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Scaling law for helium double ionization by impact of ions from H+ to U92+

in the strong-coupling regime
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Based on our previous classical over-barrier-ionization model, a universal scaling law of double-to-single-
ionization cross-section ratios R21 for impact by nearly stripped ions in the strong-coupling regime (0.5 < q/υ

< 5) is found. The scaling law is consistent with extensive experimental data from proton to U92+. A fitting curve
to the predictions of the theory is also proposed for application convenience.
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The most widely used scaling law of a single-ionization
cross section in the velocity range υ � υBohr, where υBohr

is the Bohr velocity, was proposed by Gryzinski. Assuming
an artificial electron velocity distribution function (EVDF)
instead of the correct EVDF, Gryzinski obtained a scaling law
that matches the asymptotic behavior of the Bethe formula
[1]. However, as the collision velocity υ declines to υBohr, the
scaling formula is no longer suitable because the circulation
period of the target electron should be taken into account. In the
velocity range of υ ≈ υBohr, because the electron is attracted
by both projectile and target nuclei, the “easiest” way to release
from the nuclei corresponds to electron ejection into a region
where the attracting force exerted by the projectile balances
the binding force exerted by the target near the saddle point
[2,3]. In addition, the maximum single-ionization cross section
is scaled by the term

√
Zp/ZT accordingly. After analyzing

extensive experimental data, Kaganovich et al. found that the
maximum-ionization cross section occurred at

√
Zp/ZT + 1

and proposed a valid scaling formula over a wide velocity
range by use of the term υ

υe

√
Zp/ZT +1

, which is the normalized

velocity. More details about the scaling laws of the single-
ionization cross section can be found in Refs. [3,4].

Multiple ionization is a subject of considerable interest,
which is conducive to understanding the two-electron tran-
sition process and electron-electron correlation. The helium
atom is an ideal example because it has only two electrons.
McGuire pointed out that there are two mechanisms: shake-off
(SO) and two-step (TS2) processes [5]. In SO, the first electron
is directly ionized by the projectile, while the second electron
gets ionized when it is released from the influenced orbit. In
TS2, two electrons are ionized by separate binary encounters
with the projectile. Later on, the two-step with one interaction
(TS1) mechanism was proposed as follows: The first electron
is ejected by the interaction of the projectile and the second
electron, which is left in a bound state of He+, will be ionized
due to the interaction with the outgoing electron [6]. Knudsen
et al. argued that the cross sections for TS1 and SO would
have dependences similar to that of the single-ionization cross
sections in their range of q and υ, whereas the TS2 would lead
to the (q/υ)4 dependence of double-ionization cross sections
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[7]. Hence, the ratio R could be determined by

R = A + B
q2

υ2 ln(2.08υ)
. (1)

The Bethe formula is used to establish Eq. (1) for the dipole
transition. By adding the quadrupole transition term to the
single-ionization cross section, Bapat and Krishnakumar [8]
obtained the improved scaling law of helium double ionization
in the range q/υ < 0.5. The scaling law of helium double
ionization in the strong perturbative range q/υ > 1 is still in
dispute. Our previous work had suggested that the scaling
formula of R21 for the extremely-high-q limit within the
strong-couple regime could be written as 0.28

√
q/υ [9].

In this Brief Report a universal scaling formula of R21 for
impact by nearly stripped ions ranging from proton to U92+
in the regime 0.5 < q/υ < 5 is obtained based on our clas-
sical over-barrier-ionization (COBI) model. The theoretical
results are in good accord with extensive experimental data.
Moreover, an empirical formula is proposed through the fitting
curve for application convenience and it is equivalent to the
derived formula in the same regime.

The COBI model is based on Bohr’s classical over-barrier
model (COBM) [10]. In the COBM, two important ion-atom–
interaction distances are introduced. The first is the release
distance Rr ,

Rr = Z + 2
√

qZ

I
, (2)

which shows that the target electron can be released to the side
of the projectile when the internuclear distance is smaller than
Rr . The second is the capture distance Rc,

Rc = 2q

υ2
, (3)

which shows that the released electron can be captured by
the projectile if the potential energy in the ionic field of the
electron is greater than its kinetic energy in the projectile’s
frame. In COBI [9,11], we considered that the released but
uncaptured electron would be accelerated continuously by the
approaching ion. When the ion enters the ionization distance
RI , where the Stark energy converted into the kinetic energy
of the released electron is greater than its ionization energy in
the quasimolecular state, the electron will get enough kinetic
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energy to escape. Thus, the ionization distance RI satisfies
q

RI

� I + q

Rr

. (4)

In other words, electrons that are released within the capture
distance will be captured; those released electrons outside the
capture distance will not be ionized until the ion approaches
the distance RI.

Wu et al. [12] obtained the scaling law of single ionization
of helium for impact by ions of various charge states with the
approximate form

Rr ≈ 2
√

qZ

I
. (5)

Here we use the same expression of Rr as that used by Wu
et al. in deriving the single-ionization scaling law of helium in
the similar q and υ regimes. From Eqs. (4) and (5) we get the
expression of the ionization distance RI ,

RI ≈ q

I
(

1 + 1
2

√
q

Z

) . (6)

Note that the release and capture processes do not take
place instantly but occur gradually; the release and capture

probabilities Pr and Pc should be taken into account. For
the single-electron system, the probabilities are given as,
respectively,

Pr (b) = 2
√

R2
r − b2

υ

1

T
for b � Rr, (7)

Pc(b) = 2
√

R2
c − b2

υ

1

T
for b � Rc. (8)

Equations (7) and (8) show the ratio of the collision duration to
the orbital period T of the target electron. Thus, the ionization
probability PI is

PI (b) = Pr (b) − Pc(b) for b � RI . (9)

Many theories have manifested that the independent event
model [13] is more suitable for calculating the cross sec-
tion of multiple ionization than the independent-particle
model.

The double-to-single-ionization cross-section ratio R21 is
given as

R21 = σ 2+

σ+ =
∫

PI1PI22πbdb∫
PI1(1 − PI2 − PC2)2πbdb + ∫

PI2(1 − PI1 − PC1)2πbdb
. (10)

Here σ 2+ and σ+ are the double- and single-ionization cross
sections, respectively, Pr 1, Pc1, and PI 1 are the release, cap-
ture, and ionization probabilities for the first released electron,
and Pr 2, Pc2, and PI 2 are those for the second released electron.

For the concerned regime of q and υ in this work, several
approximations can be made.

(i) Experimental data have indicated that when the col-
lision velocity is larger than 2 or 3 a.u., the capture cross
sections are much smaller than the ionization cross sections
[14]. Therefore, the capture terms PC1 and PC2 are neglected
in the denominator of Eq. (10).

(ii) Those experimental data also showed that the double-
ionization cross section σ 2+ is at least one order of magnitude
smaller than the single-ionization cross section σ+. Thus, the
term PI 2 in the denominator of Eq. (10) is neglected [14–19].
Then we get an approximate form R21 in Eq. (11) and this
approximated expression has been proved to be valid [9]:

R21 = σ 2+

σ+ ≈
∫ Rr2

0 PI1PI22πbdb∫ Rr1

0 PI12πbdb
. (11)

(iii) According to Eqs. (7)–(9), the probabilities of release,
capture, and ionization decrease slowly and smoothly when
the collision parameter b increases, so the integrated reaction
probabilities will be close to the mean value of the reaction
probability multiplied by the geometric ionization cross sec-
tion. Thus, the double- and single-ionization cross sections σ 2+
and σ+ can be estimated well by the following expressions [9]:

σ 2+ ≈ πR2
I2 × 1

2Pr1(0)Pr2(0), (12)

σ+ ≈ πR2
I1 × 1

2Pr1(0). (13)

Finally, we get the approximate expression of R21:

R21 ≈ R2
I2

R2
I1

[Pr2(0)] = 2
Z2

Z1

q2
2

q2
1

I 2
1

I 2
2

(
2
√

Z1 + √
q1

2
√

Z2 + √
q2

)2

× 2
√

q2Z2

I2υT
= f m, (14)

where

f (q1,q2) = 2
Z2

Z1

q2
2

q2
1

I 2
1

I 2
2

(
2
√

Z1 + √
q1

2
√

Z2 + √
q2

)2
2
√

Z2

I2T
, (15a)

m(q2) =
√

q2

υ
, (15b)

where Z1 = 1.3, Z2 = 2, I1 = 25 eV, I2 = 54 eV, T = π /E1s ,
and q1 and q2 are the effective charges of the projectile that
are experienced by the first and the second released electron.

Note that the picture of the COBI model is the sequential
release process of target electrons in which two electrons
escape from the target nucleus one by one. When the projectile
enters the ionization distance RI 1, the first target electron
whose ionization energy is lower is ionized. So the first
effective charge q1 is the charge of projectile nucleus. As the
projectile enters RI 2, the first ejected electron will move to the
side of projectile and screen its nucleus. The second effective
charge of the projectile will decline to q2. The method to
estimate the values of q2 is q2 = q1 – 1. In the work of Barany
et al. [15], this estimation method is adopted to deal with
multiple capture processes. It is emphasized that the value of
q2 for the H+ ion is estimated to be 0.3 from the 1s binding
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FIG. 1. (Color online) Scaled double to single ionization ratio
R∗

21 = R21/[f (q1,q2) · √
q2] of helium impacted by nearly stripped

ions from the proton to U92+ (0.5 < q/υ <5). Dots with error bars
are experimental data taken from Refs. [9,11,14–19] and the line is
derived from Eq. (14).

energy of the negative hydrogen ion [11]. As a result, the
relationship between q1 and q2 is

q2 =
{

0.3 for q1 = 1
q1 − 1 for 2 � q1 � 92.

(16)

It should be mentioned that we had done the direct
integration to Eq. (11) and found that for all ions considered
here, the integrated results are just slightly different, no more
than ±3%, from the values calculated from Eqs. (12)–(14). At
the same time, the integrated results are too complicated to
apply in practical works. So we chose to present the results of
Eq. (14) for convenient applications with good accuracy.

The scaled double-to-single-ionization ratios R∗
21 of helium

impacted by ions ranging from proton to U92+ are calculated
by Eq. (14) and compared with extensive experimental data,
as shown in Fig. 1. It is found that the overall agreement
is good and the experimental data and theory show the
1/υ dependence. Equation (14) shows that the double-to-
single-ionization ratios R21 in the strong-coupling regime are
determined by f (q1,q2), the geometrical cross-section ratios
of double and single ionization, and the ionization probability
m(q2) of the second released electron. The picture of sequential
over-barrier-ionization processes indicates that the ionization
probability m(q2) should be proportional to 1/υ and that the
coefficient f (q1,q2) is determined by the ionization distances
RI of the two released electrons and the strong correlation
between them (q2 = q1 − 1).

FIG. 2. (Color online) Fitting curve F (q) as a function of pro-
jectile charge q and the results obtained using f (q1,q2) given by
Eq. (15a).

In order to apply the ratio R21 conveniently, a fitting
polynomial F (q) is introduced to replace f (q1,q2). In Fig. 2,
the closed circles are the values of the f (q1,q2) function given
by Eq. (15a) and the solid line is the fitting curve F (q):

F (q) = 0.25 − 0.068e−0.041q − 0.23e−0.34q . (17)

In an application way, the scaling law of double ionization
of helium in the strong-coupling regime can be rewritten
as

R21 ≈ F (q)

√
q − α

υ
, α =

{
0.7 for proton
1 for other ions. (18)

In summary, we draw a universal scaling law of helium
double ionization for nearly stripped ions ranging from proton
to U92+ in the strong-coupling regime (0.5 < q/υ < 5). The
theoretical law is in good accord with extensive experimental
data. An empirical formula is also proposed for convenient
application.

This work was supported by the National Natural Science
Foundation of China, Grants No. 11174116 and No. 11175075.

APPENDIX: THE INTEGRAL FORMULA OF DIRECT
IONIZATION CROSS SECTIONS

The approximate expression of double- and single-
ionization cross sections are presented in the main text. Here
the integral formulas of double- and single-ionization cross
sections in Eq. (11) by use of Mathematica 9.0.1 are given as,
respectively,

σ 2+ =
∫ RI2

0

2
√

R2
r1 − b2 × 2

√
R2

r2 − b2

(υT )2
2πb db

= 8π

(υT )2

[(
−1

8

)
× (

R2
r1 + R2

r2 − 2R2
I2

) × (
R2

r1 − R2
I2

)0.5 × (
R2

r2 − R2
I2

)0.5

054701-3



BRIEF REPORTS PHYSICAL REVIEW A 89, 054701 (2014)

− 1

16

(
R2

r1 − R2
r2

)2 × ln
[−R2

r1 − R2
r2 + 2R2

I2 + 2
(
R2

r1 − R2
I2

)0.5 × (
R2

r2 − R2
I2

)0.5
] + 1

8

(
R2

r1 + R2
r2

) × Rr1 × Rr2 + 1

16
,

× (
R2

r1 − R2
r2

)2
ln

( − R2
r1 − R2

r2 + 2Rr1Rr2
)]

, (A1)

σ+ =
∫ RI1

0

2
√

R2
r1 − b2

υT
2πb db = 4π

υT

[(
−1

3

)
× (

R2
r1 − R2

I1

)1.5 + 1

3
× (

R2
r1

)1.5
]
. (A2)
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