the other hand, the criterion is quite robust
with respect to the losses on the trusted party [40,53,54].
As detection can be done very efficiently using homodyne
techniques, the greatest problem is likely to be the losses
that enter on transmission. This may make the choice of
location of the trusted and untrusted measurement stations
important, as has been discussed in relation to applications of

photonic steering [30,66]. All this gives promise to the prospect
of utilizing CV one-sided device-independent witnesses for
quantum information tasks.

It is stressed that two-sided device-independent entan-
glement witnesses could also be applied to CV scenarios.
However, these may require more complicated measurements
and protocols.
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