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We investigate the superfluid phases of a Rashba spin-orbit-coupled Bose-Einstein condensate residing on a
two-dimensional square optical lattice in the presence of an effective Zeeman field �. At a critical value � = �c,
the single-particle spectrum Ek changes from having a set of four degenerate minima to a single minimum
at k = 0, corresponding to condensation at finite or zero momentum, respectively. We describe this quantum
phase transition and the symmetry breaking of the condensate phases. We use the Bogoliubov theory to treat
the superfluid phases and determine the phase diagram, the excitation spectrum, and the sound velocity of the
phonon excitations. A dynamically unstable superfluid regime occurring when � is close to �c is analytically
identified and the behavior of the condensate quantum depletion is discussed. Moreover, we show that there are
two types of roton excitations occurring in the � < �c regime and obtain explicit values for the corresponding
energy gaps.
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Introduction. The recent realization of ultracold spin-orbit-
coupled (SOC) quantum gases [1] has attracted high interest
and has resulted in considerable research efforts both on the
theoretical and on the experimental side [2–6], in part due to
the possibility to tune the spin-orbit interactions [7] in contrast
to solid-state materials. Ultracold quantum gases with spin-
orbit coupling manifest novel types of superfluid and magnetic
ground states and have also been predicted to host topological
excitations like Majorana fermions [8].

The SOC Bose-Einstein condensate (BEC) has intrinsic
features that make it different from the standard BEC: the
interaction among atoms make a SOC BEC stable since it
cannot exist in the free regime [9], the SOC also breaks the
Galilean invariance so that the superfluid properties change in
different reference frames [10]; for a review see Ref. [11].
Several works have considered different types of SOC in
the continuous limit: pure Rashba, mixed and symmetric
Rashba-Dresselhaus, in two and three dimensions [12–14].
The exotic properties of the Mott insulating phase arising
from the superfluid–Mott-insulator (SF-MI) transition [15,16]
were also considered in the case of an optically induced
lattice. However, an analytical quantitative description of the
SF phase for a SOC BEC in an optically induced lattice is still
missing.

In this work, we consider a Bose-Einstein condensate
with Rashba SOC residing on a two-dimensional (2D) square
optical lattice and prove that the SOC qualitatively affects
the features of the superfluid phase. The system’s parameters
are the Zeeman coupling �, the strength of the spin-orbit
coupling λ, the hopping t , and the intra- and interspecies
interactions U and U ′. We discuss the origin and magnitude
of these terms in more detail later on. We will in this paper
show three main results: (I) With λ � t the existence of the
SF is related to the ratio �/U and not to t/U as in the usual
Bose-Hubbard models. (II) � can trigger a breakdown of SF
in a window near the critical value �c ≡ 2λ2/t . In this regime
the excitation spectrum assumes complex values, indicating a
dynamical instability toward a phase separation [17]. (III) In
the regime � < �c, the excitation spectrum has, besides the

usual gapless phonon minimum localized at the condensation
momentum, three gapped roton minima with different gap
energies �⊥ and �‖. We provide analytical evidence of all
these results.

Bose-Hubbard formulation. It is possible to induce on a
dilute atomic boson gas system, through laser-atom interac-
tions, a spin-momentum interaction such that the effective
system has two coupled levels. In this sense one may speak
of pseudospin- 1

2 bosons. The confinement on a 2D plane and
the periodic potential on it can be experimentally realized
through the action of counterpropagating lasers. Our starting
point is a two-species Bose-Hubbard–type Hamiltonian [16]
H = H0 + Hint:

H0 =
∑

〈i,j〉,αβ

[−tαb
†
iαbjαδαβ + iλb

†
iαẑ · (σ × dij )αβbjβ]

+
∑
iαβ

[δb†iα(σy)αβbiβ−�b
†
iα(σz)αβbiβ−μb

†
iαbiαδαβ],

Hint =
∑
iα

U

2
b
†
iαb

†
iαbiαbiα +

∑
i

U ′b†iAb
†
iBbiAbiB. (1)

Above, i is the lattice-site index, α and β run over the two
species A and B that correspond to the pseudospin ± 1

2 , μ

is the chemical potential, tα is the hopping coefficient, λ is
the strength of the spin-orbit coupling, ẑ is the unit vector
in the z direction, dij is the nearest neighbor (NN) vector
between lattice sites i and j , σ is the Pauli matrix vector,
δ is the detuning parameter, and � is the Zeeman coupling.
The square optical lattice is assumed to lie in the xy plane.
The interaction part Hint contains the intra- and interspecies
interactions U and U ′; we allow these coefficients to be
different. We set � = 1 in what follows. We diagonalize the
noninteracting Hamiltonian H0 using the quasimomentum
basis {bkα,b

†
kα}: biα = 1√

NS

∑
k bkαeik·r i , where Ns is the

total number of sites. We focus on equal hopping coef-
ficients t ≡ tA = tB and δ = 0 for the sake of obtaining
more tractable analytical expressions that allow for deeper
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physical insights. The energy bands are Ek,± = −2t(cos kx +
cos ky) − μ ± [�2 + 4λ2(sin2 kx + sin2 ky)]1/2. The spectrum
Ek,± is invariant under parity (kx → −kx, ky → −ky) and
under permutation of kx and ky , (kx → ky, ky → kx), so the
total symmetry group of Ek,± is Z2 ⊗ Z2 ⊗ S2. The value of
� strongly affects the shape of Ek,−. With � > �c ≡ 2λ2/t it
has one minimum at (0,0). With � < �c it has four degenerate
minima at (±k0, ± k0):

k0 = arcsin
√

[1 − (�/�c)2]/[1 + 2(t/λ)2]. (2)

At the critical value � = �c, it has one minimum at (0,0)
behaving as a fourth order power in momentum. We note
that without a lattice structure the minima degeneracy of
Ek,− is continuous in the (kx,ky) plane, whereas it is discrete
in our case so that the SF phase is expected to be more
robust towards quantum fluctuations. We define the operator
basis {dk,−,dk,+} that respectively annihilates a boson in
the lower band Ek,− and in the upper band Ek,+. These
are related to {bkA,bkB} via the unitary matrix P . We are
interested in a low-energy description of the system at T = 0
and thus we consider populating only the lowest energy
band Ek,−. This condition is qualitatively satisfied by taking
� > max{U,U ′}. In fact, 2� < (Ek,+ − Ek,−) < 2� + 8λ,
and max{U,U ′} is an estimate of the disposable energy to
scatter from the lower band to the upper band. We define
Ek ≡ Ek,−. With this assumption dk,+ → 0 and the operators
bkA and bkB are directly proportional to dk ≡ dk,−: bkA = αkdk
and bkB = βkdk, where we set αk ≡ P1,1 and βk ≡ P2,1. The
coefficients αk ∈ R and βk ∈ C are the probability amplitudes
for a particle in the band Ek to be of the A or B type. From
the unitarity of P it follows that α(k)2 + |β(k)|2 = 1;

αk =
√

(1/2){1 + [1 + (2λ/�)2(sin2 kx + sin2 ky)]−1/2},

βk = [(sin ky − i sin kx)/
√

sin2 kx + sin2 ky] sin θk. (3)

We define cos θk ≡ αk for later purposes. The interaction
Hamiltonian as a function of the operators {dk,d

†
k} reads

Hint =
∑

k+k′=p+p′

U

2NS

(αkαk′αpαp′ + β∗
kβ∗

k′βpβp′ )d†
kd

†
k′dpdp′

+
∑

k+k′=p+p′

U ′

NS

αkβ
∗
k′αpβp′d

†
kd

†
k′dpdp′ . (4)

We note that the scattering coefficients in Eq. (4) are invariant
under parity. We discard the upper energy band Ek,+, which
corresponds to mapping the original {A,B} components into an
effective one-component system with momentum-dependent
interaction coefficients [Eq. (4)].

In the regime � < �c, the noninteracting energy spectrum
Ek has four degenerate minima, which raises the issue of
whether the condensation takes place at one or more momenta.
As we discuss after the evaluation of the ground-state energy
(6), the condensation momentum is unique when U > U ′: this
is the so-called plane-wave phase. Our analysis and results are
restricted to this case.

The shape of Ek changes by varying � across �c; this
determines a quantum phase transition. With � > �c the
condensation momentum is K0 = 0, the corresponding state

preserves the parity symmetry in momentum space; with
� < �c the condensation momentum is K0 �= 0; this is a
symmetry broken phase because the corresponding condensate
state breaks the parity symmetry in momentum space. A
natural choice for the order parameter of this QPT is |βK0 |2
that passes from a nonzero value with � < �c to zero with
� > �c, varying continuously.

To treat the condensate phase we apply the Bogoliubov
theory which is very well suited to capture the SF properties
but not to investigate the SF-MI transition [16], the latter being
outside the scope of the present work. Let K0 denote the con-
densation momentum which is zero or finite according to the
value of �. We then have d

†
K0

dK0 = NK0 � 1 and subsequently

apply the Bogoliubov approximation d
†
K0

∼ dK0 ∼ √
NK0 . We

perform a mean-field approximation of Eq. (4) by taking into
account the particle-number fluctuations out of the condensate
to the first order [18]. The final Hamiltonian is

H = E0 +
′∑
k

(
akd

†
kdk + bkdkd2K0−k + b∗

kd
†
kd

†
2K0−k

)
, (5)

where the symbol ′ indicates that K0 is excluded from the sum.
With n = (NA + NB)/NS we have

E0/NS = nEK0 + n2
[
(U/2)

(
α4

K0
+ ∣∣βK0

∣∣4) + U ′α2
K0

∣∣βK0

∣∣2]
,

ak = Ek − EK0 + nU
[
2α2

kα
2
K0

+ 2|βk|2
∣∣βK0

∣∣2 − α4
K0

−∣∣βK0

∣∣4] + nU ′[α2
k

∣∣βK0

∣∣2 + α2
K0

(∣∣βk
∣∣2 − 2

∣∣βK0

∣∣2)
+ 2αkαK0 Re

(
βkβ

∗
K0

)]
,

bk = (n/2)U
(
α2

K0
αkα2K0−k + β∗2

K0
βkβ2K0−k

)
+ nU ′αK0β

∗
K0

(
αkβ2K0−k + α2K0−kβk

)
, (6)

where E0 is the ground-state energy. Considering � < �c

we can compare E0 with the ground-state energy obtained
by supposing that the condensate state is equally populated
by atoms with momenta K0 and −K0 (striped phase), this is
obtained taking into account in the interaction Hamiltonian (4)
values of the momenta {k,k′,p,p′} equal to {±K0 , ± K0 , ±
K0 , ± K0 }, {±K0, ∓ K0, ± K0, ∓ K0}, or {±K0, ∓ K0, ∓
K0, ± K0}. With U > U ′ the favored phase is the plane-wave
phase whereas with U ′ > U the boundary between the two
phases is

�/�c =
√

2t/
√

[(x + 1)/(x − 1)](λ2 + 2t2) − λ2, (7)

with x = U ′/U (see Fig. 1). We checked that possible
condensate phases that populate all the four minima of Ek
always have a higher ground-state energy.

We diagonalize the mean-field Hamiltonian (5) making sure
to preserve the boson commutation relations [19], obtaining
the excitation spectrum and the final Hamiltonian:

Ek = 1

2

(
ak − a2K0−k +

√(
ak + a2K0−k

)2 − 16|bk|2
)
, (8)

H = E0 + 1

2

′∑
k

(Ek − ak) +
′∑
k

EkC
†
kCk, (9)
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FIG. 1. (Color online) (Left) The red (gray) stripe denotes the
instability region. With � < �c and U ′ < U the stable phase is the
plane-wave phase (PWP) with finite condensation momentum. With
U ′ > U the PWP and the striped phase are competing. With � > �c

the favored phase is the PWP with condensation momentum equal to
zero. Increasing U ′/U the phase boundary between the striped phase
and the PWP tends to 1. (Right) Projection of the excitation spectrum
Ek on ky = k0 showing the phonon excitation and roton gap. t̃ = 0.08,
�̃ = 0.55, n = 1, Ũ = 0.12, Ũ ′ = 0.11.

where Ck, C
†
k are the bosonic annihilation and creation

operators of the excitations Ek. In the noninteracting limit
U = U ′ = 0, we have bk = 0 and ak = Ek − EK0 , so Ek
reduces to Ek − EK0 . We see that EK0 = 0 so that the excitation
spectrum is gapless at the condensation momentum, moreover
the square root term of Eq. (8), which is responsible for
the phonon excitations, has reflection symmetry across K0.
Equation (8) is the general form of the excitation energies.
Before analyzing the features of the excitation spectrum (8) in
the regimes � < �c and � > �c, we determine the effective
mass of the particles of our model and also the values of λ, �,
t , U , and U ′ that place our system in the SF phase.

Effective masses, superfluidity criterium. The effective
masses are the eigenvalues of ∂2E|K0 ; with � < �c, this
matrix is nondiagonal so that the effective masses correspond
to motion along a rotated set of orthogonal axis x ′ and y ′.
These are

m∗
± = 2((t3/λ2) sin k0 tan k0{[1 + (λ/t)2] ± 1})−1. (10)

To give a physical interpretation of Eq. (10), we normalize
each quantity choosing λ as the unit of energy and consider
the cases t̃ ≡ t/λ � 1, t̃ � 1. Summarizing:

for t̃ � 1 : m∗
− = t̃/R, m∗

+ = 1/(t̃R),
(11)

for t̃ � 1 : m∗
− = �̃/R, m∗

+ = �̃/R,

with �̃ = �/λ and R = [1 − (�/�c)2]. The criterium that we
use in order to determine the parameter values ensuring that our
system is in a SF phase, and not in a MI phase, comes from the
one-component Bose-Hubbard model. There, m∗ ∼ 1/t and
the superfluidity is ensured with m∗U < 1 [20]. Considering
the same condition m∗

±U < 1 we see that with t̃ � 1 the
parameter guiding the SF is � and not t . Moreover, we see
that, with � → �−

c , the SF is always strongly disfavored.
With � > �c, Ek has only one minimum in (0,0) and the
effective mass is isotropic m∗ = [2t(1 − �c/�)]−1. With
λ → 0 (�c → 0), this reduces to the usual result for the
standard Bose-Hubbard model m∗ = 1

2t
; also in this case with

� → �+
c SF is disfavored.

The general formula for the sound velocity from Eq. (8) is

cx,± = ∂kx
ak

∣∣
K0

±
√

aK0

[
∂2
kx

(ak − 2|bk|)
∣∣
K0

]
. (12)

It can be shown that, if ∂2
kx

(ak − 2|bk|)|K0 < 0, Ek becomes
complex around K0, so looking at the sound velocity is a
natural tool to find possible instabilities of Ek.

� > �c, excitation spectrum, sound velocity, instability. In
this case Ek features only a minimum at k = 0, so that K0 = 0
and β0 = 0. Then,

Ek =
√[

Ek−EK0+nU
(
2α2

k−1
)+nU ′(1 − α2

k

)]2 − n2U 2α4
k.

A phonon excitation appears in the limit k → 0 with sound
velocity c ≡ cx = cy :

c =
√

2nU [t − 2(λ2/�) − n(λ/�)2(U − U ′)]. (13)

When λ → 0, c → √
2nUt , which is the one-component

Bose-Hubbard result for c. Approaching the critical value
� → �+

c , both Ek and c become imaginary under the condition
n(U − U ′)/2� > (�/�c − 1). This is one of our main results.
The imaginary eigenvalues are indicative of a dynamical
instability for the superfluid phase on an optical lattice when
including SOC. A physical interpretation of this instability is
related to the real underlying two-component {A,B} system
that seems to enter a phase-separation regime [17]. This can
be understood by considering the left panel of Fig. 2 where we
plot the relative population of the atomic species A (pseudospin
up) and B (pseudospin down) in the condensate. Due to the
Zeeman coupling, Eq. (1), the atoms of the species A are
energetically favored respect to the species B in the condensed
phase. The two atomic species coexist in the condensate until
� reaches the value �c at which point the species B is expelled
from the BEC.

� < �c, sound velocities, instability, roton excitation. In
this case Ek has four degenerate minima localized at (±k0, ±
k0); without loss of generality we assume that the condensation
momentum is equal to K0 = (k0,k0). The excitation spectrum
has a cusp at K0, proving the existence of phonons. The slope
differs slightly on the positive and negative direction of the kx

axis, respectively ky axis; this is associated with the anisotropy
of the effective masses. The sound velocity cx,± = cy,± is given

FIG. 2. (Color online) (Left) The relative population of A and
B atoms in the condensate phase: nA0 ≡ |αK0 |2, nB0 ≡ |βK0 |2. The
dashed vertical line corresponds to the value of �c, with � > �c,
nA0 = 1, nB0 = 0. (Right) Quantum depletion (percentage of the total
particle number): the depletion grows approaching the instability
region, red (gray), but it is nevertheless small. The parameters of the
plot are t̃ = 1, �̃c = 2, n = 1, Ũ = 0.1, Ũ ′ = 0.05, Ns = 104.

061605-3



RAPID COMMUNICATIONS

DANIELE TONIOLO AND JACOB LINDER PHYSICAL REVIEW A 89, 061605(R) (2014)

in the footnote [21], its structure is in agreement with Ref. [14]
that considered the continuum case (no optical lattice). From
the explicit analytical form of the sound velocity it is possible
to determine the values of � such that cx,± becomes complex
which is a sufficient condition for the excitation spectrum to
become dynamically unstable. We consider two regimes t̃ > 1
and t̃ < 1:

t̃ > 1 : �̃c(1 − t̃−2/8) < �̃ < �̃c,
(14)

t̃ < 1 : �̃c[1 − n(t̃/8)(Ũ − Ũ
′
)] < �̃ < �̃c.

Thus, just as in the case � > �c, an instability appears
when � is close to the critical value �c. In addition to the
phonon minimum occurring at the condensation momentum,
a peculiar feature resulting from the presence of spin-orbit
coupling is the presence of additional roton minima. Such ob-
jects are absent in multicomponent Bose-Einstein condensates
without spin-orbit interactions and may be understood as a
consequence of the degenerate nature of the minima in the exci-
tation spectrum Ek without interactions. We find that the roton
gaps are not degenerate in spite of the single-particle-spectrum
minima being degenerate. The excitation spectrum (8) has the
usual phonon minimum localized at K0 whereas we find that
the positions of the roton minima are close to the positions
of the degenerate minima of the single-particle spectrum as
long as one considers weak interaction parameters U and
U ′. In fact, discarding the second-order terms in U and U ′,
Eq. (8) approximately reduces to ak far from the condensation
momentum K0. With K0 = (k0,k0), the positions of the roton
excitations are then (k0, − k0), (−k0,k0), (−k0, − k0). The
roton gaps �(k) are

�⊥ ≡ �(k0, − k0) = �(−k0,k0) = nU
(
2α4

K0
− 2α2

K0
+ 1

)
,

�‖ ≡ �(−k0, − k0) = nU − n(U + U ′)2α2
K0

(
1 − α2

K0

)
.

(15)

All gaps are always positive as long as U > U ′, which is the
regime we are considering (plane-wave phase). As seen, there
exist two types of gaps �⊥ and �‖: one gap for the roton
excitations closest to the condensation momentum (�⊥) and

one gap for the roton excitation farthest away from it (�‖).
The degeneracy of the minima in the noninteracting case is
partially lifted when adding interactions U and U ′.

Quantum depletion. The BEC depletion at a temperature
T is the average relative number of particles not belonging
to the BEC: 1 − n0 = (1/N )

∑
k �=K0

〈d†
kdk〉, the operators dk

as in Eq. (6), n0 ≡ 〈d†
K0

dK0〉/N . At T = 0 only the quantum
fluctuations contribute to the depletion. Performing a basis
change from dk to the quasiparticle operators Ck (see, e.g.,
Sec. 4 in Ref. [19]) it allows us to obtain

1 − n0 =
∑

k �=K0

(2N )−1

× (∣∣ak+a2K0−k
∣∣/√(

ak+a2K0−k
)2−16|bk|2−1

)
.

Inside the instability region, the above expression of quantum
depletion loses its meaning because the sum above becomes
complex. In the right panel of Fig. 2, we present a numerical
evaluation of the quantum depletion: the depletion increases
slightly upon approaching the dynamical unstable region but
nevertheless remains small for a system of finite size. We
also numerically evaluate the depletion as a function of t/λ

with � close to the instability region, both on the left and
right side, and found that it is always less than 10%. In the
thermodynamic limit, the BEC does not exist at the edges
of the instability region but the quantum depletion rapidly
decreases in the neighborhood of the edges in such a way the
instability region is still well defined.

Summary. In summary, we established a phase diagram for
the superfluid state of a SOC BEC in the presence of a 2D
square optical lattice. We identified an instability regime in a
window of values for the Zeeman-coupling � near a critical
value �c where the excitation energies become complex. We
also derived analytical expressions for the roton excitations
appearing in the system, and showed that there are two types
of inequivalent roton gaps.
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