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Observing properties of an interacting homogeneous Bose-Einstein condensate: Heisenberg-limited
momentum spread, interaction energy, and free-expansion dynamics
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We study the properties of an atomic Bose–Einstein condensate produced in an optical-box potential, using
high-resolution Bragg spectroscopy. For a range of box sizes, up to 70 μm, we directly observe Heisenberg-limited
momentum uncertainty of the condensed atoms. We measure the condensate interaction energy with a precision
of kB × 100 pK and study, both experimentally and numerically, the dynamics of its free expansion upon release
from the box potential. All our measurements are in good agreement with theoretical expectations for a perfectly
homogeneous condensate of spatial extent equal to the size of the box, which also establishes the uniformity of
our optical-box system on a sub-nK energy scale.
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Ultracold atomic gases produced in harmonic traps are
widely used for fundamental studies of many-body quantum
mechanics in a flexible experimental setting [1–4]. Recently, it
also became possible to produce a Bose–Einstein condensate
(BEC) in an essentially homogeneous atomic gas, held in the
quasiuniform potential of an optical-box trap [5]. This has
opened new possibilities for closer connections with other
many-body systems and theories that rely on the translational
symmetry of the system (see, e.g., [6–16]).

The first experimental studies of a Bose gas in a box
potential focused on the critical point for condensation and
the thermodynamics of the gas close to the critical tempera-
ture [5,17]. Here, we investigate a box-trapped Bose gas in
the low-temperature regime of a quasipure condensate. While
previous experiments [5,17] established the effective uni-
formity of the thermal gas from which the BEC forms, here
we directly probe and prove the uniformity of the condensate
itself, which requires measurements on a two orders of magni-
tude lower energy scale. We study its coherence, energy, and
free expansion from the box trap, employing two-photon Bragg
spectroscopy [18–25] to obtain high-resolution measurements
of the momentum distribution and interaction energy. For
a wide range of box sizes, extending up to 70 μm, we
directly observe Heisenberg-limited momentum uncertainty
of the condensed atoms, corresponding to a fully coherent
macroscopic BEC wave function spanning the whole box trap.
From the interaction shift of the Bragg resonance we deduce
the BEC ground-state energy (per atom) with a precision
of kB × 100 pK, and find good agreement with mean-field
theory for a perfectly uniform condensate. Finally, we study
the free time-of-flight (ToF) expansion of a BEC from the
box trap. We follow the evolution of the cloud shape and the
gradual conversion of the interaction energy into the width of
the momentum distribution, and reproduce our observations
in numerical simulations based on the Gross-Pitaevskii (GP)
equation.

Our apparatus is described in Refs. [5,26]. We trap 87Rb
atoms in a cylindrical optical box of radius R ≈ 16 μm and
a tuneable length L = 15–70 μm [see Fig. 1(a)]. Our box
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is formed by 532 nm repulsive laser beams, and we use
a magnetic field gradient to cancel the linear gravitational
potential. By evaporative cooling in the box trap we produce
clouds with condensed fractions � 80%, at a temperature
T � 10 nK.

In Fig. 1(b) we outline our Bragg-spectroscopy setup. We
intersect on the cloud, at an angle of 30◦, two collimated
(3 mm wide) 780 nm laser beams, detuned from the atomic
resonance by 6.8 GHz. The two beams have wave vectors
q1 and q2, and frequencies f1 and f2 < f1, respectively. An
atom that undergoes two-photon stimulated Bragg scatter-
ing absorbs energy hf = h(f1 − f2) and recoil momentum
�qr = �(q1 − q2) aligned with the axial direction of the
trap, z. The recoil velocity vr = �qr/m ≈ 3 mm/s (where
m is the atom mass) is much larger than the spread of
velocities in the BEC, �vz ∼ h/(mL), arising due to Heisen-
berg uncertainty. The diffracted and nondiffracted atoms are
thus well separated in velocity space, as qualitatively seen
in Fig. 1(c).

Neglecting interparticle interactions, resonant Bragg scat-
tering of an atom with initial momentum �k into the state with
momentum �(k + qr ) occurs for

hf = hfr + �
2

m
kzqr, (1)

where hfr = �
2q2

r /(2m) ≈ h × 1 kHz and kzqr = k · qr .
Scanning f and counting the number of diffracted atoms [see
Fig. 1(c)], one can map out the spread of kz in the cloud.

In general, interactions in the BEC can modify the width of
the Bragg spectrum in two ways:

First, they modify the momentum distribution. Repulsive
interactions lead to broadening of the wave function in real
space and thus to narrowing in k space [19]. In a box,
the noninteracting ground state along z is sine-like; the
corresponding momentum-space wave function, obtained by
Fourier transform, is �(kz) ∝ cos(kzL/2)/(k2

zL
2 − π2) and

has zero-to-zero width 6π/L. According to Eq. (1), the
corresponding Bragg spectral line has zero-to-zero width
3vr/L (in frequency units). On the other hand, the profile
of an interacting BEC in the Thomas-Fermi regime is a simple
top-hat function of width L, neglecting the small edge effects
due to the nonzero healing length [1,2]. Our BECs are always
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FIG. 1. (Color online) Bragg spectroscopy of a uniform BEC.
(a) Shape and orientation of our box trap; in the laboratory frame
the x direction is vertical. (b) A trapped atom with initial momentum
�k absorbs recoil momentum �qr = �(q1 − q2) aligned with z, in a
two-photon process that corresponds to Bragg diffraction on a moving
optical lattice formed by the interference of the two laser beams. The
trap wall height (green) is lower than the energy of the recoiling
atoms. The Bragg beams and lattice are not drawn to scale; in reality
the beams are much larger than the box and the lattice spacing is
much smaller. (c) Absorption image of the atoms, taken 170 ms after
the start of the Bragg pulse. After the end of the 35 ms pulse, the
nondiffracted atoms are released from the trap.

deeply in this regime [27]. In this case the momentum-space
wave function of a fully coherent BEC is sinc-like and the
Bragg spectrum is a sinc2 function, S(f ), of zero-to-zero width
2vr/L.

Second, interactions can affect the measurement of the
momentum distribution. A condensed atom experiences a
mean-field potential U0 = (4π�

2a/m)n0 due to the other
ground-state atoms; here a is the s-wave scattering length
and n0 the local BEC density. On the other hand, due to the
“bosonic factor of 2,” a recoiling atom feels an interaction
potential 2U0 [2]. This shifts the resonant frequency f by
U0/h ∝ n0 [19,23,28], so any spatial variation of n0 leads

to inhomogeneous broadening of the Bragg spectrum. In our
case, n0 is essentially homogeneous, so this broadening effect
is absent and interactions just shift the Bragg resonance.
We can thus directly measure the momentum spread in
the BEC.

An important proviso, however, is that to directly observe
a Heisenberg-limited momentum spread, the duration of the
Bragg pulse must be τ � L/vr . This ensures that the Bragg
spectrum is not significantly Fourier-broadened. Equivalently,
it ensures that a recoiling atom can traverse the box during the
pulse, and we thus probe phase coherence across the whole
BEC. To apply very long Bragg pulses on a trapped cloud, we
set the trap depth below the recoil energy hfr , so the diffracted
atoms can leave the box without bouncing off the trap walls
[see Fig. 1(b)].

In Fig. 2 we present our measurements of the momentum
uncertainty of the condensed atoms in a box potential. Here
τ = 35 ms and the Bragg Rabi frequency was �R/(2π ) ≈
8 Hz, keeping the fraction of diffracted atoms to �15%. We
turn off the trap 25 ms after the end of the Bragg pulse, and
measure the fraction of diffracted atoms after a further 110 ms
of ToF [see Fig. 1(c)].

In Fig. 2(a), we show measurements for L = 30 ± 1 μm.
As shown in the left inset, L is determined by fitting the in-trap
BEC density profile with a top-hat function convolved with a
Gaussian that accounts for our 5-μm imaging resolution [29].
In the main panel we show the measured Bragg spectrum,
centered on f0 ≈ 1 kHz. The solid red and dashed blue
lines show theoretical expectations for a Heisenberg-limited
momentum spread. The solid line is the sinc2 function S(f ),
while the dashed line is a numerical calculation, S̃(f ), which
takes into account the small corrections due to the noninfinite
τ and nonzero �R [30]. The data are clearly extremely close to
the Heisenberg limit, corresponding to a fully coherent BEC
wave function spanning the whole box. (For corresponding
measurements on a harmonically trapped gas, in momentum
and real space, see Refs. [19] and [31], respectively.)
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FIG. 2. (Color online) Heisenberg-limited momentum spread in a uniform interacting BEC. (a) Main panel: Bragg spectrum of a trapped
BEC of length L = 30 μm. The solid red and dashed blue lines show the theoretical Heisenberg-limited spectra S(f ) and S̃(f ), respectively;
S(f ) is a sinc2 function obtained by a simple Fourier transform of the top-hat real-space wave function, while S̃(f ) accounts for the power
and duration of the Bragg pulse. Left inset: L is determined by fitting the in-trap BEC density profile, accounting for the imaging resolution.
Right inset: Full width at half maximum of the spectrum, W , versus the atom number, N , for the same L. The filled square corresponds to
the data in the main panel, with W = (100 ± 3) Hz. (All error bars represent 1σ uncertainties.) The solid red and dashed blue lines show
WH = 0.89 vr/L = 87 Hz and W̃H = 93 Hz, corresponding to S(f ) and S̃(f ), respectively. The dotted blue line shows W̃ 0

H = 123 Hz, expected
for a noninteracting BEC. (b) W versus inverse box length, 1/L, showing the expected Heisenberg scaling. Solid red, dashed blue, and dotted
blue lines show WH, W̃H, and W̃ 0

H, respectively.
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FIG. 3. Interaction energy in a uniform BEC, for L = 30 μm. We
plot f0 versus N for Bragg pulses applied in situ (solid squares) and
after 50 ms of ToF (open diamonds). Dashed line: f0 ≈ fr ≈ 975 Hz,
solid line: f0 = fr + αN , with α ≈ 20 × 10−5 Hz/atom.

We quantitatively compare different (measured and calcu-
lated) Bragg spectra using their full width at half maximum W .
In the right inset of Fig. 2(a), we plot the measured W versus
the total atom number N , for L = 30 μm. The solid red and
dashed blue lines show the two calculated Heisenberg-limited
values, WH for S(f ) and W̃H for S̃(f ). For comparison, we also
calculate W̃ 0

H (dotted blue line) for the sine-like noninteracting
ground state of the box potential. We see that interactions
reduce W below W̃ 0

H. Moreover, the measured W shows
essentially no dependence on N , as expected for a BEC of
a spatially uniform density.

In Fig. 2(b) we summarize our data for a range of box
lengths, L = 15–70 μm. Plotting W versus 1/L, we demon-
strate the expected Heisenberg scaling of the momentum
uncertainty.

We now turn to the study of the ground-state energy of
a uniform interacting BEC, which is seen in the shift of the
Bragg resonance, f0, from the recoil frequency fr . Thanks
to the unprecedented narrowness of our Bragg spectra, we
measure such shifts with a precision of 2 Hz, corresponding to
an energy of kB × 100 pK.

In Fig. 3 we plot f0 versus N , for a fixed L = 30 μm and
for two sets of Bragg spectra: (i) the “in situ” spectra (solid
symbols) are taken as above, with the main cloud trapped
during the Bragg pulse, and (ii) the “in-ToF” spectra (open
symbols) are taken by releasing the BEC from the box and
letting it expand for 50 ms before applying the pulse. After long
ToF the atomic density is negligible and the N -independent f0

provides a good measurement of fr ≈ 975 Hz.
For the in situ spectra, within mean-field theory and for an

infinitesimal Bragg transfer (�Rτ → 0), we expect

�f0 ≡ f0 − fr = αN, (2)

with α = 2η�a/(mV ), where η is the condensed fraction [28]
and V is the volume of the box. From in situ images we get
V = (25 ± 2) × 103 μm3. We assess η = 0.8 ± 0.1 from the
maximal fraction of Bragg-diffracted atoms [15% in Fig. 2(a)];
here the uncertainty indicates variations between experimental
runs. This estimate is further supported by “BEC filtering”
introduced in Ref. [32], i.e., using a short (4 ms) Bragg π

pulse to separate the BEC from the residual thermal component
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FIG. 4. Spectral width for Bragg pulses applied after 50 ms of
ToF expansion, for L = 30 μm. The W values are extracted from the
same in-ToF spectra as the f0 values in Fig. 3. The solid line shows
a numerical simulation based on the GP equation.

in ToF [33]. We thus obtain a theoretical prediction αth =
(24 ± 2) × 10−5 Hz/atom.

From a linear fit to the in situ data (solid line in Fig. 3)
we get αexp = (20 ± 1) × 10−5 Hz/atom, slightly below αth.
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FIG. 5. (Color online) Free expansion of a BEC released from
the box trap. Here, L = 30 μm and N ≈ 200 × 103. (a) Absorption
images (top) and simulations (bottom) of the atomic distributions.
(b) Evolution of �f0 and W during ToF. The solid lines show
numerical simulations based on the GP equation. The solid square
corresponds to the in-trap data from Fig. 3. The horizontal error bars
indicate our temporal resolution, limited by the Bragg-pulse duration.
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This small difference can be attributed to the 15% depletion of
the ground-state population during the pulse. For our largest
N we took additional measurements with a reduced �R [34]
and extrapolating to �R = 0 we get a slightly revised α̃exp =
(23 ± 1) × 10−5 Hz/atom [35].

Complementary to Fig. 3, in Fig. 4 we plot W values for
the in-ToF Bragg spectra. Qualitatively, W now grows with
N because during ToF interaction energy gets converted into
kinetic energy. Quantitatively, the problem of the expansion of
an interacting BEC from a box potential has not been solved
analytically (see [36] for the harmonic-trap case). However,
we find good agreement between our data and numerical
simulations based on the GP equation (solid line). In our
simulations, we neglect the small thermal component and use
the measured in-trap BEC energy (∝ α̃expN ) to predict W in
ToF [37].

Finally, we study the evolution of the BEC in ToF, for L =
30 μm and N ≈ 200 × 103. In Fig. 5(a) we show absorption
images of the expanding cloud (top), and the corresponding
GP-based simulations (bottom). The simulations reproduce the
characteristic diamond shape that emerges during ToF, also
seen in Fig. 1(c). Qualitatively, this conversion to a diamond
shape is the analog of the inversion of the aspect ratio of
a BEC released from an anisotropic harmonic trap. In both
cases the force driving the initially accelerating expansion is
given by the gradient of the atomic density (i.e., the gradient
of the interaction-energy density) and in both cases the fastest
moving wave fronts develop at the points where the curvature
of the constant-density surfaces is minimal during the early
stages of the expansion.

In Fig. 5(b) we show the gradual decay of �f0 and
growth of W for in-ToF Bragg spectra, again finding good
agreement with our simulations (solid lines). Note that in these
experiments, and simulations, we reduced τ to 10 ms and
increased �R/(2π ) to 28 Hz, reducing our spectral resolution
in order to improve the time resolution.

In conclusion, we have characterized the ground-state
properties of an interacting homogeneous Bose gas, including
the Heisenberg-limited momentum distribution, the interaction
energy, and the free-expansion dynamics. An important by-
result of our measurements is that they place the most
stringent bound so far on the spatial uniformity of an ultracold
gas produced in our optical box. While earlier (thermody-
namic) studies established uniformity on a 30–100 nK energy
scale [5,17], all our present measurements indicate that our gas
behaves as a homogeneous system down to a sub-nK energy
scale (corresponding to 20 Hz in frequency units). Such a high
degree of uniformity offers great promise for future studies of
correlation physics in a homogeneous gas in the T → 0 limit,
for example for the preparation and detection of topologically
protected states [12].
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