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In this Rapid Communication we propose realistic schemes to realize topologically nontrivial Floquet states
by shaking optical lattices, using both the one-dimensional lattice and two-dimensional honeycomb lattice as
examples. The topological phase in the two-dimensional model exhibits quantum anomalous Hall effect. The
transition between topological trivial and nontrivial states can be easily controlled by both shaking frequency
and shaking amplitude. Our schemes have two major advantages. First, both the static Hamiltonian and the
shaking scheme are sufficiently simple to implement. Secondly, it requires relatively small shaking amplitude
and therefore heating can be minimized. These two advantages make our schemes much more practical.
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Introduction. Topological states of matter have been exten-
sively studied in equilibrium systems. Recently, topological
nontrivial quantum states have been proposed in a periodically
driven nonequilibrium system called “Floquet topological
insulators” [1–3]. The Floquet topological band has been first
realized in photonic crystals and the edge state of light has
been observed [4], while so far it has not been realized in any
solid-state or cold-atom system.

Realizing and studying the topological state of matter is
also one of the major trends for cold atom physics nowadays,
for which Raman laser coupling [5–12] and shaking optical
lattice [13–15] have been developed. It has been demonstrated
that fast shaking optical lattices can generate synthetic Abelian
gauge field and magnetic flux [13,14], and various theoretical
proposals also exist [16–25]. In this Rapid Communication
we propose that shaking optical lattice is also a powerful tool
to realize Floquet topological states in cold-atom systems.
We demonstrate that a system equivalent to the Su-Schrieffer-
Heeger model in one dimension [26] and a system equivalent
to the Haldane model [28] in a two-dimensional honeycomb
lattice [27] can be realized, and the latter exhibits quantum
anomalous Hall effect.

So far, quantum anomalous Hall effect has only been found
in chromium-doped (Bi,Sb)2Te3, and growing this material is
extremely challenging [29]. It is therefore highly desirable
that one can quantum simulate this effect with the cold-
atom system. However, although there already exist several
proposals using atom-light interactions [20–25], this effect has
not yet been realized in a cold-atom setup. The key technique
challenge is to have a scheme that is sufficiently simple to be
implemented within a currently available experimental setup
and can also avoid unwanted heating. Our scheme fulfills these
two requirements and therefore can help to overcome this
challenge.

The first is its simplicity. To realize a topological state
in a static system, it usually requires a particular form of
hopping term. For instance, in order to realize the Haldane
model [28], one needs to generate a special next-nearest
range hopping term, which usually requires engineering laser-
assisted tunneling in a cold-atom system [9–12]. In contrast,
in our scheme, the static Hamiltonian is quite simple (it only
contains normal nearest neighboring hopping without an extra
phase factor) and has been realized in different laboratories
already. We will show that the beauty of this scheme is that

such a simple static Hamiltonian can result in a topological
nontrivial state when a proper and also sufficiently simple way
of shaking is turned on.

The second is minimizing heating. In contrast to other
shaking schemes [13,14], a key ingredient of our scheme is that
shaking provides a resonant coupling between different bands;
therefore, as we shall show later, it only demands a shaking
amplitude much smaller than lattice spacing in order to reach
the topological phase, and consequently this scheme avoids
the heating problem often encountered in schemes utilizing
atom-light interactions. In a recent experiment by a Chicago
group, it is found that heating from such a small shaking
amplitude is insignificant [15].

We also remark that our shaking scheme in a honey-
comb lattice can be regarded mathematically as generating
a synthetic circular polarized light for neutral atoms [1,30].
However, to realize this with real light in graphene the required
frequency has to be in a soft x-ray regime [30] which makes the
experiment extremely challenging. While in our scheme the
required shaking frequency is within a very practical regime
of about hundreds of hertz.

General method. Our theoretical treatment of shaking
optical lattices is based on the Floquet theory. The Floquet
operator of a periodically driven Hamiltonian Ĥ (t) with period
T is defined as (� = 1)

F̂ = Û (Ti + T ,Ti) = T̂ exp

{
−i

∫ Ti+T

Ti

dt Ĥ (t)

}
, (1)

where T̂ denotes time order, and Ti is the initial time. The
eigenvalue and eigenstates of F̂ are given by

F̂ |ϕn〉 = e−iεnT |ϕn〉, (2)

where −π/T < εn < π/T is the quasienergy. Below, two
different methods are used to evaluate the Floquet operator,
and each method has its own advantage.

Method I. We can numerically evaluate Floquet operator
F̂ according to Eq. (1) and determine its eigenvalues and
eigen-wave-functions from Eq. (2). If a periodically driven
system exhibits nontrivial topological states, there must be
in-gap quasienergies ε and their corresponding wave functions
ϕ are spatially well localized at the edge of the system [2]. The
advantage of this method is that once Ĥ (t) is given, there are
no further approximations.
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FIG. 1. (Color online) (a) The typical energy structure under
consideration. (b) The laser setup of the one-dimensional shaking
optical lattice. Solid and dashed lines represent lattice potential at two
different times. (c) The laser setup of the two-dimensional honeycomb
optical lattice. The dashed circle with arrow indicates how each lattice
potential rotates in time.

Method II. We can introduce a time-independent effective
Hamiltonian Ĥeff via F̂ = e−iĤeffT . Expanding Ĥ (t) as Ĥ (t) =∑∞

n=−∞ Ĥn(t)einωt with ω = 2π/T , we consider a situation as
shown in Fig. 1(a), that is, the static component Ĥ0 contains
m bands within an energy range of � and ω � �. The
two concrete examples discussed below either belong to this
situation or can be transferred into this situation by a rotating
wave transformation, with m = 2. Under this condition, it is
straightforward to show that to the leading order of �/ω, Ĥeff

can be deduced as

Ĥeff = Ĥ0 +
∞∑

n=1

{
[Ĥn,Ĥ−n]

nω
− [Ĥn,Ĥ0]

e−2πniαnω
+ [Ĥ−n,Ĥ0]

e2πniαnω

}
,

(3)

where Ti is taken as αT with 0 � α < 1. Since F̂ with
different choices of initial time Ti relate to each other by
a unitary transformation, quasienergy is independent of the
choice of Ti . In particular, we can choose an optimal α that
simplifies Ĥeff . Then we can apply schemes developed for
a time-independent Hamiltonian to Ĥeff for classifying the
topology of this time-periodic system. Although this method
involves further approximations, it has the advantage that it is
physically more transparent and can bring out the connection
to topological phenomena in equilibrium systems.

One-dimensional case. A one-dimensional lattice is formed
by two counterpropagating lasers. As one time-periodically
modulates the relative phase θ between two lasers, it will
result in a time-dependent lattice potential [31,32], as shown
in Fig. 1(b),

H (t) = k̂2
x

2m
+ V cos2[krx + θ (t)], (4)

where θ (t) = krb cos (ωt), and b is the maximum lattice
displacement. By transferring to the comoving frame, x →
x + b cos (ωt), the Hamiltonian acquires a time-dependent
vector potential term as

H (t) = k̂2
x

2m
+ V cos2(krx) − bω sin(ωt) · k̂x . (5)

The first two static terms give a static band structure with Bloch
wave function ϕλ(kx). In this basis, by only keeping the s and
p bands, we can write down a tight-binding Hamiltonian as

Ĥ (t) =
∑

i

�̂
†
i K(t)�̂i +

∑
i

[�̂†
i J (t)�̂i+1 + H.c.], (6)

where �̂
†
i = (â†

p,i ,â
†
s,i) are creation operators for s and p

orbitals, and

K(t) =
(

εp ih
sp

0 sin(ωt)
−ih

sp

0 sin(ωt) εs

)
, (7)

J (t) =
(

tp − ih
pp

1 sin(ωt) ih
sp

1 sin(ωt)
−ih

sp

1 sin(ωt) ts − ihss
1 sin(ωt)

)
, (8)

where εs and εp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp

0 =
bω

∫
dx φs (x) ∂xφp (x) denotes shaking-induced on-site cou-

pling processes. hλλ′
1 = bω

∫
dx φλ (x − a) ∂xφλ′ (x), where

λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x) and φp (x) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , εs , εp, ts , and
tp are fixed, and h

sp

0 , hss
1 , h

pp

1 , and h
sp

1 scale linearly with krb.
With the Hamiltonian equations (6)–(8) and method I, we

find phase transitions between topological trivial and nontrivial
phases, by changing frequency via �0 = (εp − εs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency �0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. �0/Er = 0 and krb = 0.5 for (b); and �0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx). (c) The wave functions for the in-gap states of (b).
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of in-gap states in the quasienergy spectrum of a finite size
lattice, as shown in Fig. 2(b), whose corresponding wave
functions are well localized in the edges [see Fig. 2(c)].
In contrast, in the topological trivial regime, there is no
in-gap state in the quasienergy spectrum [see Fig. 2(d)]. As
one can see clearly in Fig. 2(d), even for a relatively small
shaking amplitude krb ≈ 0.1, there is a quite large regime for
topological nontrivial phase in the phase diagram.

To understand the emergence of the topological nontrivial
phase, we write the Hamiltonian into momentum space as
Ĥ (t) = ∑

kx
�̂

†
kx

Hkx
�̂kx

(kx in units of 1/a, where a is lattice
spacing) and Hkx

is given by

Hkx
=

(
εp + 2tp cos kx 0

0 εs + 2ts cos kx

)
+ sin(ωt)

×
(

2h
pp

1 sin kx i
(
h

sp

0 + 2h
sp

1 cos kx

)
−i

(
h

sp

0 + 2h
sp

1 cos kx

)
2hss

1 sin kx

)
.

(9)

With two-phonon resonance condition 2ω ≈ εp − εs , the p

band with dispersion εp + 2tp cos(kx) and the two-phonon
dressed s band with dispersion εs + 2ω + 2ts cos(kx) form two
close bands as schematized in Fig. 1(a). Therefore, we shall
first apply a unitary rotation O (t) = exp (iωtσz) that leads to

Ĥrot (t) = Ĥ0 +
∑

n=±1,±3

Ĥne
inωt . (10)

Here Ĥ0 = (�0 + 2t cos kx)σz, Ĥ1 = −ih1 sin kxσz −
(hsp

0 + 2h
sp

1 cos kx)σ+/2, Ĥ3 = (hsp

0 + 2h
sp

1 cos kx)σ+/2,
and Ĥ−n = Ĥ

†
n , where 2t = tp − ts , 2h1 = h

pp

1 − hss
1 . In

the tight-binding regime, we have ω � �0,t,h
sp

0 ,hλλ
1 . Thus,

it fulfills the condition to apply method II. By choosing
Ti = T/4 and following the formula, Eq. (3), the effective
Hamiltonian can be deduced as Heff = B (kx) · σ , where
Bx = 0 and

By = 2
(
h

sp

0 + 2h
sp

1 cos kx

)
ω

[
h1 sin kx−2(�0 + 2t cos kx)

3

]
,

Bz = �0 + 2t cos kx + 2
(
h

sp

0 + 2h
sp

1 cos kx

)2

3ω
. (11)

This describes a momentum-dependent magnetic field in the
yz plane of the Bloch sphere, which is analogous to momen-
tum space representation of the Su-Schrieffer-Heeger model
[26]. The Su-Schrieffer-Heeger model exhibits topological
nontrivial phases characterized by a nonzero Zak phase [33],
which has been realized and measured recently in double-well
optical lattices [34]. Whether the system is topologically trivial
or not depends on whether B(kx) has a nonzero winding
number in the yz plane as kx changes from −π to π . As
shown in the inset of Figs. 2(b) and 2(d), for the topological
trivial case of Fig. 2(b), B(kx) has a winding number zero;
while for the topological nontrivial case of Fig. 2(b), the
winding number of B(kx) equals 1. From Eq. (11), it is easy
to see that when |�0| is large enough, Bz is dominated by
the constant term and therefore B(kx) has no winding. That
explains why the topological nontrivial phase occurs around
the two-phonon resonance regime with �0 ≈ 0. In fact, the

two-phonon resonance condition plays a crucial role here.
In contrast, if we consider the one-phonon resonance regime
ω ∼ εp − εs, with similar analysis it is straightforward to show
that there will be no topological nontrivial phase [35].

Two-dimensional case. We employ the laser setup for a
two-dimensional honeycomb lattice used by the ETH group
[27], as shown in Fig. 1(c). The interference of X and Y

beams gives a checkerboard of spacing λ/
√

2. X̄ gives an
additional standing wave with spacing λ/2. When VX̄ � VY �
VX, it leads to a honeycomb lattice as shown in Fig. 1(c).
Using the same method as in the one-dimensional case, the
optical lattice can be shaken in both x and y directions with
a phase difference π/2. This gives rise to a time-dependent
potential:

V (x,y,t)

= −VX̄ cos2[kr (x + b cos ωt) + θ/2]

−VX cos2[kr (x + b cos ωt)] − VY cos2[kr (y + b sin ωt)]

−2α
√

VXVY [cos kr (x + b cos ωt)] cos[kr (y + b sin ωt)].

Here θ controls the energy offset M between the AB

sublattices of a honeycomb lattice. Similarly, by transferring
into the comoving frame x → x + b cos (ωt), and y → y +
b sin (ωt), one obtains a Hamiltonian with time-dependent
vector potential term

H (t) = 1

2m
[k − A(t)]2 + V (x,y), (12)

where Ax(t) = mωb sin(ωt) and Ay(t) = −mωb cos(ωt). It is
equivalent to an ac electrical field in the two-dimensional plane
E(t) = mω2b( cos(ωt), sin(ωt)) [30]. With the tight-binding
approximation and Peierls substitution, the Hamiltonian is
given by

Ĥ (t) =
∑
〈ij〉

(a†
A,j ,a

†
B,j )

(
Mδji tle

iA(t)·dji

H.c. −Mδji

) (
aA,i

aB,i

)
, (13)

where dji is the vector from site i pointing to site j , and tl is
the hopping amplitude schematically shown in Fig. 1(c).

Applying method I to this model, we find a similar phase
diagram that contains topological trivial and nontrivial phases,
as shown in Fig. 3(a). In this case, the phase diagram is
controlled by parameter M/Er and shaking amplitude krb.
Similarly, the topological trivial phase has no in-gap states
in the quasienergy spectrum [Fig. 3(d)], and the topological
nontrivial phase has a pair of in-gap states [Fig. 3(b)],
whose corresponding wave function [Fig. 3(c)] is localized
at the edge of the two-dimensional sample. The same as the
one-dimensional case, even for a small shaking amplitude of
krb ≈ 0.1, the topological nontrivial regime occupies a large
parameter space.

To illustrate the relation of this topological nontrivial phase
with the Haldane model and the quantum anomalous Hall
effect, we first expand Hamiltonian equation (13) as H (k,t) =∑∞

n=−∞ Ĥn (k) einωt . Ĥ0 gives rise to a static honeycomb
lattice structure, which contains two bands with bandwidth
∼2tl and band gap ∼2M . When ω � 2M,2tl , the condition
for applying Method II is satisfied, and it yields an effective
Hamiltonian Heff(k) = B(k) · σ . The explicit form of B(k)
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FIG. 3. (Color online) (a) Phase diagram in terms of the on-site
energy difference of the AB sublattice of a honeycomb lattice
M/Er and the shaking amplitude krb. ω/Er is fixed at 0.2. (b),
(d) Quasienergy spectrum of a finite size two-dimensional shaking
honeycomb lattice with armchair edge. M/Er = 0 and krb = 0.1
for (b) and M/Er = 0.003 and krb = 0.1 for (d), as marked in (a).
(c) The wave functions for the in-gap states of (b). The lattice potential
VX̄/Er = 5, VX/Er = 0.65, VY /Er = 2, and α = 0.8.

is given in the Supplemental Material [35]. This effective
Hamiltonian can be compared with the Haldane model. If B(k)
fully covers the Bloch sphere as k goes over the Brillouin zone,
this phase is topologically nontrivial and exhibits quantum
anomalous Hall effect [28].

For small shaking amplitude, at the leading order of krb,
Bx(k) and By(k) are given by the static part of the honeycomb

lattice Hamiltonian. Due to the Dirac point structure, {Bx,By}
has desired winding structure in the xy plane. Bz(k) can
be generally written as M + D(k), where D(k) represents
terms generated by shaking, and therefore for small shaking
amplitude, D(k) scales linearly with krb. If |M| > D(k) for
all k, either due to small krb or large |M|, Bz always has the
same sign as M and therefore spin can only point to half of
the Bloch sphere; the resulting state will still be topological
trivial, as shown in Fig. 3(d).

As krb increases, D(k) will become larger than M in a
certain regime of k space. In particular, for our model, similar
to the case of the Haldane mode, D(k) takes opposite sign
between two Dirac points (where both Bx and By vanish), and
its absolute value is larger than |M|. Thus, Bz takes opposite
values between two Dirac points and the spin vector points to
north and south poles, respectively, at two Dirac points. This
feature, together with nontrivial winding of {Bx,By} in the xy

plane, gives rise to a topologically nontrivial coverage of spin
vector in the Bloch sphere. Consequently, it enters topological
nontrivial phase, with a nonzero Chern number and chiral
edge state, as shown in Fig. 3. With noninteracting fermions
in this setup, it will exhibit quantum anomalous Hall effect
with quantized Hall conductance, which can be measured by
various methods [20,36–38].

We believe the schemes and examples presented in this
work open a route toward realizing topological states in
cold-atom systems. It will be very interesting to generalize
the current work to three dimensions and the case with
interactions.
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100, 070402 (2008).

[37] E. Zhao, N. Bray-Ali, C. J. Williams, I. B. Spielman, and I. I.
Satija, Phys. Rev. A 84, 063629 (2011).

[38] N. Goldman, J. Beugnon, and F. Gerbier, Phys. Rev. Lett. 108,
255303 (2012).

061603-5

http://dx.doi.org/10.1103/PhysRevLett.103.035301
http://dx.doi.org/10.1103/PhysRevLett.103.035301
http://dx.doi.org/10.1103/PhysRevLett.103.035301
http://dx.doi.org/10.1103/PhysRevLett.103.035301
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.81.033622
http://dx.doi.org/10.1103/PhysRevA.83.023615
http://dx.doi.org/10.1103/PhysRevA.83.023615
http://dx.doi.org/10.1103/PhysRevA.83.023615
http://dx.doi.org/10.1103/PhysRevA.83.023615
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1088/1367-2630/15/1/013025
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevLett.95.170404
http://dx.doi.org/10.1103/PhysRevLett.95.170404
http://dx.doi.org/10.1103/PhysRevLett.95.170404
http://dx.doi.org/10.1103/PhysRevLett.95.170404
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.99.220403
http://dx.doi.org/10.1103/PhysRevLett.62.2747
http://dx.doi.org/10.1103/PhysRevLett.62.2747
http://dx.doi.org/10.1103/PhysRevLett.62.2747
http://dx.doi.org/10.1103/PhysRevLett.62.2747
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://link.aps.org/supplemental/10.1103/PhysRevA.89.061603
http://dx.doi.org/10.1103/PhysRevLett.100.070402
http://dx.doi.org/10.1103/PhysRevLett.100.070402
http://dx.doi.org/10.1103/PhysRevLett.100.070402
http://dx.doi.org/10.1103/PhysRevLett.100.070402
http://dx.doi.org/10.1103/PhysRevA.84.063629
http://dx.doi.org/10.1103/PhysRevA.84.063629
http://dx.doi.org/10.1103/PhysRevA.84.063629
http://dx.doi.org/10.1103/PhysRevA.84.063629
http://dx.doi.org/10.1103/PhysRevLett.108.255303
http://dx.doi.org/10.1103/PhysRevLett.108.255303
http://dx.doi.org/10.1103/PhysRevLett.108.255303
http://dx.doi.org/10.1103/PhysRevLett.108.255303



