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Verification for measurement-only blind quantum computing

Tomoyuki Morimae
ASRLD Unit, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-0052, Japan

and Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
(Received 23 October 2013; revised manuscript received 30 May 2014; published 17 June 2014)

Blind quantum computing is a new secure quantum computing protocol where a client who does not have any
sophisticated quantum technology can delegate her quantum computing to a server without leaking any privacy.
It is known that a client who has only a measurement device can perform blind quantum computing [T. Morimae
and K. Fujii, Phys. Rev. A 87, 050301(R) (2013)]. It has been an open problem whether the protocol can enjoy
the verification, i.e., the ability of the client to check the correctness of the computing. In this paper, we propose
a protocol of verification for the measurement-only blind quantum computing.
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I. INTRODUCTION

Blind quantum computing [1–10] is a secure delegated
quantum computing, where a client (Alice), who does not
have enough quantum technology, delegates her quantum
computing to a server (Bob), who has a fully fledged
quantum computer, without leaking any information about her
computation to Bob. A blind quantum computing protocol
for almost classical Alice was first proposed by Broadbent,
Fitzsimons, and Kashefi [1] by using the measurement-based
model due to Raussendorf and Briegel [11]. In their protocol,
Alice only needs a device which emits randomly rotated
single-qubit states. Later it was shown that weak coherent
pulses, instead of single-photon states, are sufficient for blind
quantum computation [5]. Recently, it was shown that blind
quantum computing can be verifiable [2,9,10]. Here, verifiable
means that Alice can test Bob’s computation [2,9,10]. The
verifiability is an important requirement, since Alice cannot
recalculate the result of the delegated computation by herself
to check the correctness (remember that she does not have any
quantum computer), and therefore if there is no verification
method, she might be palmed off with a wrong result by a fishy
company who tries to sell a fake quantum computer [9,10].
The verifiable blind protocol was experimentally demonstrated
with a photonic qubit system [9,10].

Recently, another type of blind quantum computing proto-
col was proposed in Ref. [3]. In this protocol, Alice needs only
a device that can measure quantum states. One advantage of
this protocol is that the security is device independent [12–16],
and is based on the no-signaling principle [17], which is more
fundamental than quantum physics. However, it has been an
open problem whether the protocol can enjoy verification.

In this paper, we propose a verification protocol for the
measurement-only blind quantum computing. We will propose
two protocols. Interestingly, our protocols are based on the
combination of two different concepts from different fields:
the no-signaling principle [17] from the foundation of physics
and the topological quantum error correcting code [18–20]
from a practical application in quantum information. The
no-signaling principle means that a shared quantum (or more
general) state cannot be used to transmit information. It is
one of the most central principles in physics, and known to
be more fundamental than quantum physics (i.e., there is a
theory which is more nonlocal than quantum physics but does

not violate the no-signaling principle [17]). The topological
quantum error correcting code is a specific type of the quantum
error correcting code which cleverly uses the topological order
of exotic quantum symmetry-breaking systems to globally
encode logical states.

II. TOPOLOGICAL MEASUREMENT-BASED QUANTUM
COMPUTATION

The Raussendorf-Harrington-Goyal state |RHG〉 is the
three-dimensional graph state with the elementary cell given
in Fig. 1(a). Defects in the graph state are created by Z

measurements on |RHG〉 as usual in the cluster measurement-
based model. Topological braidings of defect tubes can
implement some Clifford gates [18–20]. Non-Clifford gates,
that are necessary for the universal quantum computation, are
implemented by the magic state preparation and distillation
[21]. A string of Z operators acting on the resource state,
which has at least one open edge, is considered as an error,
and its edge(s) is detected by syndrome measurements of
cubicles of X operators [Fig. 1(b)]. A string of Z operators
on the resource states, which connects or surrounds defects
[Fig. 1(c)], is not detected, and can be a logical error. Local
adaptive measurements can implement quantum computation
as well as syndrome error detection.

III. FIRST PROTOCOL

Let us explain our first protocol. The basic idea of our
protocol is illustrated in Fig. 2: Bob prepares the resource
state, and Alice performs measurements.

More precisely, our protocol runs as follows (Fig. 3). First,
Bob prepares a universal resource state, and sends each qubit
of it to Alice one by one [Fig. 3(a)]. Alice measures each
qubit until she remotely creates the N -qubit state, σq |�P 〉,
in Bob’s laboratory [Fig. 3(b)], where σq ≡ ⊗N

j=1 X
xj

j Z
zj

j

with q ≡ (x1, . . . ,xN ,z1, . . . ,zN ) ∈ {0,1}2N is the by-product
of the measurement-based quantum computation [11], and Xj

and Zj are Pauli operators acting on j th qubit. The state
|�P 〉 ≡ P (|R〉 ⊗ |+〉⊗N/3 ⊗ |0〉⊗N/3) is the N -qubit state,
where |R〉 is an N/3-qubit universal resource state of the
measurement-based quantum computation encoded with a
quantum error-correcting code of the code distance d. (The size
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FIG. 1. (Color online) Topological measurement-based quantum
computation. (a) The elementary cell of the Raussendorf-Harrington-
Goyal state. Green balls are qubits, and red bonds are controlled-Z
gates. (b) The error detection. Red strings are errors. Green boxes
are syndrome operators. (c) Undetected errors or logical operations.
Blue tubes are defects. Red and yellow strings are strings of operators,
which surround or connect defects, respectively.

of |R〉 and the number of traps are optimal, since if there are too
many traps, the efficiency of the computation becomes small,
whereas if there are too few traps, the probability of detecting
malicious Bob becomes small.) For example, |R〉 can be the
N/3-qubit Raussendorf-Harrington-Goyal state [18,19] with
sufficiently many magic states being already distilled. (The
Raussendorf-Harrington-Goyal state is the resource state of the
topological measurement-based quantum computing [18,19].
Instead of the RHG state, any other quantum error-correcting
code can be utilized. Therefore, we can also assume that |R〉
is a normal resource state of the measurement-based quantum
computation encoded with a quantum error-correcting code.)
We define |+〉 ≡ 1√

2
(|0〉 + |1〉), and P is an N -qubit permuta-

tion, which keeps the order of qubits in |R〉. This permutation
is randomly chosen by Alice and kept secret to Bob.

Throughout this paper, we assume that there is no communi-
cation channel from Alice to Bob. Then, due to the no-signaling
principle, Bob cannot learn anything about P [3]. If Bob can
learn something about P , Alice can transmit some message to
Bob by encoding her message into P , which contradicts the
no-signaling principle.

Bob sends each qubit of σq |�P 〉 to Alice one by one, and
Alice does the measurement-based quantum computation on
σq |�P 〉 with correcting σq [Fig. 3(c)]. This means that before

FIG. 2. (Color online) Our setup. Bob first prepares a resource
state. Bob next sends each particle to Alice one by one. Alice measures
each particle according to her algorithm.

Alice(a) Bob

Alice(b) Bob σ Ψq P

Alice(c) Bob

FIG. 3. (Color online) Our protocol. Here, |�P 〉 ≡ P (|R〉 ⊗
|+〉⊗N/3 ⊗ |0〉⊗N/3), P is a N -qubit permutation, and |R〉 is a universal
resource state.

measuring j th qubit of σq |�P 〉 she applies σ
†
q |j on j th qubit,

where σ
†
q |j is the restriction of σ

†
q on j th qubit. For example,

(I ⊗ XZ ⊗ Z)|2 = XZ. Qubits belonging to |R〉 are used to
implement Alice’s desired quantum computation. States |0〉
and |+〉 are used as “traps” [2]. In other words, she measures
Z on |0〉 and X on |+〉, and if she obtains the minus result (i.e.,
|1〉 or |−〉 state), she aborts the protocol. If results are plus
for all traps, she accepts the result of the measurement-based
quantum computation on |R〉.

IV. VERIFIABILITY

Now we show that if all measurements on traps show the
correct results, the probability that a logical state of Alice’s
computation is changed is exponentially small. In other words,
the probability that Alice is fooled by Bob is exponentially
small. Hence our protocol is verifiable.

Since Bob might be dishonest, he might deviate from the
above procedure. His general attack is a creation of a different
state ρ instead of σq |�P 〉. If he is honest, ρ = σq |�P 〉〈�P |σ †

q .
If he is not honest, ρ can be any state. However, for any N -qubit
state ρ, there exists a completely positive-trace-preserving
(CPTP) map which satisfies ρ = ∑

j Ejσq |�P 〉〈�P |σ †
qE

†
j ,

where Ej ≡ ∑
α Cα

j σα , is a Kraus operator of the CPTP map,

and Cα
j is a complex number (see Appendix A). Since E

†
jEj is

a POVM, I = ∑
j E

†
jEj = ∑

j

∑
α,β Cα∗

j C
β

j σ †
ασβ, we obtain∑

j

∑
α |Cα

j |2 = 1.
Bob does not know q. Therefore, from Bob’s viewpoint,

the state is averaged over all q:

1

4N

∑

q

∑

j

σ †
qEjσq |�P 〉〈�P |σ †

qE
†
j σq

= 1

4N

∑

q

∑

j,α,β

Cα
j C

β∗
j σ †

q σασq |�P 〉〈�P |σ †
q σ

†
βσq
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= 1

4N

∑

q

∑

j,α

∣∣Cα
j

∣∣2
σ †

q σασq |�P 〉〈�P |σ †
q σ †

ασq

=
∑

j,α

∣∣Cα
j

∣∣2
σα|�P 〉〈�P |σ †

α

=
∑

α

C̃ασα|�P 〉〈�P |σ †
α, (1)

where C̃α ≡ ∑
j |Cα

j |2 and
∑

α C̃α = ∑
α

∑
j |Cα

j |2 = 1.

Here, we have used the following equations [22]:
∑

q

σ †
q σασqρσ †

q σ
†
βσq = 0,

(2)
1

4N

∑

q

σ †
q σασqρσ †

q σ †
ασq = σαρσ †

α,

for any ρ and α 	= β. The second equation is easy to show.
For a proof of Eq. (2), see Appendix B. Equation (1) shows
that we can assume that Bob’s attack is the “random Pauli”
attack, i.e., Bob randomly applies Pauli operators on each
qubit.

Bob’s attacks after creating ρ can also be included in
the preparation of ρ. This is understood as follows. Let us
assume that, after creating ρ, Bob sends a subsystem S1

of ρ to Alice, and then Alice measures all particles of S1.
After Alice’s measurement, Bob might apply an operation on
another subsystem S2 of ρ which has not been sent to Alice.
However, Bob cannot know Alice’s measurement angles and
results on S1 due to the no-signaling principle, and therefore
Bob’s operation on S2 is independent of Alice’s measurements
on S1. Furthermore, Bob’s operation on S2 commutes with
Alice’s measurements on S1. Hence we can consider as if Bob
applied such an operation on S2 immediately after he preparing
ρ.

In short, we can assume that Bob’s attack is a random Pauli
attack on the correct state |�P 〉 as is shown in Eq. (1). Hence let
us focus on σα|�P 〉. For many quantum error-correcting codes
(such as the topological one [18,19]), if the weight |α| of σα is
less than a certain integer d (the code distance), then such an
error is detected or does not change logical states [2,18–20].
For example, in the topological code, d is determined by the
defect thickness and distance between defects [18,19]. Here,
the weight |α| of σα means the number of nontrivial operators
in σα . (For example, the weight of I ⊗ XZ ⊗ Z ⊗ I ⊗ X is
3.) Therefore, in order for σα to change a logical state of the
computation, |α| must be larger than d. (To understand it, let
us consider a simple example. If we encode the logical 0 as
|0L〉 ≡ |000〉 and the logical 1 as |1L〉 ≡ |111〉, we must flip
more than two qubits to change the logical state. A single
bit flip is detected and corrected when the majority vote is
done.)

Alice randomly chooses a permutation P . In this case, the
probability of P †σαP not changing any trap is at most ( 2

3 )|α|/3.
(For a calculation, see Appendix C.) Therefore, the probability
that the logical state is changed and no trap is flipped is at
most

∑
|α|�d C̃α( 2

3 )|α|/3 � ( 2
3 )d/3 ∑

|α|�d C̃α � ( 2
3 )d/3, where

we have used the fact C̃α � 0 and
∑

|α|�d C̃α �
∑

α C̃α = 1.
Here, we have said “at most,” since the above sum includes
the contribution from σα which has a weight larger than

d but does not contain any logical error. In this way, we
have shown that the probability that Alice is fooled by
Bob is exponentially small (d can be sufficiently large by
concatenating the code). As we have seen, no communication
from Alice to Bob is required for the verification. Therefore,
whatever Alice’s measurement device does, Bob cannot learn
Alice’s computational information because of the no-signaling
principle. In other words, the security of the protocol is device
independent.

V. SECOND PROTOCOL

Let us explain our second protocol, which uses the property
of the topological code, and does not use any trap. Alice
randomly chooses k ≡ (h1, . . . ,hN,t1, . . . ,tN ) ∈ {0,1}2N , and
defines the N -qubit operator Kk ≡ ⊗N

j=1 T
tj
j H

hj

j , where
T ≡ |0〉〈0| + i|1〉〈1| and H is the Hadamard operator. Note
that T †XT = −iXZ, T †ZT = Z, and T †XZT = −iX. Next,
Alice defines the N -qubit state |�k〉 ≡ Kk|RHG′〉, where
|RHG′〉 is the N -qubit Raussendorf-Harrington-Goyal state
[18,19] with a sufficient number of magic states being already
distilled [18,19].

Bob prepares a universal resource state, and sends each
qubit of it to Alice one by one. Alice does measurements and
creates σq |�k〉 in Bob’s laboratory, where σq is the by-product
of the measurement-based quantum computation. Due to the
no-signaling principle, Bob cannot learn k. Bob sends each
qubit of σq |�k〉 to Alice one by one, and Alice does her
topological measurement-based quantum computation with
correcting σqKk . If Alice detects any error, she aborts the
protocol.

Again, because of Eq. (1), we can assume that Bob’s attack
is a random Pauli attack. Therefore, let us focus on σα|�k〉. In
order for σα to change a logical state without being detected by
syndrome measurements, σα must contain at least one string
sα of operators which connects or surrounds defects [Fig. 1(c)]
[18–20]. Since Alice randomly chooses k, the probability that
all operators in K

†
k sαKk become Z or XZ operators is at

most ( 3
4 )|sα |, where |sα| is the weight of sα . Note that |sα| � d

because it connects or surrounds defects.
Hence the probability that the logical state is changed and

Alice does not detect any error is at most
∑

|α|�d C̃α( 3
4 )|sα | �

( 3
4 )d

∑
|α|�d C̃α � ( 3

4 )d . In short, our second protocol is also
verifiable. Again, the device-independent security is guaran-
teed by the no-signaling principle.
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APPENDIX A: EXISTENCE OF A CPTP MAP

Let {|φk〉}2N

k=1 be any orthonormal basis of the N -qubit
Hilbert space, 〈φk|φj 〉 = δk,j . We diagonalize the N -qubit

state ρ as ρ = ∑2N

j=1 λj |λj 〉〈λj |. Let us take Ejk ≡ √
λj |λj 〉

〈φk|. Then for any N -qubit state η = ∑
α,β ηαβ |φα〉〈φβ |,

∑
j,k EjkηE

†
jk = ∑

j,k,α,β

√
λj

√
λjηαβ |λj 〉〈φk|φα〉〈φβ |φk〉
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〈λj | = ∑
j,k λjηkk|λj 〉〈λj | = ρ. Furthermore,

∑
j,k E

†
jk

Ejk = ∑
j,k

√
λj

√
λj |φk〉〈λj |λj 〉〈φk| =

∑
j,k λj |φk〉〈φk| = I.

APPENDIX B: PROOF OF EQ. (2)

For the convenience of readers, we here give the
proof [22] of Eq. (2). Since α 	= β, there exists an in-
dex j such that σα|j 	= σβ |j . For any such σα|j and
σβ |j , we can always take S ∈ {X,Z} such that S an-
ticommutes only one of σα|j and σ

†
β |j . Let us de-

fine Q ≡ I⊗j−1 ⊗ S ⊗ I⊗N−j . Then,
∑

q σ
†
q σασqρσ

†
q σ

†
βσq =

∑
q(Qσq)†σα(Qσq)ρ(Qσq)†σ †

β(Qσq) = ∑
q(σ †

qQ†)σα(Qσq)

ρ(σ †
qQ†)σ †

β(Qσq) = −∑
q σ

†
q σασqρσ

†
q σ

†
βσq.

APPENDIX C: PROBABILITY OF AVOIDING TRAPS

Let σα|j be the restriction of σα for j th qubit. [For example,
(X ⊗ I ⊗ XZ)|3 is XZ.] Let a, b, c be the number of j

such that σα|j = X, Z, XZ, respectively. (In other words,
a is the number of X operators in σα , b is the number of Z

operators in σα , and c is the number of XZ operators in σα .)
We define |α| as the weight of σα , namely, the number of non-I
operators. Since |α| = a + b + c � 3 max(a,b,c), we obtain
max(a,b,c) � |α|

3 .
Let us assume max(a,b,c) = a. Then, the probability

that all X operators of σα do not change any trap is
(N−a)!

∏a−1
k=0( 2N

3 −k)
N! = ( 2

3 )a
∏a−1

k=0(N− 3
2 k)

∏a−1
k=0(N−k)

� ( 2
3 )a � ( 2

3 )|α|/3. This is

larger than the probability that σα does not change any trap.
We can obtain the same result for max(a,b,c) = b. For

max(a,b,c) = c, we have only to replace 2
3 with 1

3 .
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