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Influence of the time-dependent pulse spectrum on ionization and laser propagation
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The interaction and the propagation of intense and short laser pulses in nonlinear optical materials are
addressed. A consistent introduction of a time-dependent ionization model into the Maxwell’s equations allows
one to account for the influence of strong variations of the pulse spectrum on the ionization dynamics, which
in turn affects the pulse propagation. The interaction between both ionization and propagation dynamics is
demonstrated for two cases of practical interest: frequency conversion and propagation of chirped pulses.
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I. INTRODUCTION

Optical materials, such as silica, Sb2O3 (BK7), LiB3O5

(LBO), BaB2O4 (BBO), KH2PO4 (KDP), KTiOPO4 (KTP),
soda limes, or sapphire, are commonly used in laser systems
for pulse shaping. These materials are dielectrics with large
band gaps, and their electronic properties may significantly
evolve when interacting with intense femtosecond laser pulses
[1,2]. At the same time, laser-pulse characteristics such as the
intensity profile of the frequency spectrum may be strongly
affected in the course of propagation [3,4]. The modifications
of electronic properties begin at the ionization stage due to ei-
ther multiphoton absorption (MPA) or tunneling. The electron
transition from the valence band (VB) to the conduction band
(CB) is followed by various processes including heating in the
CB, impact ionization, and various kinds of electron collisions
[5,6]. Since most of these processes depend on the electron
density in the CB, an accurate description of the primary
ionization stage is required. This is all the more important
for the nonlinear processes that are modifying the frequency
spectrum, such as frequency conversion, frequency drift, or
spectral broadening. In particular, the ionization dynamics may
be strongly affected by a change in the multiphoton order due
to significant variations of the frequency spectrum in the course
of propagation [7,8]. Because of the intrinsic relation between
ionization and absorption, instantaneous changes in the rate
of production of conduction electrons may in turn affect the
propagation dynamics of the laser pulse [3,9].

An accurate description of the above-mentioned physical
phenomena thus can be only achieved by modeling laser-pulse
propagation together with an accurate description of the
primary ionization, which accounts for possible variations
of laser-pulse characteristics including time-dependent fre-
quency spectra and associated MPA orders. A time-dependent
description of the ionization stage is thus required [4,7,8],
which cannot be correctly described by a stationary approach
such as the well-known Keldysh model [10,11]. Indeed, it
assumes that the laser frequency is explicitly known, i.e., a per-
fect monochromatic wave is assumed whereas such conditions
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are not fulfilled generally. More precisely, a time-dependent
model including explicitly the temporal variations of the laser
electric field is required. Such a model carries implicitly all
information about the frequency spectrum (through Fourier
transform) and thus accounts for possible simultaneous MPA
orders due to the pulse spectral width.

Abandoning the assumption of a fixed monochromatic
wave, we will be working within the time domain. The best way
to describe the propagation of short laser pulses in dielectric
materials under these conditions is to solve numerically the
three-dimensional (3D) Maxwell equations (numerical code
solving of Maxwell’s equations is hereafter referred to as
CME), which can also serve to validate less general models.
In the present work, this is achieved by using a 3D finite-
difference time domain (FDTD) scheme [12–14]. Note that
other approaches based on the resolution of the so-called
nonlinear Schrödinger equation (NLSE) or the unidirectional
pulse propagation equation would also be appropriate [3,15].
A good candidate for modeling the primary ionization stage is
the so-called BVkP approach, which is based on Bloch-Volkov
states describing the quantum dynamics of an electron in both
the lattice and laser electric fields [9]. It has been shown
to correctly account for the possible temporal evolution of
the frequency spectrum through the time-dependent electric
field, thus being able to describe consistently the simultaneous
presence of various MPA orders due to spectral broadening
or temporal evolution due to a frequency chirp [9]. The
moderate laser intensities considered in this work prevent
us from significant tunnel ionization as a primary ionization
process, which is thus not considered hereafter. The aim of the
present paper is to couple both CME and BVkP approaches
to account consistently of various time-dependent ionization
paths in the course of propagation and to exhibit the physical
consequences resulting from this consistent description. After
reviewing briefly both the propagation and ionization models,
the coupling method is presented. The influence of the intro-
duction of a time-dependent ionization model in a propagation
code is studied with three cases of practical interest: frequency
conversion in both KDP crystal and silica and propagation of a
chirped pulse in silica [16]. The results show significant effects
of this consistent description of time-dependent laser-matter
interaction on the temporal pulse-shape evolution and ionized
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material area along the propagation axis. It is worth noting
that the present work does not address a full description of
all involved physical processes. The main goal of this work
is to demonstrate the reliability of the present approach and
to address the main physical consequences of a consistent
coupling of ionization and pulse propagation. To do so, in
order to enhance the consequences of accounting for pulse
spectrum, the studied cases have been slightly simplified by
removing a physical effect which is only expected to intro-
duce a less important ionization-propagation coupling in real
conditions.

II. THEORY

The model includes the laser-pulse propagation module
coupled consistently with the multiphoton ionization (MPI)
module as follows. The propagation of the laser pulse is
based on a 3D FDTD scheme as developed initially by Yee
[17]. By means of leapfrog and centered finite-difference
techniques, this approach provides a numerical scheme which
is of the second order in both space and time. A parallel
version of such a code has been developed, allowing us to
perform calculations efficiently [12]. Such an approach keeps
track of every frequency and allows us to compute all three
spatial components of the fields, including also possibly the
component of the electric field in the direction of propagation.

The time-dependent ionization model, called BVkP, is
described in [9]. Hereafter are summarized the main partic-
ularities of this approach, where atomic units are used unless
otherwise stated. Under the assumptions of the electric dipole
approximation and the single-active electron, it is based on
an evaluation of the quantum transition amplitude from the
initial unperturbed valence state ϕv(�r,t) to the final perturbed
conduction state �c(�r,t) within the length gauge:

Tcv(t) = −i

∫ t

0
dt〈�c(t)|�r · �E(t)|ϕv(t)〉, (1)

with �c(�r,t) describing an electron in both the laser electric
field �E(t) and the crystalline field, which can be approximated
by a Bloch-Volkov state χBV

c (�r,t) [18]:

�c(�r,t) � χBV
c (�r,t)

= ϕc(t) × exp

{
i �A(t) · �r − i

∫ t

0
dt ′

[A(t ′)]2

2mc

}
, (2)

with ϕc(�r,t) the unperturbed conduction state, �A(t) the vector
potential such that �E(t) = −∂ �A(t)/∂t , and mc the electron
mass in the conduction band. The exponential term in Eq. (2)
is the so-called Volkov phase. After some analytics and using
the �k · P̂ theory to evaluate the matrix elements [9,19], the
transition amplitude takes the following simple expression:

Tcv(t) = − P

m0(Ec − Ev)

×
∫ t

0
dt exp {i(Ec − Ev)t} E(t)

[1 − iA(t)/α]2
, (3)

with Ec − Ev the energy gap between valence and conduction
states and α the only parameter of the present model which is
related to the spatial expansion of the valence wave function,

set to 1.55 a.u. as in [9], allowing us to retrieve MPI cross
sections similar to Keldysh predictions for relatively long
pulses. The prefactor P is related to the matrix element and
evaluated through the �k · P̂ theory:

P = 〈φc|P̂Z|φv〉 =
√

m2
0Eg

2m∗
vc

with
1

m∗
vc

= 1

m∗
v

+ 1

m∗
c

, (4)

where �P = −i �∇ is the momentum operator; Eg is the band
gap; and m0, mv , and mvc are the electron masses in the free
space, the valence band, and the reduced particle. Finally, from
the expression of the transition amplitude, the ionization rate
which has to be introduced in the appropriated term of the
Maxwell equations reads

WMPI(t) = ∂ne

∂t
= N0

∑
c

∂|Tcv(t)|2
∂t

= 2N0

∑
c

Re

{
T ∗

cv(t)
∂Tcv(t)

∂t

}
, (5)

where N0 is the density of valence electrons, set to 2.2 ×
1022 cm−3 in the present study, and the sum over various
conduction states accounts for a possibly complex CB. Note
that, in case of frequency conversion where the harmonic
electric field may be perpendicular to the incident electric field,
the total ionization rate is obtained by summing the ionization
rates corresponding to each crystalline axis.

The as-previously evaluated electron density ne produced
in the conduction band only describes the interaction of an
electron with the laser electric field and accounts for the lattice
periodicity but does not account for possible collisions with
phonons, ions, or other electrons. Due to these collisions,
the coherence between the excited electron to the CB and
its parent ion is destroyed and may introduce deviations from
the above-predicted evolution of the electron density in the CB
with respect to time. Indeed, without collisions, the produced
electron density was shown to oscillate with time due to the
fact that a conduction electron may go back and forth to
the VB through the action of the electromagnetic field [9].
We thus defined a free state as a state where the electrons can
be heated by inverse bremsstrahlung (IB) and are decorrelated
from the parent ions. The density of electrons associated with
this free state is called nFE. From a general point of view,
the collisions lead the laser produced electrons to relax to the
free-electron state with the density nFE with a characteristic
time τd . This time may also be seen as a decoherence time
associated with phonon characteristic time. Since these free
electrons are produced, they can be heated through IB and lead
to impact ionization with an efficiency η, and also recombine
with a characteristic time τr . The electron heating is described
with a standard Drude model, which provides the expression
of η where the collision frequency depends on temperature as
in [20]. The evolution of the free-electron density can then be
simply described by the following rate equation:

dnFE

dt
= ne

τd

+ ηnFE − nFE

τr

. (6)

Based on experimental data [21–23] and modeling results [9],
the value of the relaxation time lies in the picosecond range and
is set to 3 ps in the present work. τr is set to 150 fs, which is a
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correct order of magnitude for silica and KDP crystals [21,24].
Finally, the depletion of the initial valence state is introduced
in order to keep the total electron density constant. It is
worth noting that we have checked that physically reasonable
variations of the previously set parameters (N0,α,τd,τr ) lead
to similar physical trends as those presented hereafter.

The coupling between the BVkP ionization rate and the
CME is made through a fictive ionization current �Ji due to
the produced electrons with rate ne/τd , which accounts for the
laser absorbed energy required to promote the valence electron
to the CB through MPA. The modified Maxwell equation
accounting for this influence reads [20,25]

∂ �D
∂t

= �∇ × �H + �Je + �Ji, (7)

with �D and �H the electric displacement and the magnetic
induction, respectively. �Je is the conduction current associ-
ated with the displacement of free electrons, accounting in
particular for the Joule effect. The latter is modeled through a
Drude model depending on the free-electron density nFE and
the collision frequency as previously described. The ionization
current �Ji accounts for energy transfer due to the MPA,
according to the energy balance equation:

∂W

∂t
= �E · �Ji = −ne

τd

Wi, (8)

where W is the laser energy density and Wi is the energy
required to promote a valence electron to the CB, i.e., the band
gap. This leads to the following definition of �Ji [assuming that
E(t) is different from zero]:

�Ji(t) = −Wi

ne

τd

�E(t)

E(t)2
. (9)

In the case of a phenomenological law for the ionization
rate proportional to E2n, Eq. (9) leads to a finite value of �Ji

even for arbitrary small values of E(t) since the denominator
in E of Eq. (9) cancels, leading to Ji ∝ E2n−1. Within the
BVkP approach, the ionization rate is no longer proportional
to E2n but also depends on the vector potential, accounting
for possible retardation effects during the ionization process.
It then turns out that �Ji diverges for E(t) tending to zero. This
is an unphysical behavior due to the way �Ji(t) is constructed,
which may lead to numerical instabilities. It is noteworthy that
no more reliable coupling formulation was proposed to our
knowledge. To overcome this problem, the relaxation time in
the present model is related to the electric field as τd ∝ E−1

if the latter becomes too small, i.e., smaller than 20 times the
maximum of the electric field in practice. This choice allows
us to avoid the unphysical divergence. It can be supported by
physical considerations related to the classical dynamics of a
particle subjected to an electric field and the friction force.
Since the classical relation mdv/dt + mv/τd = −eE leads
to the stationary solution, v = −eEτd/m and thus τd ∝ E−1.
Despite the fact that the latter relation has been established
with empirical considerations, it provides a physical meaning
and makes the present coupling more consistent. This approach
has been confirmed to remove instabilities and not to induce
spurious behaviors. Finally, the evaluation of the BVkP
ionization rate requires the evaluation of the vector potential,

which is simply done by numerically integrating the electric
field provided by the CME.

We have checked that the influence of impact ionization on
the production of free electrons is negligible compared to the
MPI under the present laser conditions unless otherwise stated.
In particular, electron avalanche does not take place. This
physical process is thus no longer discussed in the following.

III. RESULTS AND DISCUSSION

The previous ionization-propagation model is applied for
description of the propagation of an intense fs laser pulse
in a potassium dihydrogen phosphate crystal (KH2PO4 or
KDP). Since this optical material is a frequency converter,
the number of photons required to ionize may vary in the
course of propagation. This case is thus well suited to show
the ability of the present approach to account for various
ionization paths depending on the propagation distance. The
simulation is performed with the following parameters for
the laser pulse: initial wavelength λ = 633 nm, pulse length
(full width at half maximum) of τ = 80 fs with a Gaussian
envelope, and a maximum electric field of 6 × 109 V/m
corresponding to a maximum intensity of ∼7.5 TW/cm2.
Regarding the material properties, they are modeled with
a band gap of 7.8 eV [24] and a realistic second-order
susceptibility of χ (2) = 4.35 × 10−13 m/V [12]. With these
physical parameters, four fundamental photons are required
to promote valence electrons to the CB, whereas only two are
required with the second-harmonic radiation (2ω).

Under these conditions, Fig. 1 shows the evolution of
the pulse energy density for both the fundamental and the
second-harmonic radiation as a function of the propagation
distance in various cases. In order to evaluate the influence
of ionization, results with no ionization included are first
reported (black curves). In that case, as expected, the energy
density of the fundamental radiation decreases whereas the
harmonic one increases, the sum of both being constant in the
course of propagation accounting for the energy conservation.
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FIG. 1. (Color online) In the case of laser-pulse propagation in a
frequency converter KDP crystal, evolution of the energy density of
the fundamental laser pulse and its second harmonic as a function of
the propagation distance. Calculations without and with ionization
(with the BVkP approach) are presented.
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When ionization is included through the BVkP model, the
evolution of the harmonic pulse is significantly different (red
curves). Indeed, since only two photons of the 2ω radiation
are required to bridge the band gap, the ionization rate is large,
thus leading to significant absorption of the harmonic pulse by
valence electrons and subsequent heating by IB. Regarding the
fundamental pulse, the influence of ionization on its energy
density is not significant due to a relatively high MPI order
(n = 4). It mainly occurs at the beginning of the propagation,
where the fundamental intensity is the largest. Note that laser
energy depletion due to IB and ionization are equivalent under
the present conditions. Finally, the decrease in the total laser
energy corresponds to the energy transfer into the electron
system (red dashed curve).

The previous considerations are confirmed by Fig. 2(a),
which shows the evolution of the maximum of the free-electron
density as a function of the propagation distance in two
cases. First, when the frequency conversion is not allowed
[χ (2) is set to zero in the CME], the black curve shows an
exponential decrease in the electron density associated with
the depletion of the laser pulse. This behavior corresponds to
the standard Beer-Lambert law (dI/dz = −αIn − βI , where
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FIG. 2. (Color online) (a) Evolution of the maximum free-
electron density nFE as a function of the propagation distance without
(black curve) and with (red curve) frequency conversion in KDP
crystals. (b) Temporal evolution of the free-electron density for
various propagation distances from 0 to 200 μm. The evolution of
the maximum of the electron density is shown.

the first term in the right-hand side accounts for the pulse
absorption due to MPI and the second term accounts for IB).
Second, when frequency conversion is allowed (red curve),
this behavior is dramatically changed due the additional
ionization path created by the second-harmonic generation.
When the latter becomes significant, roughly after a few tens
of μm of propagation, the two-photon ionization rate is such
that it compensates absorption due to the initial four-photon
ionization decreasing, even leading to an increase in the
free-electron density with respect to the propagation distance
as the harmonic intensity is increasing. After roughly 100 μm
of propagation, the generation of the second harmonic and
its absorption equilibrate, leading to the maximum of induced
CB electron density. After this point, harmonic generation is
no longer efficient due to the pump depletion. The harmonic
signal is then mainly absorbed due to MPI and IB during
its propagation, again leading to a decrease in its energy
density with a Beer-Lambert behavior, which subsequently
leads to a decrease in the produced CB electron density.
These considerations are further supported by Fig. 2(b), which
shows the temporal evolution of the CB electron density
for various propagation distance from 0 to 200 μm. For a
given distance, this figure first illustrates how the maximum
density is extracted with respect to the temporal evolution.
The associated envelope corresponding to the evolution of
the maximum in the course of propagation exhibits a very
similar shape as the one of Fig. 2(a), thus confirming the
previous analysis and indicating that the group velocity of the
laser pulse is mainly constant. For a given distance, profiles
of Fig. 2(b) also indicate the presence of asymmetry in the
temporal evolution of the CB electron density: first, free
electrons are quickly produced (left side of a given profile)
due to the rise in the laser intensity. When the laser intensity
drops, the decrease in the electron density takes place on a
longer timescale accounting for intrinsic relaxation processes
no longer related to the laser-pulse variations.

Hereafter is presented a study of the nonlinear propagation
of an intense laser pulse in fused silica. The dispersion effect
has been switched off in order to enhance the production of
harmonic pulses (coherent emission of harmonic radiation)
and thus to enhance the coupling between nonlinear ionization
and propagation. Despite the fact that physical influence of
dispersion is missing, this case has been chosen to strengthen
the previous conclusion regarding frequency conversion. As
shown hereafter, this case also clearly exhibits the reliability
of the present time-dependent treatment of MPI during
propagation. Here, the third-order nonlinearities are expected
instead of the second-order ones of the previous example.
This case is studied with the following characteristics for
the laser pulse: initial wavelength λ = 400 nm, temporal
characteristics similar to the previous case, and a maximum
electric field of 2 × 109 V/m corresponding to an intensity of
∼0.83 TW/cm2. Regarding the material properties, they are
modeled with a band gap of 9 eV and a realistic third-order
susceptibility χ (3) = 2 × 10−22 m2/V2 [26] (since fused silica
is a centrosymmetric material the second-order susceptibility
is zero). With these physical parameters, three fundamental
photons are required to promote valence electrons to the
conduction band, whereas only one is required for the third-
harmonic radiation.
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FIG. 3. (Color online) For frequency conversion in silica, evolu-
tion of the free-electron density nFE as a function of time at the surface
and after 20 μm of propagation in three cases: χ (3) = 0, χ (3) > 0,
and χ (3) < 0.

Figure 3 presents the temporal evolution of the free-electron
density after 20 μm of propagation for three cases: χ (3) = 0,
χ (3) > 0, and χ (3) < 0, where the absolute value of the
susceptibility is the one provided before. These results can
be compared to the reference case of the electron density at
the surface with no propagation effect. The density shapes
at the surface or after propagation of 20 μm with χ (3) = 0
are very similar, indicating no significant modification of
the laser pulse during propagation: no absorption, since the
initial intensity is too low, and no frequency conversion, since
χ (3) = 0. This shape consists of a fast increase up to roughly
the maximum of the laser electric field, followed by a slow
decrease accounting for recombination to the VB. When χ (3) is
different from zero, the maximum electron density is increased
by a factor of ∼50. With respect to time, the departure of this
electron density from the one obtained with χ (3) = 0 takes
place near the maximum of the electric field, suggesting the
expected presence of nonlinear effects. This departure is due
to third-harmonic generation (THG) as depicted by Fig. 4,
which shows the spectral components of the laser electric field
at 1ω and 3ω. Instead of a three-photon MPI process induced
by the fundamental pulse, a one-photon process is allowed
by the third harmonic, thus leading to a strong increase in
the ionization rate in the course of propagation as long as the
amplitude of the third harmonic is increasing.

Figure 4(a) shows the frequency spectrum of the laser
electric field around the fundamental radiation after a prop-
agation over 20 μm, obtained through a Fourier transform in
various cases: with or without ionization and with various
signs of χ (3). Without ionization and whatever the value of
χ (3), or with ionization and χ (3) = 0, the spectra exhibit the
same shape above 1 × 1011 a.u., accounting for the fact that
there is no perturbation due to nonlinear effects under these
conditions. When ionization is allowed and χ (3) is different
from zero, spectral broadening takes place, accounting for the
electron contribution to the susceptibility. This is confirmed
by Fig. 4(b), which shows the frequency spectrum around the
third harmonic within the same configurations as in Fig. 4(a):
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FIG. 4. (Color online) (a) Spectra of the fundamental laser pulse
in various cases after a propagation of 20 μm in silica where third-
harmonic generation takes place. (b) Same as previously for the third
harmonic.

when χ (3) = 0, no significant third-harmonic generation takes
place. As expected, since χ (3) is different from zero, significant
THG occurs. When ionization is introduced, first THG is more
efficient, further indicating the contribution of CB electrons to
χ (3). Indeed, a Fourier transform of nFE(t) shows a significant
component at 2ω (due to the fact that ionization mainly takes
place every half optical cycle). The combination of both the
fundamental radiation at ω and the previous 2ω contribution
in the Maxwell equations then can lead to the observed
additional THG. Furthermore, discrepancies between χ (3) > 0
and χ (3) < 0 can be observed. First, in both cases, a slight
shift in the central frequency appears, the sign of which
depends on the one of χ (3). Second, χ (3) < 0 leads to a better
THG than the χ (3) > 0 configuration. The influence of these
slight differences appearing in the THG is correctly taken into
account by the BVkP model, which predicts discrepancies in
the free-electron production depending on the sign of χ (3) as
shown by Fig. 3.

Now, the case of a chirped pulse propagating in fused
silica is considered. This case is studied with the following
parameters for the laser pulse: initial central wavelength
λ = 333 nm (3.54 eV) with a spectral broadening of roughly
4 × 1014 Hz (0.7 eV) at 10% of the maximum intensity.
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Temporal pulse characteristics are similar to the previous case,
and a maximum electric field of 4 × 1010 V/m corresponding
to a maximum intensity of roughly 330 TW/cm2 has been
chosen. Regarding the material properties, they are modeled
with a band gap of 9 eV. Contrary to the previous case,
time dispersion is reintroduced to allow various frequencies
to propagate at different speeds, but χ (3) is set to zero in order
to only exhibit the influence of the chirp on both coupled
ionization and pulse propagation. Doing so, we can separate
such physical effects as chirp and frequency conversion, thus
exhibiting clearly the influences of each process. Within
the present conditions, ionization takes place first with a
three-photon absorption followed by a four-photon absorption
or the opposite depending on the chirp sign.

In order to exhibit the influence of instantaneous frequency
variations, the BVkP approach is compared to a simple
model, called EIM for empirical ionization model, accounting
for multiphoton absorption only through a generalized cross
section, i.e., defining the ionization rate as W = σnI

nN0 where
n is the number of simultaneously absorbed photons to bridge
the band gap. Under the present conditions, n is set to 3, which
corresponds to the central wavelength of the presently used
chirped pulse, and σ3 has been set to 10−55 m6 s2 J−3 in order
to estimate an order of magnitude for ionization comparable to
the BVkP prediction. We emphasize that the EIM model does
not account for frequency variations within the laser pulse.

Figure 5 shows the evolution of the free-electron density
in the CB as a function of time at z = 0 as predicted by both
the BVkP approach and EIM model, and with both positive
(increasing frequency) and negative (decreasing frequency)
chirps. As expected, the EIM approach provides similar
density evolutions whatever the sign of the chirp since no
time-dependent frequency is included in this model: the
evolution of the free-electron density consists of a rapid
increase up to the maximum allowed value (full depletion
of the valence band due to impact ionization) followed by
a decrease related to recombinations. For a negative chirp,
the BVkP approach predicts the same trends because the
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FIG. 5. (Color online) Evolution of the free-electron density nFE

as a function of time at z = 0 (without propagation) as predicted by
both EIM and BVkP approaches for a laser pulse in silica with both
positive and negative chirps.

0 0.5 1 1.5 2
Distance (µm)

10
3

10
4

10
5

A
bs

or
be

d 
en

er
gy

 (
J/

cm
-3

)

absorption BVKP >0
absorption BVKP <0
absorption EIM >0
absorption EIM <0
ionization BVKP >0
ionization BVKP <0
ionization EIM >0
ionization EIM <0

(a)

0 5 10 15 20
Distance (µm)

10
2

10
3

10
4

10
5

A
bs

or
be

d 
en

er
gy

 (
J/

cm
-3

)

absorption BVKP >0
absorption BVKP <0
absorption EIM >0
absorption EIM <0
ionization BVKP >0
ionization BVKP <0
ionization EIM >0
ionization EIM <0

(b)

FIG. 6. (Color online) Evolution of the absorbed energy density
to ionize (dashed lines) and to both ionize and heat by inverse
bremsstrahlung (solid lines) as a function of the propagation distance
in silica with chirped pulses as predicted by both EIM and BVkP
approaches. (a) Focus on a relatively short propagation distance from
0 to 2 μm. (b) Propagation over longer distances up to 20 μm.

interaction also begins with the three-photon absorption. When
the four-photon absorption takes place, the density is already
saturated, thus leading to similar predictions as the EIM
approach. However, the density as predicted by the BVkP
approach begins to decrease before the EIM prediction because
the four-photon rate is not sufficient to sustain the density at
the saturated value during the same temporal interval as the
EIM model predicts a larger ionization rate. For a positive
chirp, the BVkP predicts a slower increase in the density, thus
accounting correctly for the fact that the interaction begins with
a four-photon absorption whose associated ionization rate is
slower than the three-photon one. This case thus confirms the
ability of the BVkP approach to account for time-dependent
variations of pulse characteristics.

The observations related to the density variation in Fig. 5
are confirmed by considering the absorbed energy spent for
ionization in Fig. 6(a), which shows its evolution as a function
of the propagation distance from 0 to 2 μm. At the origin,
the energy spent for ionization is the same for the EIM
approach whatever the chirp sign and for the BVkP model
with the negative chirp, whereas it is smaller as predicted
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by the BVkP approach in the case of positive chirp (dashed
lines). The solid lines depict the total laser-pulse absorption
due to both ionization and heating of produced conduction
electrons. As in the previous case, where only ionization was
considered, the BVkP approach with positive chirp always
departs from the three others. It turns out that the signature of
the chirp sign survives even in the case where all absorption
mechanisms are included, whereas the efficiency of heating
through IB exhibits an opposite dependence with respect
to the laser frequency compared to ionization: the smaller
the frequency, the higher the IB heating rate. After a short
propagation distance of 2 μm, the chirp sign does not change
yet both the ionization and total absorptions, even as predicted
by the BVkP approach. This trend then remains unchanged
along the propagation up to z = 20 μm as shown by Fig. 6(b).
This observation can be explained by the fact that the total
energy of the positively chirped pulse with BVkP decreases
slower than other configurations with the propagation distance,
thus leading to a stronger absorption. This slight change
is also due to the temporal evolution of the pulse in the
course of propagation. Indeed, due to dispersive effects in
the propagation speed, it turns out that low laser frequencies
travel faster than high frequencies, resulting in a compression
of negatively chirped pulses as illustrated by Fig. 7(a), which
shows the temporal evolution of the laser electric field for both
chirp signs at z = 20 μm. As a consequence, more time is
available for electronic transitions and associated absorption
for positive chirp in the BVkP ionization model. Finally,
at z = 20 μm, despite the fact that absorbed energies for
ionization are similar for BVkP and for both chirp signs,
the total absorbed energy for the positive chirp is the largest
because longer wavelengths have more time to heat the free
electrons. Indeed, this process takes place at the very beginning
of the laser pulse, where most of the free electrons have already
been produced.

The previous results have shown that the total absorbed
energy is mainly due to the free-electron heating by IB. This
is confirmed by the frequency spectra of the laser pulse after
20 μm of propagation in the various cases as depicted by
Fig. 7(b). A significant heating leading to a decrease in the
intensity is possible when the density of free electrons is
sufficiently high. In the case of a negative chirp, a significant
electron density is produced at the beginning of the pulse,
allowing the tail of the pulse, i.e., longest wavelengths, to
heat and to induce the largest absorption. This leads to a
depopulating of the smallest frequencies. For a positive chirp,
a significant density is produced later; the heating thus mainly
takes place with the shortest wavelengths. The spectrum thus is
depopulated in the high-frequency region. The latter influences
are enhanced when modeling the ionization with the BVkP
approach since the temporal ionization dynamics is described
more accurately than the EIM approach.

Finally, it is worth noting that in the present cases of
frequency conversion a coupled set of NLSEs for each
frequency as developed in, e.g., [27], associated with the EIM
model for ionization, would also be able to provide similar
results under conditions where no mixing of both frequencies
contributes to the ionization. In the case of a chirped pulse, it
could be possible to change the value of n with time in the EIM
approach to account for temporal frequency variations. This is
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FIG. 7. (Color online) After a propagation over 20 μm in silica
of both positively and negatively chirped pulses, (a) evolution of the
laser electric field as a function of time and (b) spectra of the laser
intensity as predicted by both the EIM and BVkP approaches.

possible in this particular case due to the simple evolution of
the frequency, thus allowing the establishment of a pertinent
criterion for the MPI order. The strength of the present BVkP
approach, where a full consideration of the temporal variations
of the electric field is included, is to consistently account for
the broad spectrum influence on the ionization dynamics in
every situation as long as the MPI prevails.

IV. CONCLUSION

To summarize, a time-dependent ionization model and its
coupling to a 3D propagation solver have been presented.
The present development has been used to model ionization
and propagation of a laser pulse in realistic media where
strong variations in the frequency spectrum take place. This
introduces strong variations in the ionization dynamics, which
in turn affects the pulse propagation dynamics.

The frequency conversion cases demonstrate the ability of
the BVkP model to account consistently for the evolution of
the laser-pulse spectrum through the formation of additional
ionization paths to bridge the band gap in the course of
propagation. In the case of third-harmonic generation, despite
the fact that the intensity of the harmonic is only 1% of the
fundamental radiation, the electron production is dramatically
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enhanced by a factor of 50. Furthermore, even the influence
of the sign of the third-order nonlinear susceptibility is
correctly taken into account in the BVkP model, which
predicts differences in the free-electron production depending
on this sign. In the case of propagation of a chirped pulse,
instantaneous variations of the number of photons depending
on the chirp sign are correctly described by the present model,
which exhibits significantly different ionization dynamics.
Despite the fact that a few simplifications of physical effects
have been introduced in the present studied cases in order to
enhance the influence of the pulse spectrum, such ionization-
propagation coupling effects are expected to play a role in real
conditions.

The present observations exhibit the highly nonlinear
characteristic of such coupled mechanisms and the importance

of an accurate and consistent description of the coupling
between both ionization and propagation processes. The ability
of the BVkP ionization model to account for these physical
effects opens a door for further developments to improve
the physical description of the interaction by introducing in
particular impact ionization also in a consistent way. This
further model is expected to shed light on conditions where
an electron avalanche can be engaged depending on both laser
and material parameters.
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[20] J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and

A. Zigler, Phys. Rev. E 72, 036412 (2005).
[21] P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira,

P. Meynadier, and M. Perdrix, Phys. Rev. B 55, 5799
(1997).

[22] S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier,
and G. Petite, Nucl. Instrum. Methods B 116, 43 (1996).

[23] F. Quere, S. Guizard, and P. Martin, Europhys. Lett. 56, 138
(2001).

[24] G. Duchateau, G. Geoffroy, A. Dyan, H. Piombini, and
S. Guizard, Phys. Rev. B 83, 075114 (2011).

[25] L. Hallo, A. Bourgeade, V. T. Tikhonchuk, C. Mezel, and
J. Breil, Phys. Rev. B 76, 024101 (2007).

[26] E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa,
B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk,
Phys. Rev. B 73, 214101 (2006).

[27] M. B. Gaarde and A. Couairon, Phys. Rev. Lett. 103, 043901
(2009).

053837-8

http://dx.doi.org/10.1364/AO.48.002051
http://dx.doi.org/10.1364/AO.48.002051
http://dx.doi.org/10.1364/AO.48.002051
http://dx.doi.org/10.1364/AO.48.002051
http://dx.doi.org/10.1070/QE2011v041n11ABEH014694
http://dx.doi.org/10.1070/QE2011v041n11ABEH014694
http://dx.doi.org/10.1070/QE2011v041n11ABEH014694
http://dx.doi.org/10.1070/QE2011v041n11ABEH014694
http://dx.doi.org/10.1088/0034-4885/77/1/016401
http://dx.doi.org/10.1088/0034-4885/77/1/016401
http://dx.doi.org/10.1088/0034-4885/77/1/016401
http://dx.doi.org/10.1088/0034-4885/77/1/016401
http://dx.doi.org/10.1088/0034-4885/70/10/R03
http://dx.doi.org/10.1088/0034-4885/70/10/R03
http://dx.doi.org/10.1088/0034-4885/70/10/R03
http://dx.doi.org/10.1088/0034-4885/70/10/R03
http://dx.doi.org/10.1103/PhysRevB.61.11437
http://dx.doi.org/10.1103/PhysRevB.61.11437
http://dx.doi.org/10.1103/PhysRevB.61.11437
http://dx.doi.org/10.1103/PhysRevB.61.11437
http://dx.doi.org/10.1063/1.3507125
http://dx.doi.org/10.1063/1.3507125
http://dx.doi.org/10.1063/1.3507125
http://dx.doi.org/10.1063/1.3507125
http://dx.doi.org/10.1117/12.867347
http://dx.doi.org/10.1117/12.867347
http://dx.doi.org/10.1117/12.867347
http://dx.doi.org/10.1117/12.867347
http://dx.doi.org/10.1103/PhysRevA.81.033818
http://dx.doi.org/10.1103/PhysRevA.81.033818
http://dx.doi.org/10.1103/PhysRevA.81.033818
http://dx.doi.org/10.1103/PhysRevA.81.033818
http://dx.doi.org/10.1103/PhysRevE.85.056403
http://dx.doi.org/10.1103/PhysRevE.85.056403
http://dx.doi.org/10.1103/PhysRevE.85.056403
http://dx.doi.org/10.1103/PhysRevE.85.056403
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1364/JOSAB.17.000226
http://dx.doi.org/10.1364/JOSAB.17.000226
http://dx.doi.org/10.1364/JOSAB.17.000226
http://dx.doi.org/10.1364/JOSAB.17.000226
http://dx.doi.org/10.1023/B:SUPE.0000022100.04162.86
http://dx.doi.org/10.1023/B:SUPE.0000022100.04162.86
http://dx.doi.org/10.1023/B:SUPE.0000022100.04162.86
http://dx.doi.org/10.1023/B:SUPE.0000022100.04162.86
http://dx.doi.org/10.1063/1.3510477
http://dx.doi.org/10.1063/1.3510477
http://dx.doi.org/10.1063/1.3510477
http://dx.doi.org/10.1063/1.3510477
http://dx.doi.org/10.1103/PhysRevLett.78.3282
http://dx.doi.org/10.1103/PhysRevLett.78.3282
http://dx.doi.org/10.1103/PhysRevLett.78.3282
http://dx.doi.org/10.1103/PhysRevLett.78.3282
http://dx.doi.org/10.1063/1.2140476
http://dx.doi.org/10.1063/1.2140476
http://dx.doi.org/10.1063/1.2140476
http://dx.doi.org/10.1063/1.2140476
http://dx.doi.org/10.1103/PhysRev.57.184
http://dx.doi.org/10.1103/PhysRev.57.184
http://dx.doi.org/10.1103/PhysRev.57.184
http://dx.doi.org/10.1103/PhysRev.57.184
http://dx.doi.org/10.1103/PhysRevE.72.036412
http://dx.doi.org/10.1103/PhysRevE.72.036412
http://dx.doi.org/10.1103/PhysRevE.72.036412
http://dx.doi.org/10.1103/PhysRevE.72.036412
http://dx.doi.org/10.1103/PhysRevB.55.5799
http://dx.doi.org/10.1103/PhysRevB.55.5799
http://dx.doi.org/10.1103/PhysRevB.55.5799
http://dx.doi.org/10.1103/PhysRevB.55.5799
http://dx.doi.org/10.1016/0168-583X(96)00008-0
http://dx.doi.org/10.1016/0168-583X(96)00008-0
http://dx.doi.org/10.1016/0168-583X(96)00008-0
http://dx.doi.org/10.1016/0168-583X(96)00008-0
http://dx.doi.org/10.1209/epl/i2001-00499-9
http://dx.doi.org/10.1209/epl/i2001-00499-9
http://dx.doi.org/10.1209/epl/i2001-00499-9
http://dx.doi.org/10.1209/epl/i2001-00499-9
http://dx.doi.org/10.1103/PhysRevB.83.075114
http://dx.doi.org/10.1103/PhysRevB.83.075114
http://dx.doi.org/10.1103/PhysRevB.83.075114
http://dx.doi.org/10.1103/PhysRevB.83.075114
http://dx.doi.org/10.1103/PhysRevB.76.024101
http://dx.doi.org/10.1103/PhysRevB.76.024101
http://dx.doi.org/10.1103/PhysRevB.76.024101
http://dx.doi.org/10.1103/PhysRevB.76.024101
http://dx.doi.org/10.1103/PhysRevB.73.214101
http://dx.doi.org/10.1103/PhysRevB.73.214101
http://dx.doi.org/10.1103/PhysRevB.73.214101
http://dx.doi.org/10.1103/PhysRevB.73.214101
http://dx.doi.org/10.1103/PhysRevLett.103.043901
http://dx.doi.org/10.1103/PhysRevLett.103.043901
http://dx.doi.org/10.1103/PhysRevLett.103.043901
http://dx.doi.org/10.1103/PhysRevLett.103.043901



