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Coherent cancellation of backaction noise in optomechanical force measurements
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Optomechanical detectors have reached the standard quantum limit in position and force sensing where
measurement backaction noise starts to be the limiting factor for the sensitivity. A strategy to circumvent
measurement backaction and surpass the standard quantum limit has been suggested by M. Tsang and C.
Caves [Phys. Rev. Lett. 105, 123601 (2010)]. We provide a detailed analysis of this method and assess its
benefits, requirements, and limitations. We conclude that a proof-of-principle demonstration based on a micro-
optomechanical system is demanding but possible. However, for parameters relevant to gravitational-wave
detectors, the requirements for backaction evasion appear to be prohibitive.
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I. INTRODUCTION

The accuracy of any quantum-mechanical measurement
is limited by the Heisenberg uncertainty principle. For a
force measurement based on an optomechanical sensor [1–5],
that is, a harmonically bound test mass whose position is
probed optically, this principle is present in Poisson statistical
amplitude quadrature noise at the detection port (also known
as shot noise) and radiation pressure backaction noise in the
phase quadrature, introduced by the harmonic oscillator [6].
Shot noise is a well-known effect limiting high-precision
interferometric experiments such as the Laser Interferometer
Gravitational-Wave Observatory (LIGO) at high frequen-
cies [7]. Radiation pressure noise, which was recently observed
for the first time [8,9], will be limiting in the low-frequency
regime of next-generation gravitational-wave detectors [10].
The point at which both of these noise sources contribute
equally to the total noise gives a lower bound for classical
detection sensitivity and is called the standard quantum limit
of interferometry (SQL) [1–3].

To overcome the SQL in force measurements, differ-
ent approaches have been proposed: frequency-dependent
squeezing [11] and variational measurement [12], the use
of Kerr media [13], dual mechanical resonators [14,15], the
optical spring effect [16], stroboscopic measurements [17],
and two-tone measurements [18–22]. Some of these have been
demonstrated experimentally [23–25]. A backaction-evading
scheme suggested by Tsang and Caves [26] proposes to
coherently cancel out the effects of backaction noise; this
is dubbed coherent quantum noise cancellation (CQNC). In
contrast to other proposed backaction-evading techniques, this
scheme destructively interferes the backaction noise with its
counterpart, an “antinoise” process introduced deliberately to
the optomechanical force sensor. In the context of atomic spin
measurements an analogous idea for coherent backaction can-
cellation was proposed independently [27,28] and was applied
for magnetometry below the standard quantum limit [29].

In a conventional optomechanical detector force is esti-
mated from its effect on the position on a test mass. The
displacement of the test mass is read out optically from the
phase shift it induces on light reflected off an optomechanical
cavity [see Fig. 1(a)]. Backaction noise arises from amplitude
(quantum) fluctuations of light which provide an additional

(backaction) noise force on the test mass. For sufficiently
intense probe light this force will be read out by light as well
and will appear as a spurious signal (backaction noise) in
the phase shift. The central idea in the scheme of Tsang and
Caves [26] for backaction noise cancellation is to couple a
second, auxiliary optical cavity to the optomechanical cavity
which is also driven by amplitude fluctuations of probe light
but reacts to it in the exactly opposite way. This can be
achieved if the ancillary system has a mass which is equal in
magnitude to that of the test mass but is effectively negative.
The displacement of the ancillary system due to amplitude
fluctuations will then be equal but opposite to that of the
test mass, such that the two spurious phase shifts in the
optomechanical cavity compensate each other exactly. Thus,
backaction noise is coherently canceled. In the scheme [26] the
negative mass system is realized by means of an ancilla cavity
coupled to the optomechanical cavity as shown schematically
in Fig. 1(b) and explained in more detailed below. Note
that it is also possible to achieve the same backaction noise
cancellation effect by modifying the input or output optics
[26]. While we focus on the particular realization shown in
Fig. 1(b) we stress that our main conclusions apply also to the
other possible implementations proposed in [26]. Other setups
which provide effective negative masses of ancilla systems
for CQNC have been suggested and employ inverted atomic
spins [28] or Bose-Einstein condensates [30]. The combination
of a two-tone drive technique and positive-negative mass
oscillators for backaction-free force measurements has been
discussed in [31]. On a more formal level, the mechanism can
also be viewed as realizing an effectively classical dynamic in
a subspace of an enlarged quantum system [32,33].

In this article we consider in more detail the all-optical
realization of CQNC by Tsang and Caves [26], as shown in
Fig. 1(b). For ideal CQNC the test mass and ancilla system
should be equally but oppositely susceptible to amplitude
fluctuations of light. Here we determine the experimental
requirements of this matching of susceptibilities of the me-
chanical system and the cavity and discuss the consequences
of imperfect matching. Our main findings are as follows:
While under ideal conditions the improvement below SQL
can be on the order of the inverse mechanical quality factor
of the test mass Qm, the improvement below SQL under
realistic conditions is given by the ratio κa/ωm of ancilla
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FIG. 1. (Color online) (a) Optomechanical cavity without noise
cancellation. (b) Cavity with coherent quantum noise cancellation. An
auxiliary cavity coupled to the main cavity via a beam splitter and an
OPA process provides an antinoise path for backaction cancellation.

cavity linewidth to mechanical resonance frequency where the
cavity linewidth is larger than the linewidth of the test mass
resonance γm = ωm/Qm < κa. Achieving a ratio κa/ωm < 1 is
possible with micromechanical oscillators, and we provide an
experimental case study for a proof-of-principle demonstration
of CQNC with such systems. However, for the free-mass
limit (ωm → 0) as relevant to gravitational-wave detectors
the requirement on the ancilla cavity linewidth appears to be
prohibitive.

In Sec. II we introduce our model for optomechanical
force sensing and compare the standard case [Fig. 1(a)]
subject to the SQL with the suggested setup [Fig. 1(b)] for
CQNC. We determine the central conditions for ideal CQNC
on the physical parameters of the system. In Sec. III we
discuss the feasibility of these requirements, determine the
impact of violations of the conditions for ideal CQNC, and
provide an experimental case study for a micromechanical
implementation.

II. FORCE SENSING WITH AND WITHOUT
BACKACTION NOISE

A. Model

We consider a generic optomechanical force detector as
shown in Fig. 1. The force F(t) to be detected acts on a
harmonically bound probe mass m whose position X(t) and
momentum P (t) obey

Ẋ = P/m

Ṗ = −mω2
mX − γmP + fT + F.

ωm is the oscillation frequency, and γm is the damp-
ing rate of the mechanical oscillator. fT (t) is the ther-
mal Langevin force associated with the damping. For
simplicity, we assume a white thermal noise force, such
that 〈fT (t)fT (t ′)〉= 2γmmkBT δ(t − t ′) (valid in the high-
temperature limit). In the following it will be convenient to
work with dimensionless position and momentum variables
xm = X/xZPF and pm = PxZPF/�, where the zero-point fluc-
tuation is xZPF = √

�/mωm, such that [xm,pm] = i and

ẋm = ωmpm,

ṗm = −ωmxm − γmpm + √
γm(fT + F ). (1)

We have introduced scaled force operators fT = fT /√
�mγmωm and F = F/

√
�mγmωm with dimension Hz1/2. The

scaled thermal force obeys 〈fT (t)fT (t ′)〉 = n̄δ(t − t ′), where
n̄ = kBT /�ωm is the mean number of phonons in thermal
equilibrium [34].

The force F (t) applied to the oscillator is estimated from
a continuous weak measurement of the position of the probe
mass accomplished through optical readout. We assume the
oscillating test mass is one of the mirrors of an optical cavity
[see Fig. 1(a)]. The length change of the cavity due to the force
F (t) applied on the mirror is detected as a phase change in the
light reflected off the cavity such that the force can be estimated
from a phase-sensitive homodyne detection of the light field.
The precision of the corresponding estimate will be bounded
by the SQL due to the measurement backaction, as discovered
by Caves et al. [1]. We will summarize the quantitative
formulation of the SQL as relevant to force detection as we
go along. The setup for coherent backaction cancellation and
sub-SQL force detection introduced by Tsang and Caves [26]
is shown in Fig. 1(b). It essentially corresponds to the standard
setup of Fig. 1(a) with an additional ancilla cavity properly
coupled to the primary optomechanical cavity used for position
readout. In the following we will describe the dynamics of
the system shown in Fig. 1(b) and concretize our results to
the standard case without backaction cancellation shown in
Fig. 1(a) where appropriate.

The primary optomechanical cavity (also referred to as the
meter cavity) will be described by dimensionless amplitude
and phase quadratures [xc,pc] = i, and the ancilla cavity used
for backaction cancellation will be given by [xa,pa] = i. We
will also use the corresponding annihilation operators c =
(xc + ipc)/

√
2 and a = (xa + ipa)/

√
2. The dynamics of the

two cavities, their mutual coupling, and the coupling to the
mechanical oscillator are described by the Hamiltonian

H = −�a†a + gxc xm + gBS(ac† + a†c) + gDC(ac + a†c†),

(2)

which is written here in a frame rotating at the resonance
frequency ωc of the meter cavity. � = ωc − ωa is the detuning
of the meter cavity from the frequency ωa of the ancilla cavity.
The term proportional to g describes the radiation pressure
interaction between the primary cavity and the mirror. Its
strength is given by g = ωcxZPFαc/L, where L is the cavity
length and αc is the field amplitude in the meter cavity. The
latter is given by αc = √

P/�ωcκc, where P is the input power
driving the cavity and κc is its linewidth. For a derivation of
this standard treatment of the radiation pressure interaction
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in optomechanical systems we refer to [5]. The last two
terms in the Hamiltonian (2) describe the coupling of the
ancilla cavity to the meter cavity as required for backaction
cancellation and shown in Fig. 1. The first term describes a
passive beam-splitter-like mixing of the two cavity modes,
while the second term denotes an active downconversion
dynamic of the two modes through a nondegenerate optical
parametric amplifier (OPA). The strength of the beam-splitter
process is given by gBS = rc/L, with r being the beam-splitter
reflectivity and c being the speed of light. Without loss of
generality we assume the lengths L of the ancilla cavity and
meter cavity to be equal. The nonlinear coupling strength
is gDC = �lc/L, with crystal length l and gain parameter �

(see Sec. III C).
The Hamiltonian (2) implies the equations of motion for

the field quadratures of the meter and the ancilla cavity,

ẋc = −κc

2
xc + (gBS − gDC)pa − √

κcx
in
c , (3)

ṗc = −κc

2
pc − (gBS + gDC)xa − gxm − √

κcp
in
c , (4)

ẋa = −κa

2
xa + �pa + (gBS − gDC)pc − √

κax
in
a , (5)

ṗa = −κa

2
pa − �xa − (gBS + gDC)xc − √

κap
in
a , (6)

and adds an additional term to the equation of motion (1) of
the mechanical oscillator,

ẋm = ωmpm, (7)

ṗm = −ωmxm − γmpm + i[H,pm] + √
γm(f + F )

= −ωmxm − γmpm − gxc + √
γm(f + F ). (8)

In Eqs. (3) to (6) we also added the decay of cavity modes
at rates κa and κc along with white vacuum noise pro-
cesses ain(t) = (x in

a + ipin
a )/

√
2 and cin(t) = (x in

c + ipin
c )/

√
2.

The noise processes fulfill 〈ain(t)a†
in(t ′)〉 = δ(t − t ′) and

〈cin(t)c†in(t ′)〉 = δ(t − t ′).
Equations (3) to (8) describe the coupled dynamics of the

mirror and the intracavity fields. The force F (t) in Eq. (8)
imprints, through Eq. (7), its trace in the phase quadrature of
the meter cavity pc [see Eq. (4)]. It can therefore be detected
in the output field of the meter cavity, which follows from
the intracavity phase quadrature by means of the input-output
relation [35]

pout
c (t) = pin

c (t) + √
κcpc(t). (9)

We note that the optical measurement of the force F (t)
comes at the cost of an additional force acting on the mirror
proportional to the amplitude quadrature of the meter cavity
xc [see Eq. (8)]. This is the measurement backaction force
ultimately giving rise to the standard quantum limit in force
(or position) sensing.

The set of linear equations of motion (3) to (8) can be solved
for the operators in the frequency domain defined by

pc(ω) = 1√
2π

∫
dt pc(t)eiωt

and analogously for all other quantities. In conjunction with
the cavity input-output relation (9) it is straightforward to
determine the solution for the phase quadrature of the output
field of the meter cavity pout

c (ω) in its dependence on all the
forces driving the system. Details of this calculation are given
in the Appendix.

B. Force sensing without CQNC: The standard quantum limit

We consider first the standard setup for optomechanical
force sensing without CQNC. This corresponds to a setup
without an ancilla cavity [Fig. 1(a)] or, formally equivalent,
with an ancilla cavity which is not coupled to the meter cavity,

gBS = gDC = 0.

In this case the output phase quadrature in frequency space
(see the Appendix) is

pout
c = eiφpin

c + √
γmκcgχcχm[fT + F ] + κcg

2χ2
c χmx in

c ,

(10)

where eiφ = (iω − κc

2 )/(iω + κc

2 ). We have defined the suscep-
tibilities of the meter cavity χc and the mechanical oscillator
χm,

χc(ω) =
[
iω + κc

2

]−1

, (11)

χm(ω) = ωm
[(

ω2 − ω2
m

) − iωγm
]−1

. (12)

The frequency dependence of field quadratures, forces, and
susceptibilities in Eq. (10) is understood to be ω unless stated
differently. Therefore we will drop the explicit mention of ω

in the following equations. The four terms on the right-hand
side of Eq. (10) describe, respectively, phase (shot) noise of
light, thermal noise from Brownian motion of the mirror, the
signal force to be detected, and backaction noise proportional
to the amplitude quadrature of the input field.

In order to simplify the equations we will consider the limit
where the linewidth of the meter cavity is larger than any
measurement frequency of interest, κc � ω. In this case the
susceptibility (11) becomes χc � 2/κc, and it will be useful to
introduce the effective measurement strength

G = 4g2

κc
=

(
2

π

)2
ωcFcP

ωmmc2
,

where Fc = πc/κcLc is the Finesse of the meter cavity.
Expression (10) for the phase quadrature simplifies to

pout
c = eiφpin

c +
√

γmGχm[fT + F ] + Gχmx in
c . (13)

We emphasize that the assumption κc � ω can be easily
dropped at the cost of a somewhat more clumsy notation.
The conclusions drawn in the following regarding achievable
sensitivities are general and also hold also for measurement
frequencies larger than the meter cavity linewidth.

Given the measurement of the phase quadrature pout
c (ω) the

optimal unbiased estimator F̂ (ω) of the force F (ω) is

F̂ = 1√
γmG χm

pout
c = F + F add, (14)
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FIG. 2. (Color online) Noise power spectral densities SF (ω) of
force measurement vs measurement strength G (∝ power) at a fixed
frequency ω. The spectral density without coherent noise cancellation
[Eq. (15), dotted blue line] exhibits its minimum at the standard
quantum limit SSQL = 1/γm|χm|, Eq. (16), at an optimal G = 1/χm.
The spectral density with coherent noise cancellation, Eq. (24), is
shown for ω = ωm (yellow dot-dashed line) and for off-resonant
frequencies (dashed purple line). On resonance no improvement
below the SQL is possible; off resonance the SQL can be surpassed by
up to a factor of 1/2Qm. In the case of imperfect CQNC (solid green
line) due to an ancilla cavity linewidth larger than the mechanical
linewidth, κa > γm, the spectral density in Eq. (28) will be limited by
backaction noise, but the minimum still falls below SQL if κa < 2ωm.
Here ωm/κa = 0.1.

where the added force noise F add(ω) at detection frequency ω

is

F add = f + eiφ

√
γmG χm

pin
c +

√
G

γm
x in

c .

Noise is added due to the thermal Langevin force (first
term), shot noise in the phase quadrature (second term), and
backaction from amplitude noise (third term).

The sensitivity of the force measurement is commonly
quantified by the (power) spectral density of added noise SF (ω)
defined through

SF (ω)δ(ω − ω′) = 1
2 〈F add(ω)F add(−ω′)〉 + c.c.

Assuming that amplitude and phase quadratures are uncorre-
lated and shot noise is limited as given above, the added noise
spectral density is

SF = kBT

�ωm
+ 1

2γmG|χm|2 + G

2γm
. (15)

As it stands, the noise spectral density is dimensionless. In
order to convert this into a force noise spectral density SF (ω)
in units of N2 Hz−1 we have to multiply by the scale factor
introduced in Sec. II A, such that SF (ω) = �mγmωmSF (ω) for
the particular optomechanical force sensor. In view of Eq. (15),
thermal Brownian noise provides a flat background to the force
sensitivity independent of the measurement strength G and
therefore also independent of power, G ∝ P . Accordingly,
measurement noise (due to phase noise) scales inversely
proportionally and measurement backaction noise (due to
amplitude noise) scales proportionally to the power. The noise
spectral density (15) is illustrated in Fig. 2.

This implies that, for a given detection frequency ω, there is
an optimal value for the power used in the optical force readout.
Minimizing the right-hand side of Eq. (15) with respect to
power (or equivalently with respect to G) gives a lower bound
for the achievable sensitivity,

SF (ω) � 1

γm|χm(ω)| ≡ SSQL(ω), (16)

the standard quantum limit of continuous force sensing.
Achieving this bound at a particular frequency ω requires a
negligible thermal force [smaller than SSQL(ω)] and a power
such that the measurement strength is

GSQL(ω) = 1

|χm(ω)| . (17)

C. Force sensing with CQNC: Ideal case

Next, we want to consider the scheme for continuous
force sensing with coherent backaction noise cancellation. In
addition to the proposal of Tsang and Caves we consider the
case of finite cavity linewidths and give limitations to the
couplings and matchings of the optical setup. CQNC is ideally
achieved if the ancilla cavity is coupled to the meter cavity in
such a way that

gBS = gDC, g = gBS + gDC. (18)

The rationale behind this particular choice will be made clear
below. Assuming conditions (18), the output phase quadrature
is again easily found to be (see the Appendix)

pout
c = eiφpin

c +
√

γmGχm[fT + F ]

−
√

2κaGχa

[
iω + κa/2

�
x in

a + pin
a

]
+ G[χm + χa]x in

c ,

(19)

which generalizes Eq. (10). Two new terms have appeared:
The measurement backaction (last line) now contains a
contribution which scales with the susceptibility of the ancilla
cavity,

χa(ω) = �

[(
ω2 − �2 − κ2

a

4

)
− iωκa

]−1

, (20)

defined here in analogy to the mechanical susceptibility χm

in Eq. (12). Overall, the backaction now is proportional to
the difference of the mechanical susceptibility and that of
the ancilla cavity. This means that measurement backaction
affects the measured phase quadrature through two interfering
channels. The key to the desired backaction cancellation will
be to ensure this interference is destructive. The other new
contribution in Eq. (19) (next to last term) corresponds to
shot noise from the ancilla cavity transferred to the phase
quadrature of the meter cavity and will ultimately set the
new limit to measurement sensitivity, as will be explained
below.

The optimal estimator for the force F (ω) will still be given
by Eq. (14), with the phase quadrature now given by Eq. (19).
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Thus the added noise becomes

F add = fT + eiφ

√
γmG χm

pin
c −

√
2κa

γm

χa

χm

×
[
iω + κa/2

�
x in

a +pin
a

]
+

√
G

γm

χm + χa

χm
x in

c . (21)

If conditions are such that

χm(ω) = −χa(ω) (22)

for all ω, the last term in Eq. (21) vanishes, and backaction
will be completely canceled in the force measurement. In view
of the explicit forms of the susceptibilities of the mechanical
oscillator and the ancilla cavity, Eqs. (12) and (20), respec-
tively, condition (22) for ideal backaction noise cancellation
occurs only if (i) the ancilla cavity is detuned from the meter
cavity by

� = −ωm, (23a)

(ii) the ancilla cavity linewidth matches that of the mechanical
oscillator,

κa = γm, (23b)

and (iii) |�| � κa. Due to conditions (i) and (ii) this implies
both the resolved sideband limit,

ωm � κa, (23c)

and a large mechanical quality factor,

Qm = ωm/γm � 1. (23d)

The feasibility of these conditions will be discussed in more
detail below. While it is clear that not all of these conditions
can be met perfectly, we assume at least for the moment that
conditions (i)–(iii) hold and therefore (22) is fulfilled. Under
this idealized assumption of perfect coherent quantum noise
cancellation the last term in (21) will not contribute. Assuming
again that thermal noise is negligible, the added noise consists
only of contributions from the second and third terms in (21),
i.e., shot noise in the measured phase quadrature and shot noise
introduced through the ancilla cavity,

SF = 1

2γmG|χm|2 + κa|χa|2
γm|χm|2

[
ω2 + (κa/2)2

�2
+ 1

]
. (24)

The shot-noise contribution (first term) scales as G−1 ∝
P −1 and thus can be made negligible with respect to the
second term for sufficiently large power. Taking into ac-
count conditions (23), we arrive at a lower bound for the
sensitivity achievable with this method for coherent noise
cancellation,

SF (ω) � ω2 + ω2
m + γ 2

m/4

ω2
m

≡ SCQNC(ω). (25)

The sensitivity SCQNC(ω) is compared to the standard quantum
limit SSQL(ω) in Fig. 3. From Eqs. (16) and (25) one finds in
the parameter regime (23) considered here

SCQNC = SSQL ×
{

1 on resonance ω = ωm,

(2Qm)−1 off resonance.
(26)
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FIG. 3. (Color online) Noise power spectral densities achieved
for optimal power vs frequency. The standard quantum limit SSQL(ω)
[dotted blue line, Eq. (16)] can be surpassed with coherent quantum
noise cancellation SCQNC(ω) [dashed purple line, Eq. (25)] by a factor
of 1/2Qm off resonance. Here Qm = 1000.

The enhancement in sensitivity can thus be on the order of the
mechanical quality factor Qm � 1 for frequencies away from
the mechanical resonance. In order to make the second term
in (24) larger than the measurement shot noise (first term) the
measurement strength G ∝ P (power) has to fulfill

GCQNC >
ω2

m

2γm|χm(ω)|2(ω2 + ω2
m + γ 2

m

/
4
)

= GSQL ×
{

1/2 ω = ωm,

Qm off resonance.
(27)

We again used conditions (23) and the expression in Eq. (17)
for the measurement strength GSQL necessary to achieve the
standard quantum limit. As expected, the power level has
to be increased by about the factor of the improvement in
sensitivity. We emphasize that the sensitivity (26) is achieved
only asymptotically for power levels larger than the right-hand
side of Eq. (27). In particular, for the case on resonance
a measurement strength of GSQL will give a sensitivity
which is actually worse than the standard quantum limit,
SF (ωm) > SSQL(ωm), as can be easily seen from Eq. (24) and
is also evident in Fig. 2. We conclude that the method of
coherent noise cancellation considered here does not provide
any advantage for resonant detections but potentially provides
a significant improvement for measurement at off-resonant
frequencies. Accordingly, we will restrict the subsequent
discussion of imperfect noise cancellation to the case of
measurement frequencies well above or below the mechanical
resonance frequency.

III. CQNC: REQUIREMENTS AND IMPERFECTIONS

We now turn to a discussion of requirements and imperfec-
tions in the all-optical scheme for CQNC introduced in [26]
and shown schematically in Fig. 1(b). Perfect CQNC requires
the matching of coupling strengths of the meter cavity to the
mechanical oscillator and the ancilla cavity, Eq. (18), and
matching of their susceptibilities, Eq. (22) [or, equivalently,
Eqs. (23)]. This raises the questions of what the tolerance is to
violations of these conditions and what the price is for a given
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mismatch. In particular, condition (23b) on the matching of
the linewidth of the ancilla cavity to that of a high-quality
mechanical oscillator appears to be very challenging and can
hardly be fulfilled without some compromise. After all, if the
ultimate goal is to achieve backaction cancellation only within
a certain frequency bandwidth and not on the entire spectrum,
it might in fact be advantageous to give up on one of the
conditions and impose (22) only for the relevant frequencies.

A. Nonideal ancilla cavity linewidth

The hardest requirement to achieve in the all-optical setup
for CQNC is the matching of the ancilla cavity linewidth to
that of a mechanical oscillator. In particular, in the regime of
large mechanical quality factors typically employed for force
sensing, it is reasonable to expect κa � γm instead of Eq. (23b).
Therefore we will assume that condition (22) is violated due to
a certain degree of mismatch in linewidths. The power spectral
density of added noise corresponding to Eq. (21) then becomes

SF = 1

2γmG|χm|2 + κa|χa|2
γm|χm|2

[
ω2 + (κa/2)2

�2
+ 1

]

+ G

2γm

∣∣∣∣χm + χa

χm

∣∣∣∣
2

, (28)

where we neglect thermal noise. For ideal CQNC the trade-
off with respect to the measurement strength G vanishes
with the last term in Eq. (19) due to matching of the two
susceptibilities. Imperfect backaction cancellation restores this
trade-off, which reduces the ability for noise reduction. As
before one can derive a minimal spectral density achieved for
optimal power,

SF = |χm + χa|
γm|χm|2 + κa|χa|2

γm|χm|2
[
ω2 + (κa/2)2

�2
+ 1

]
.

For frequencies off resonance the second term (due to noise
introduced by the ancilla cavity) dominates over the first term
(measurement shot and backaction noise). Moreover, for an
ancilla cavity linewidth larger than the mechanical frequency,
κa � ωm, one can show that SF (ω) � SSQL(ω). In the opposite
case, κa < ωm, an improvement in sensitivity is possible, and
one finds

SF = κa

2ωm
SSQL

(relevant for frequencies off resonance). This is illustrated
in Fig. 4. Thus, even for realistic linewidths of the ancilla
cavity, the improvement in sensitivity can be quite significant.
A small ratio of cavity to mechanical linewidth κa/ωm < 1 has
been achieved for high-frequency mechanical oscillators in the
context of the so-called resolved sideband limit of dynamic
backaction cooling [5]. However, in the low-frequency (free-
mass) limit this condition poses prohibitive requirements on
the cavity finesse and length.

B. Imperfect matching of gBS and gDC

The other important matching condition that needs to be
fulfilled is twofold: The relative beam-splitter coupling gBS

must be matched with the downconversion coupling gDC, and
the sum gBS + gDC of the two must be matched with the

ideal CQNC
nonideal CQNC
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FIG. 4. (Color online) Spectral density of ideal [dashed purple
line, Eq. (24)] and nonideal [solid green line, (28)] CQNC normalized
to the standard quantum limit, Eq. (16). On resonance no improvement
can be achieved, whereas off resonance an improvement of κa/2ωm

is still possible.

optomechanical coupling g to the oscillator [see Eqs. (18)].
The optomechanical coupling strength g = √

Gκc/2 ∝ √
P

can be tuned with input power and the strength of the down
conversion process gDC depends on pump power, while the
beam-splitter coupling gBS between meter and ancilla cavity
is fixed for a given cavity geometry. Thus matching of the
three rates seems to be achievable. In order to determine the
necessary level of precision we include a possible mismatch
in our calculations:

gBS = 1
2 [(1 + ε1)g + ε2g] (29)

gDC = 1
2 [(1 + ε1)g − ε2g]. (30)

In addition we assume a fixed finite ratio of κa/ωm, such
that both conditions (22) and (18) are violated. The resulting
noise spectral density can be determined as explained in the
Appendix, but the exact equations are involved and will not
be reproduced here. The usual trade-off of measurement to
backaction noise again requires optimization with respect to
power. The dependence of the resulting minimal noise spectral
density on a relative mismatch of 10% for 1 − ε1 = (gBS +
gDC)/g and ε2 = (gBS − gDC)/g is shown in Fig. 5 for a fixed
ratio κa/ωm = 0.1. While the mismatch for 1 − ε1 = (gBS +
gDC)/g gives a constant decrease of noise cancellation for all
frequencies, the mismatch ε2 = (gBS − gDC)/g is frequency
dependent. For frequencies below the mechanical resonance
a factor of κa/2ωm can be achieved. At frequencies above the
mechanical resonance the mismatch will be the limiting noise
source for the measurement.

C. Case study

After having evaluated ideal CQNC as well as the effect of a
deviation from the ideal parameters in theory, we now discuss
parameters for a proof-of-principle experiment showing the
feasibility of CQNC. Recapitulating the requirements from
the sections above for an experiment which realizes coherent
quantum noise cancellation, ideally both the strengths of the
coupling processes and the susceptibilities have to be matched,

gBS = gDC, gBS + gDC = g, χm(ω) = −χa(ω), (31)
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FIG. 5. (Color online) Noise spectral density for relative mis-
match of gBS and gDC with respect to g (dashed orange line) and the
relative mismatch between gBS and gDC (dot-dashed black line). The
mismatch εi is set to 10% from the ideal value. For guidance, SQL and
ideal CQNC (both thin gray line) and CQNC with nonideal κa (solid
green line) are plotted as well. The relative mismatch between gBS

and gDC shows a frequency dependency which limits the sensitivity
at higher frequencies. The mismatch to the optomechanical coupling
gives a constant decrease of noise cancellation at all frequencies.

again with beam-splitter coupling gBS = rc/L, downconver-
sion coupling gDC = �lc/L, and optomechanical coupling
g = ωcxZPFαc/L, where c is the vacuum speed of light and
L is the optical length of the main cavity. It is reasonable
to assume that the reflectivity r of gBS is larger than some
tenths of a percent. This gives a lower bound for the other two
coupling constants. The gain parameter � [36],

� =
√

2ω1ω2d
2
effIpump

n1n2n3ε0c3
,

containing the refractive indices ni of signal, idler, and pump
beam, the frequencies ω1,2 of signal and idler beams, and the
nonlinear coefficient ddeff and thus gDC, can be tuned via the
pump intensity Ipump to match gBS. The sum of these two
has to equal g, which depends on the oscillator’s zero-point
fluctuation xZPF = √

�/mωm and can be balanced to a certain
degree via the intracavity field amplitude αc = √

P/�ωcκc.
The overall size of the coupling constants can additionally be
adjusted via L so that g � ωm due to stability considerations.

In view of the definition of the mechanical susceptibility and
that of the ancilla cavity, Eqs. (12) and (20), conditions (31)
lead to the requirements

rc = �lc = 1
2ωcxZPFαc, (32a)

� = −ωm. (32b)

The prohibitive condition κa = γm will be relaxed to

κa < ωm, (32c)

as discussed in Sec. III A.
For a first proof-of-principle experiment, the difficulties

now lie, on the one hand, in identifying a suitable microme-
chanical resonator with a high zero-point fluctuation, a high
resonance frequency to realize the resolved sideband limit,
and a large enough surface area (�50 μm) as well as a high
reflectivity to use it as an end mirror in a cavity and, on the other

TABLE I. Proposed set of parameters.

Parameter Definition Units Value

L cavity length m 1.5
r beam-splitter reflectivity % 0.5
gBS/2π beam-splitter coupling kHz 150
Ipump pump intensity W/cm2 45
gDC/2π downconversion coupling kHz 150
P cavity input power mW 100
κc/2π meter cavity linewidth MHz 1
ωm/2π mechanical resonance MHz 0.5
γm/2π mechanical damping kHz 5
m effective mass kg 10−12

g/2π optomechanical coupling kHz 300
κa/2π ancilla cavity linewidth MHz 0.2

hand, in reducing all the losses in the ancilla cavity to achieve
the above-mentioned resolved sideband limit. A small spot size
of about one-third of the diameter of the optomechanical mirror
on this mirror will be needed. This complicates using a long
cavity, which is necessary to achieve g � ωm. A challenging,
yet feasible, set of parameters is given in Table I.

For this set of parameters we theoretically achieve quantum
noise reduction of 10% at frequencies below the mechanical
resonance of our oscillator (see Fig. 6). The system will be shot
noise limited at frequencies above the mechanical resonance;
here CQNC will have no effect on the sensitivity. To apply
CQNC at higher frequencies or to achieve the calculated
noise reduction of κa/ωm we need to increase the power such
that the system is radiation pressure backaction noise limited
above the resonance frequency. However, at this stage the
optomechanical coupling will have reached a critical value
which changes the optomechanical parameters of our system
to unwanted bound conditions, like an optical spring.

To show the feasibility of CQNC we will need to set up
a system which is radiation pressure limited, a challenging
requirement. To show that the noise-cancellation scheme

SQL
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FIG. 6. (Color online) Quantum noise (dotted blue line) and
CQNC reduced noise for the system with parameters given in Table I.
Below 100 MHz CQNC with nonideal κa (solid green line) gives a
radiation pressure backaction noise reduction of about 10%. For ideal
CQNC (κa matched, dashed purple line) we achieve a noise reduction
of 30%. As we cannot increase the power to the optimal value, the
reduction is less than κa/2ωm and 1/2Qm, respectively.
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works in principle, we will instead use artificial amplitude
noise, increasing the backaction noise above the thermal bath.
Assuming an input power of 100 mW to our cavity, thermal
noise at room temperature masks the SQL by five orders of
magnitude. To test our CQNC scheme we have to modulate our
input beam with an amplitude of 100 μW to increase the am-
plitude noise above the thermal noise. Generating this amount
of noise is possible with common amplitude modulators.

IV. CONCLUSION

Our calculations show that the experimental realization of
the proposed feed-forward coherent noise-cancellation scheme
is feasible with existing technology. We have given a quanti-
tative measure for the noise reduction which is achievable
with ideal CQNC and showed that a noise reduction is still

possible even if the requirements are not met perfectly. We
have also given a set of parameters for a possible experiment
which shows quantum noise reduction at frequencies below the
mechanical resonance of the chosen optomechanical oscillator.
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APPENDIX: NOISE SPECTRAL DENSITIES

With the matrix M of the system of differential equations and the noise matrix A,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κc/2 0 0 gBS − gDC 0 0

0 −κc/2 −gBS − gDC 0 −g 0

0 gBS − gDC −κa/2 � 0 0

−gBS − gDC 0 −� −κa/2 0 0

0 0 0 0 0 ωm

−g 0 0 0 −ωm −γm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−√
κc 0 0 0 0 0

0 −√
κc 0 0 0 0

0 0 −√
κa 0 0 0

0 0 0 −√
κa 0 0

0 0 0 0 0 0

0 0 0 0 0
√

γm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the cavity quadratures �x, input field quadratures �xin, and
output field quadratures �xout being

�x =

⎛
⎜⎜⎜⎜⎜⎝

xc

pc

xa

pa

xm

pm

⎞
⎟⎟⎟⎟⎟⎠, �xin =

⎛
⎜⎜⎜⎜⎜⎝

x in
c

pin
c

x in
a

pin
a
0

f + F

⎞
⎟⎟⎟⎟⎟⎠, �xout =

⎛
⎜⎜⎜⎜⎜⎝

xout
c

pout
c

xout
a

pout
a

xout
m

pout
m

⎞
⎟⎟⎟⎟⎟⎠,

the linearized system (3)–(8) can now be described as

�̇x = M �x + A�xin. (A1)

With a phase-sensitive measurement of the output beam, the
quadratures xout

c and pout
c can be accessed. The force F to be

detected couples into momentum pm of the mirror and via xm

and pc can now be found in the output phase quadrature pout
c .

The input-output formalism,

�xout = �xin − A�x, (A2)

together with a Fourier transformation of (A1) into the
frequency domain, defined by

�x(ω) = 1√
2π

∫
dt �x(t)eiωt

so that

�̇x = iω�x = M �x + A�xin,

leads to

�xout = P �xin, (A3)

where

P = 1 − A
1

iω − M
A.

The spectral density is given as Sout = PSinP
T , where Sin =

1
2 diag(1,1,1,1,0,2n̄). The phase spectral density Spp of the
system output, which contains information about the force
F , is defined by Spp(ω)δ(ω − ω′) = 〈pc(ω)pc(ω′)〉 and is
represented by the (2 , 2) element of Sout.
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In the special case gDC = gBS = 0, the system reduces to
[see Eqs. (3)–(8)]

ẋc = −κc

2
xc − √

κcx
in
c , (A4)

ṗc = −κc

2
pc − gxm − √

κcp
in
c , (A5)

ẋm = ωmpm, (A6)

ṗm = −ωmxm − γmpm − gxc + √
γm(f + F ). (A7)

Solving this system in frequency space by inserting (A4)
into (A7), (A7) into (A6), and (A6) into (A5), together
with the input-output relation pout

c = pin
c + √

κcpc, leads
to (10). An analogous calculation can be performed for
perfect CQNC, i.e., gBS = gDC = 1

2g, to find (19). For im-
perfect CQNC, the system cannot be reduced to a sim-
ple expression. We therefore calculate the exact solution
computationally to generate our graphs for the imperfect
case.
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