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The filamentation of ultraviolet and infrared nanosecond light pulses in fused silica is investigated theoretically
and numerically. Emphasis is put on the action of a dynamical plasma response on two counterpropagating waves,
amplified by Kerr self-focusing and stimulated Brillouin scattering (SBS). For a single unperturbed wave, laser
filamentation takes place through a quasistationary balance between Kerr self-focusing and plasma defocusing,
for which a variational approach reproduces global propagation features. However, such a quasistationary balance
cannot hold as temporal modulational instability breaks up the pulse over electron recombination times. For two
counterpropagating waves, we report similar instabilities which are justified through a plane-wave stability
analysis. These instabilities originate from an intense backscattered wave that induces strong plasma contribution
and thus destabilizes the pump near the entrance face of the material. Rapid phase modulations are then applied
to suppress backscattering. We show that pump waves with broad enough bandwidths can inhibit SBS and thus
prevent instability. The robustness of phase modulations against random fluctuations in the input pump pulse is
finally addressed.
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I. INTRODUCTION

Stimulated Brillouin scattering (SBS) occurs in a large
variety of optical settings, such as silica devices employed
in high-power laser systems [1,2], optical fibers [3], or
nanostructured materials [4]. It also plays a key role in the
scopes of stimulated Rayleigh-Bragg scattering [5], optical
storing [6], and slow light propagation [7–9].

SBS is initiated by the electrostriction strain driven by a
long and intense laser pulse in optically transparent media
having no linear absorption. This strain exerts a ponderomotive
force, that initiates acoustic waves on which Stokes waves
backscatter part of laser energy. Because the Stokes wave
increases with an exponential growth, it can damage the front
surface of the sample at high input powers [10,11]. Discovered
in the 1960s, SBS has been abundantly investigated [12–14],
but rarely in the presence of Kerr self-focusing. Addressed
in [15–17], pump pulses with broad enough bandwidth were
numerically demonstrated to suppress SBS in regimes where
they self-focus toward intensities of a few TW/cm2. At such
high intensities, saturation of the Kerr self-focusing by a
plasma response becomes important. In [16,17], a stationary
plasma model inspired from Ref. [18] was used, i.e., plasma
just acted as an instantaneous higher-order nonlinearity [19].
This model was tested with heavy numerics performed on
graphical processors, which showed that nanosecond optical
waves could currently attain 6–8 TW/cm2 with a noninertial
(stationary) plasma response [20].

Some work, however, devoted to nanosecond filaments
supported by an inertial plasma in gases [21], outlined that self-
channeling long pulses could suffer modulational instabilities,
leading to pulse breakup in time and collapse events over
picosecond durations. For many practical applications, the
nonlinear propagation of long pulses in (3 + 1)-dimensional
bulk materials involving Kerr, Brillouin, and ionization effects
are highly relevant. In particular, sharp instabilities can deeply
affect nanosecond pulses and cause premature damage in
the optics of large-scale laser facilities. Plasma generation

then becomes a challenging issue, as optical damage starts
once ionization intensity thresholds have been exceeded. To
reduce backscattering and related damage at the front face of
dielectrics, broadband pump pulses can be exploited [22–24].
An important point is thus to know whether phase modulations
keep their efficiency with plasma generation.

To answer this question, we investigate the propagation
of intense light pulses with duration close to 1 ns at full
width at half maximum (FWHM) in fused silica. We shall
first demonstrate that single, initially unperturbed nanosecond
pulses can remain robust over a few cm of filamentation and
support a stationary plasma, whose action can be deduced
from a variational model. Once this propagation range has
been crossed through, short-time instabilities destroy the pulse
profile in time in a way similar to Ref. [21]. Such instabilities
are attributed to the dynamical plasma response. They are
found to take place over the electron recombination time
∼150 fs, which is supported by a plane-wave stability analysis.
Second, our investigation will include an SBS-created Stokes
wave. We report strong plasma generated by intense Stokes
components near the entrance face of the material, which again
yields pump instabilities over electron recombination times.
Third, phase modulations are tested to suppress Brillouin
backscattering with an inertial plasma. We show that pump
pulses with broad enough bandwidth can delete both Brillouin
scattering and plasma-driven instabilities. The efficiency of
phase modulations is finally tested with respect to a random
noise in the laser pump pulse. We demonstrate that random
fluctuations do unfortunately affect phase modulation effi-
ciency.

This paper is organized as follows. Section II recalls the
model equations describing the competition between Kerr
self-focusing, stimulated Brillouin scattering, and ionization.
Section III discusses the propagation of a single nanosecond
wave operating at 355 nm, whose dynamics are explained
by a variational approach and plane-wave stability analysis.
Section IV presents theoretical and numerical results, when
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both pump and Stokes waves trigger plasma in silica. Emphasis
is put on instability patterns upon short time scales. Section V
deals with the action of phase modulations on the pump wave to
suppress Brillouin effect. Section VI addresses similar features
at 1064 nm pump wavelength. Section VII revisits the effect
of phase modulations for noisy inputs.

II. MODEL EQUATIONS

For pure silica with no optical loss, Stokes waves are
scattered by laser-induced pressure gradients exerted in the
bulk by electrostriction. Owing to self-focusing, both pump
and Stokes waves can reach several TW/cm2 in intensity and
are thus able to ionize SiO2 molecules. Our model equations
take into account the interplay between the pump and Stokes
waves, the phonon waves, and an electron plasma. The electric
field, assumed to be linearly polarized, is a combination of two
optical components:

E = √
c1(U1e

ik1z−iω1t + U2e
−ik2z−iω2t + c.c.), (1)

where c1 ≡ μ0ω0/2k0 is a normalization factor and μ0 is
the magnetic permeability in vacuum (c.c. means complex
conjugate). The slowly varying envelopes for the pump and
Stokes waves, U1 and U2, respectively, have their center
frequency close to ω0 = 2πc/λ0 = k0c/n0 (c is the speed
of light in vacuum and n0 is the linear index of silica
at pump wavelength λ0) and comparable group velocities,
k′

1 ≈ k′
2 ≈ k′ � n0/c (k1 ≈ k2 ≈ k0).

Following [10,11], the laser electric field is governed by the
wave equation

�∇2E − c−2∂2
t E = μ0

(
∂2
t P + ∂tJ

)
. (2)

Describing the bounded electron response of the material, P

denotes the polarization vector

P = ε0χ
(1)E + ε0χ

(3)E3 + ε0�εE, (3)

where the first component refers to linear polarization with
first-order susceptibility tensor χ (1), the second one is the
nonlinear (Kerr) polarization with third-order susceptibility
tensor χ (3), and the last one originates from electrostriction
[ε0 = 1/μ0c

2]. �ε = γe�ρ/ρ0 refers to the variation in the
dielectric constant produced by the density fluctuation �ρ

through electrostriction. γe is the electrostriction coefficient
and ρ0 is the bulk material density. �ρ is governed by the
acoustic wave equation[

∂2
t − �′ �∇2∂t − C2

s
�∇2

]
�ρ = �∇ · �fe, (4)

and searched under the form

�ρ ∝ Qei(qz−ωs t) + c.c., (5)

with complex envelope function Q, wave number q = 2k1

(�q = �k1 − �k2), and frequency ωs = ω1 − ω2 � Csq, where
Cs = 5.97 × 105 cm/s is the sound velocity. �′ is the material
damping parameter and �fe is the electrostriction strain such
that �∇ · �fe = −(γe/2noc)∇2E2.

Equations for U1, U2, and Q are derived by substituting
Eq. (1) into Eq. (2), and Eq. (5) into Eq. (4). We omit
higher-order derivatives and phonon propagation [11], and
discard harmonic generation in the Kerr contributions where
only self- and cross-phase modulations with nonlinear index

n2 ≡ 3μ0cχ
(3)/4n2

0 are retained. Following [25], the phonon
waves are seeded by a thermal Gaussian random noise, Ñ ,
with zero mean and such that

〈Ñ (�r,t)Ñ∗(�r ′,t ′)〉 = AÑδ(�r − �r ′)δ(t − t ′), (6)

where AÑ � 3.7 × 10−29 GW2 ns/cm at 300 K (symbol *
means c.c.).

We also incorporate the effect of plasma generation through
the term μ0∂tJ in Eq. (2). The scalar current density is given
by J = qeρve, where qe is the electron charge, ρ is the free
electron density, and ve is their velocity. We use a simple Drude
model for the electron velocity, yielding ∂tJ � q2

e ρE/me. The
source equation for ρ is modeled as [26–30]

∂ρ

∂t
= W (I )ρnt − ρ

τrec
, (7)

involving the total field intensity I . Here, ρnt = 2.2 ×
1022 cm−3 is the density of neutral species, τrec is the recombi-
nation time of electrons in silica, and W (I ) is the photoioniza-
tion rate. We assume ρ � ρnt and neglect avalanche ionization.
We numerically verified that, over a few cm, plasma generation
remains mainly driven by the photoionization process. The
ionization rate W (I ) is evaluated in the multiphoton limit
W (I ) = σKIK , where σK is the associated cross section [31].
K = mod(Ui/�ω0) + 1 is the minimum number of photons
with energy �ω0 necessary to extract an electron from neutral
species with ionization energy Ui . We select the gap potential
Ui = 9 eV, while the electron recombination time is τrec =
150 fs [32]. Losses induced by photoionization are evaluated
from Poynting’s theorem leading to

μ0
∂J PI

loss

∂t
= −ik0β

(K)IK−1E, (8)

where β(K) = σKK�ω0ρnt is the multiphoton absorption
(MPA) coefficient.

So far in SBS context [20], the plasma response has been
assumed stationary, i.e.,

ρ(t) � τrecρntσKIK. (9)

In the present work, we examine, instead, the effect of a dynam-
ical (inertial) plasma response. For technical convenience, we
assume that at each point of space (x,y,z,t) the forward wave
intensity I1 ≡ |U1|2 is large when the Stokes intensity I2 ≡
|U2|2 is relatively small, in such a way that I � I1 + I2 and
IK � IK

1 + IK
2 . By comparison with Refs. [16,20], our plasma

response appears simplified under the previous assumption.
We checked, however, that the peak intensities and maximum
electron densities are similar when using the full stationary
plasma model of [16] or that one assuming IK � IK

1 + IK
2 .

Under the latter simplification, we finally obtain the set of
equations governing the interplay between Kerr self-focusing,
SBS, and plasma generation:

(∂z + k′∂t )U1 = i∇2
⊥U1

2k0
+ i

ω0

c
n2(I1 + 2I2)U1 − g0

2
QU2

− i
k0

2n2
0ρc

ρU1 − β(K)

2
IK−1

1 U1, (10)
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TABLE I. Physical parameters for silica at 355 nm and 1064 nm.

Physical parameters λ0 = 355 nm λ0 = 1064 nm

n0 1.4762 1.454
Pcr [MW] 0.377 4.59
n2 [cm2/W] 3.6 × 10−16 2.7 × 10−16

τB [ns] 1.1 10
K 3 8
σK [ns−1 cm2K/GWK ] 2.46 × 10−11 8.36 × 10−33

ρc [cm−3] 8.8 × 1021 9.8 × 1020

β (K) [cm2K−3/GWK−1] 9.16 × 10−7 2.75 × 10−28

(−∂z + k′∂t )U2 = i∇2
⊥U2

2k0
+ i

ω0

c
n2(I2 + 2I1)U2 + g0

2
Q∗U1

−i
k0

2n2
0ρc

ρU2 − β(K)

2
IK−1

2 U2, (11)

τB∂tQ + Q = U1U
∗
2 + Ñ, (12)

∂tρ = σKρnt
(
IK

1 + IK
2

) − ρ

τrec
, (13)

where z is the propagation variable and ∇2
⊥ = ∂2

x + ∂2
y is the

diffraction operator in the (x,y) plane. g0 � 5 cm/GW is the
Brillouin gain factor evaluated for the bulk silica density ρ0 =
2.21 g/cm3 [3,11,33]. τB = 2/�B = 2/q2�′ is the phonon
damping rate, where �B is the Brillouin linewidth related to
the gain spectral bandwidth �νB = �B/2π . Numerical values
for our relevant physical parameters are given in Table I.

Equations (10)–(13) are integrated in full 3D geometry,
for an input pump pulse with spatial Gaussian profile and a
temporal profile being super-Gaussian,

U1(z = 0) =
√

I1(0)e−(x2+y2)/w2
0−t2N/t2N

p , (14)

of order N = 2, with 1/e2 initial beam width w0 and
half-length tp = 0.5 ns. The input pump intensity I1(0) is
linked to the peak power P1(0) through the relation I1(0) =
2P1(0)/πw2

0. P1(0) will be expressed in terms of the critical
power for self-focusing, Pcr � λ2

0/(2πn0n2).
Using laser pulses with FWHM durations of 0.77 ns, the

product �Btp is of order unity. In that case, SBS develops
in transient regime [10,11], for which the nonstationary
exponential gain of the Stokes intensity is mainly given for
an undepleted plane-wave pump [12,22] by

GT (z) ∼ 2
√

�Btpg0I1(0)(L − z), (15)

i.e., I2(0)/I2(L) ∼ exp GT (0).
Besides Brillouin backscattering, the Kerr response can lead

to wave collapse at powers Pi ≡ ∫
Iid�r⊥ � Pcr [34,35]. For

an unperturbed Gaussian pump, the collapse distance can be
estimated by Marburger’s formula [36]

zc � LM = 0.367z0

[(
√

P1/Pcr − 0.852)2 − 0.0219]1/2
, (16)

where z0 = πn0w
2
0/λ0 is the Rayleigh length. To integrate

our model equations (10)–(13), we shall use a split-step
parallel code, namely, the “SBS-3D” code detailed in [20],
employing longitudinal and temporal grid spacings linked by

�z = �t/k′. Integration in the (x,y) plane is performed by
means of fast Fourier transforms. The main constraint being the
volume of the numerical box versus the computation time, we
limit the maximum number of points to 256 × 256 × 16 384
points in (x,y,z). Minimum transverse steps are fixed to �x =
�y = 0.94 μm, while �z and �t may vary in the intervals
0.1 � �z � 2 μm and 0.75 � �t � 10 fs, depending on the
sample thickness. Coarser (z,t) steps can limit the description
of the plasma response. However, they are at least three times
smaller than those achieved in [20] on graphical processors.
Generally, the heavy meshes used in our full 3D SBS simula-
tions (�t � 10 fs for a time window of 3 ns) will force us to
limit the graphical resolution of our surface plots to ∼6–7.5 ps.

III. ONE-WAVE DYNAMICS

We here examine the nonlinear propagation of a single
nanosecond pulse in silica, in order to benchmark the plasma
response at UV wavelength λ0 = 355 nm. Before testing the
SBS code in this configuration, we perform computations
from a second code integrating the forward-Maxwell equation
(FME) (see Refs. [37,38]). This code uses a Cranck-Nicholson
scheme over the radius r⊥ =

√
x2 + y2. It has an adaptive

step along z and can account for many additional physical
effects, such as higher-order dispersion, self-steepening [39],
and avalanche ionization [40,41]. Constrained to the radial
symmetry, this code is able to maintain longitudinal and
temporal steps to their lowest bounds, namely, �z ≈ 0.1 μm
and �t < 1 fs, while keeping the same transverse resolution
as above.

A. Quasistationary regime

Figures 1(a) and 1(b) show the maximum intensity and
peak electron density attained with w0 = 60 μm and P1(0) =
4Pcr [I1(0) = 26.7 GW/cm2] when using the FME code. For
initially unperturbed pulses, the maximum intensity reaches a
plateau clamped at Imax � 7 TW/cm2 and the peak electron
density reaches ρmax � 3 × 1019 cm−3 as long as z � 2.7 cm.
In this range the pulse forms a quasistable filament clamped at
the peak values [38]

Imax ≈
(

2n0n2ρc

�τσKρnt

)1/(K−1)

, ρmax ≈ �τσKIK
maxρnt, (17)

when one assumes that plasma continuously accumulates over,
e.g., �τ = 1 ps. In Figs. 1(a) and 1(b), the pulse undergoes
this clamping mechanism until an instability takes place
from z > 2.7 cm. This instability manifests by a noticeable
increase of the peak density and of the optical intensity
beyond 10 TW/cm2. Such intensity levels agree with Eq. (17)
when one assumes an efficient defocusing over the electron
recombination time �τ = 150 fs.

Figure 1(c) illustrates the on-axis pulse dynamic in the
(z,t) plane. In self-channeling regime, an unperturbed pulse
self-focuses not only in z, but also in time, along which
the pulse splits into parabolas resulting from the balance
between transverse diffraction, Kerr self-focusing, and plasma
defocusing. This dynamic does not change when introducing
chromatic dispersion, i.e., group-velocity dispersion (GVD)
with coefficient k′′ = 1169 fs2/cm and third-order dispersion
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JÉRÉMIE ROLLE AND LUC BERGÉ PHYSICAL REVIEW A 89, 053834 (2014)

FIG. 1. (Color online) Self-guiding of a 0.77 ns FWHM, 60-μm, 355-nm pulse in silica computed from an unidirectional pulse propagation
model (FME). (a) Maximum intensity, (b) peak electron density, (c) pulse on-axis dynamic in the (z,t) plane, and (d) evolution of energy
(solid curve, left axis) and on-axis fluence (dashed curve, right axis) along z. (e) Plot of |ψeq/ψ0|2 for Pin/Pcr = 4. (f) Variational energy losses
J (z)/J (0) and intensity, J (z)/L2(z), for the same pulse. For (e),(f), results are obtained from the numerical solving of Eqs. (19) and (20).

(TOD) with coefficient k′′′ = 348 fs3/cm at 355 nm [42],
also able to cause pulse splitting in time [43]. At maxi-
mum intensity, the pulse attains its highest fluence values
(>1 kJ/cm2) [Fig. 1(d)], as long as the integrity of the pulse
profile is preserved. At t = 0, three focii occur along z � 3 cm,
through which the pulse, compressed to the filament diameter
φp � 2.5 μm, triggers ionization and loses part of its power.

The previous behaviors can be explained from a variational
approach [44–47]. In particular, the temporal pattern of
Fig. 1(c) is the signature of a quasistationary equilibrium
between Kerr self-focusing and plasma generation. Indeed,
using rescaled variables r → w0r, z → 4z0z, and t → tpt , let
us assume that U1 collapses self-similarly with the transverse
width L(z,t) near the finite blowup distance zc [34,48–50].
U1 behaves as |U1| → |ψ(z,r,t)| = √

J (z,t)R(r/L)/L, where
J (z,t) accounts for the power losses due to dissipation such as

J (z = 0,t) = Pin

Pcr
e−2t2N

, Pin ≡ P1(0), (18)

and R is the Townes profile. Straightforward calcula-
tions yield the dynamical system (see Ref. [47] for more

detail)

M

4Pc

L3∂2
z L = 1 − J + C

JK

L2(K−1)
, (19)

∂z ln J � −2νA
JK−1

L2(K−1)
. (20)

M, C, and A are positive integral coefficients, Pc ≡ ∫
R2d�ξ �

11.7 with �ξ ≡ �r⊥/L(z,t) is the dimensionless collapse thresh-
old, and we have supposed a stationary plasma, ρ = �|ψ |2K

where � = const. The first equation reflects the vanishing of
L(z,t) when pulse power is supercritical. The second equation
reflects losses induced by MPA.

Neglecting MPA losses, it is straightforward to establish
from Eq. (19) the potential-well formulation

E(z,t) = 1

2

[
∂L

∂z

]2

+ �(L) = E(0,t), (21)

�(L) =
(

1 − J

L2
+ CJK

KL2K

)
2Pc

M
. (22)
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The potential �(L) possesses a global minimum only when
J (0,t) > 1, i.e., when Pin > Pcr and t belongs to the physical
time interval −t∗ < t < t∗, where t∗ = (ln

√
Pin/Pcr)1/2Ntp.

This minimum is attained at the equilibrium beam width L ≡
Leq that solves d

dL
�(L) = 0, thereby yielding

|ψeq|2
|ψ0|2 =

[
1 − Pcr

Pin
e2t2N

]1/(K−1)

, (23)

where ψ0 denotes a convenient normalization constant. Equa-
tion (23) indicates that the balance between diffraction, Kerr
focusing and multiphoton ionization takes place along parabo-
las in time, resulting in symmetric pulse splitting. Figure 1(e)
quantitatively reproduces this phenomenon for K = 3. The
location of the focused pulse in time domain explains the (z,t)
pattern of Fig. 1(c). With four critical powers and tp = 0.5 ns,
the equilibrium between self-focusing and plasma generation
is localized at times t < t∗ = 0.92 × tp � 0.46 ns, which
indeed agrees with Fig. 1(c).

Once the first focusing event is passed, the pump undergoes
energy loss through MPA. We expect that, at the distance where
this event takes place, the pulse power exhibits a stepwise
decrease (Jz ∝ −L2−2K ) corresponding to the rapid vanishing
of L(z,t) near z = zc � 1.4 cm.

With Pin = 4Pcr, more focusing-defocusing cycles develop.
Figure 1(d) shows energy losses and on-axis fluences [F(�r) ≡∫

I (�r,t)dt] along the propagation distance z. We observe
the expected stepwise decrease of the pulse energy at each
cycle balancing Kerr self-focusing and plasma generation. For
comparison, Fig. 1(f) presents the same pieces of information
inferred from the dynamical variational equations (19) and (20)
at t = 0. Results reproduce the three stepwise decreases of
energy linked to the three focusing-defocusing cycles. Note
that the self-focusing distances and amount of energy losses
quantitatively differ from those obtained from direct numerics.
Discrepancies are due to standard limitations of the variational
model, which always keeps a Gaussian profile in space and
preserves a super-Gaussian profile in time. Nonetheless, the
global propagation features in the nanosecond regime are well
reproduced by this variational method.

B. Plasma instabilities

From Figs. 1(a) and 1(b), we can observe that, over long
enough propagation distances in self-channeling regime, the
pulse intensity leaves the plateau Imax ∼ 7 TW/cm2 to increase
toward higher values. To understand this behavior, we develop
a stability analysis comparable to that performed in [21,51].
Returning to physical variables, we discard MPA losses
and consider a zeroth-order plane-wave solution Us = φ ei�z

corresponding to the stationary density ρs = τrecσKρntI
K
s

(Is ≡ |φ|2), yielding

� = n2ω0

c
Is − αIK

s , α ≡ k0τrecρntσK

2n2
0ρc

. (24)

We then introduce the perturbed state [�r⊥ ≡ (x,y)]:

U (�r⊥,z,t) = Us(�r⊥,z) + ũ+(�r⊥,z)e−i�t + ũ−(�r⊥,z)ei�t ,

(25)

where the frequency � is assumed real and |ũ+,ũ−| � |Us |.
Accordingly, we set

ρ(�r⊥,z,t) = ρs(�r⊥,z) + ρ+(�r⊥,z)e−i�t + ρ−(�r⊥,z)ei�t ,

(26)

where ρ− = ρ̄+ (bar symbol means complex conjugate). It is
then easy to deduce from Eq. (13)

ρ+ = KρntσKIK−1
s

(ũ+Ūs + ¯̃u−
Us)

τ−1
rec − i�

. (27)

By linearizing Eq. (10) with U2 = 0, we consider φ as real
and look for perturbations in the form ũ± = u±ei�z, where
u± oscillates in the transverse plane with wave vector �k⊥,
i.e., u± ∼ cos (�k⊥ · �r⊥). Introducing v = u+ + ū− and w =
u+ − ū−, we then obtain

[∂z − ik′�]v = −i
k2
⊥

2k0
w, (28)

[∂z − ik′�]w = i

(
2n2

ω0

c
Is − k2

⊥
2k0

− 2αKIK
s

1 − i�τrec

)
v. (29)

With v,w ∝ eλz, combining Eqs. (28) and (29) yields

λ = Re

[
k⊥√
2k0

√
2
ω0

c

(
n2Is − Kρs

2n0ρc(1 − i�τrec)

)
− k2

⊥
2k0

]
.

(30)

This result is comparable to that derived by Niday et al. [21].
Figures 2(a) and 2(b) show two examples of growth rates λ in
the (k⊥,�) plane. For small intensity (Is = 0.5 TW/cm2) out
of the self-guiding regime, plasma generation is negligible.
Temporal fluctuations owing to the � dependence of the per-
turbation play no relevant role, and we just refind the standard

growth rate λ ∼ k⊥
√

(2ω0n2/c)Is − k2
⊥/2k0 for transverse

modulational instabilities in a cubic medium [52,53]. In
contrast, when the pulse intensity is close to its clamping value,
Is � 7 TW/cm2, the plasma response competes efficiently
with Kerr focusing. The inertial nature of the free electron
density manifests by an instability in time being maximum near
�τrec � 1. This instability originates from the finite extent-in-
time of the plasma response, which, by feedback, breaks up the
pulse profile into short-scaled structures over the finite lifetime
of the freed electrons (τrec = 150 fs). It occurs for large enough
values of k⊥, i.e., when the transverse beam width reaches
the filament waist. Instability disappears in the limit � → 0,
which corresponds to a stationary plasma. In time domain,
such a short-scale instability only initiated by the numerical
noise clearly appears in Fig. 2(c), where short spikes emerge
over subpicosecond time scales due to the rapid defocusing
action of the plasma [Fig. 2(d)]. Figure 2(e) displays the
on-axis spectrum of the pulse evaluated at z = 1.5 cm, where
the pulse preserves a narrow spectrum, and at z = 2.84 cm,
where the pulse develops shorter peaks that give rise to a
triangular spectral shape prolonged by a strong blueshift over
the frequency variation �ω � 3.3 × 1013 s−1. As justified
in [54], the triangular spectrum is a universal pattern that
results from successive energy transfers between spectral
components from the central mode to adjacent sidebands due
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FIG. 2. (Color online) Contour plots of growth rate λ [cm−1]
in the plane (k⊥/

√
2k0,�τrec) for λ0 = 355 nm: (a) Is ≡

I0 = 0.5 TW/cm2; (b) Is ≡ I0 = 7 TW/cm2. (c) Maximum intensity
along time for z = 1.5 cm (red [gray] curve) and z = 2.84 cm (black
curve). The FWHM of the most intense peak is 800 fs (see inset). (d)
Plasma density along time at the same distances. The most intense
electron peak has a FWHM of ∼650 fs (see inset). (e) On-axis
normalized intensity spectra vs pulse frequency ω at z = 1.5 cm (red
[gray] curve) and z = 2.84 cm (black curve).

to Kerr-induced four-wave mixing. The blueshifted variation
is linked to temporal scales of ∼2π/�ω � 190 fs, close to
τrec. Note that the associated pulse intensity may be longer,
with, e.g., a FWHM of 800 fs [see Fig. 2(c)], if the optical
field acquires a chirped phase.

The previous results suggest that physical pulses undergo-
ing small perturbations should rapidly turn to an ultrashort
dynamic. To verify this assessment, Fig. 3 compares our
reference pulse with the same pulse in which 1% random
noise has been introduced into the input temporal amplitude.
This noise seeds small-scale instabilities, which drive the
nanosecond pulse to an ultrashort propagation regime when
plasma generation sets in [see inset of Fig. 3(a)]. Once this
transition is achieved, the pulse becomes shorter and shorter,
so that we may wonder whether chromatic dispersion and
pulse steepening can significantly affect the propagation.
When including these higher-order effects, Fig. 3(a) shows
that chromatic dispersion contributes to lower the clamping
intensity, while space-time focusing and self-steepening re-

FIG. 3. (Color online) (a) Maximum intensity along z for the
60-μm, 0.77-ns pulse with 2 GHz phase modulation (blue [dark
gray] curve) or when 1% amplitude random noise is introduced
with (solid black curve) and without (dotted black curve) GVD
[k′′ = 1169 fs2/cm] and TOD [k′′′ = 348 fs3/cm], and with neither
phase modulation nor noise seed (black dashed curve). The brown
[light gray] dashed curve includes self-steepening effects. Inset details
the temporal evolution of the maximum pulse intensity with 1% input
random noise at z = 1.39 cm (dashed curve) and z = 1.43 cm (solid
curve). (b) Corresponding peak electron densities, computed from the
FME model. (c) Maximum intensity reached by the same pulse from
the SBS-3D code and initially perturbed by a 5 × 10−4 random noise
with an inertial plasma (violet dash-dotted curve), with a stationary
plasma (violet dashed curve), 1% random noise (dark blue [dark gray]
curve) and by a cosine perturbation lined up on the most unstable
frequency � = 4.2 × 104 ns−1 with 1% amplitude (bright blue [light
gray] curve). (d) Corresponding peak densities with same plot styles.

main negligible. Over the short propagation ranges examined
here, both chromatic dispersion and pulse steepening do not
severely modify the pulse dynamic. Figures 3(c) and 3(d)
retrieve the previous tendencies when using the SBS-3D code.
Here, very small perturbations (5 × 10−4 in amplitude), as well
as moderately small perturbations (1% in amplitude) driven
either by a random noise or by cosine modulations in the
form U1(z = 0) × [1 + 0.01 cos (�t)] with � = 2π/150 fs−1,
break the quasistationary stage and force the pulse to enter
an ultrafast dynamic characterized by the emergence of
intense, picosecond subpulses [see, e.g., Figs. 4(c) and 4(d)].
Importantly, Figs. 3(c) and 4(b) reveal that the pulse remains
insensitive to the small perturbations with a stationary plasma,
which confirms the key role of the inertial nature of Eq. (13).
Furthermore, Figs. 3(a) and 3(b) show the self-focusing of
pump pulses being phase modulated, as further studied in
Sec. V. One can see that such modulations also force the
pump pulse to enter an ultrafast regime. Hence, when a
potential source of disturbance (random noise, cosine or phase
modulation) is introduced, we can expect a quasi-immediate
destabilization of the nanosecond pulse into an ultrashort pulse
dynamic.
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FIG. 4. (Color online) (x,t) intensity profiles (maximum along
y) of the pulse shown in Figs. 3(c) and 3(d), computed from the
SBS-3D code. Intensity profiles for (a) an inertial plasma and (b)
a stationary plasma produced by a perturbed beam with 5 × 10−4

amplitude random noise at z = 1.5 cm. (c) Pulse instability along
time with the inertial plasma at z = 1.84 cm. (d) Same at z = 2 cm
with a cosine perturbation using � = 4.2 × 104 ns−1.

IV. TWO-WAVES DYNAMICS

We now turn to the coupling of the pump and Stokes waves
by switching on the Brillouin term (g0 �= 0) and henceforth
employ the SBS-3D code. We consider nanosecond pump
beams with initial width w0 = 15 μm and w0 = 60 μm.
Their input intensities take the values I1(0) = 213 GW/cm2

[P1(0) = 2Pcr] and I1(0) = 26.7 GW/cm2 [P1(0) = 4Pcr],
respectively. Maximum sample thickness is L = 2.5 cm,
shortening the time step to �t � 7.5 fs.

Figure 5 shows maximum intensities [Figs. 5(a) and 5(c)]
and electron densities [Figs. 5(b) and 5(d)] for these two
pulses. In Fig. 5(a), we can observe the strong increase of
the 15-μm pump (solid dark blue curve) that occurs near
the entrance face of the sample. This premature growth is
absent for a stationary plasma (dashed bright blue curves).
In Fig. 5(b), the inertial electron density follows the pump
behavior. This rapidly increases at short propagation distances
due to strong Stokes wave amplification near the entrance
face. From z > 0.1 cm, the pump pulse enters an ultrashort
propagation regime characterized by high clamped intensities
(see previous section). The 60-μm pump repeats a similar
dynamic over longer propagation distances [Fig. 5(c)]. It
rapidly increases to several TW/cm2 intensity levels over
short distances before the “regular” collapse event amplifies
the pulse intensity to even higher values. Figure 5(d) suggests
a destabilizing action due to strong backscattering near the
front face. A direct comparison with simulations imposing a
stationary plasma shows that this early pump growth is linked
to the temporal variations of the plasma response. In the trailing
region of the pulse, sharp spikes can reach high intensity, but

they are confined inside such a narrow time interval that the
electron density cannot reach its highest peak value. This
explains why, far after focus, the peak density sometimes
decreases, whereas the peak intensity may go on increasing.
Interestingly, we can observe the relaxation stage of the pump
pulse, which seems partly attracted to a quasistationary regime
in the range 1.4 � z � 1.7 cm [see Fig. 5(c)]. Figure 6 details
the spatiotemporal intensity profiles of the same pulses at a
few distances close to and beyond the entrance window of
the sample. With a stationary plasma, we refind the classical
SBS-filamentation scenario [16], following which the pump
self-focuses and transfers part of its power from the front to
the rear zone, where the Stokes wave grows up (not shown).
With a dynamical plasma, the pump increases earlier, well
before the self-focusing distance. Near the dominant leading
peak, narrow satellite spikes emerge over ∼ps time scales and
the optical components reach higher intensity values.

A. Plasma instabilities

Similarly to the one-wave case, the inertial nature of the
plasma nonlinearity contributes to the above instabilities.
Let us indeed consider Eqs. (10)–(13), where, for technical
convenience, we omit the infinitesimally small thermal noise
(Ñ → 0), and discard MPA losses and SBS phonon coupling.
We assume a regime with two permanently created counter-
propagating waves that preserve each their own partial power.
The zeroth-order solution is then defined by the two stationary
envelopes Uis ≡ φie

i�iz, with i = 1,2 for the pump and Stokes
waves, such that

�1 = n2ω0

c
(I1s + 2I2s) − α

(
IK

1s + IK
2s

)
, (31)

−�2 = n2ω0

c
(I2s + 2I1s) − α

(
IK

1s + IK
2s

)
, (32)

where α has been defined in Eq. (24) (Iis ≡ |φi |2). These
plane-wave solutions are coupled to the stationary plasma
density

ρs = τrecσKρnt
(
IK

1s + IK
2s

)
, (33)

whose perturbed state is again given by Eq. (26) with ρs

including now the forward and backward plane waves. The
perturbed optical states read as

Ui(�r⊥,z,t) = Uis(�r⊥,z) + ũ+
i (�r⊥,z)e−i�t + ũ−

i (�r⊥,z)ei�t ,

(34)

with � = �̄ and |ũ+
i ,ũ−

i | � |Uis |. Straightforward lineariza-
tion of Eq. (13) thus yields

ρ+ = ρ̄− = KρntσK

∑
i=1,2

IK−1
is

(ũ+
i Ūis + ¯̃u−

i Uis)

τ−1
rec − i�

. (35)

Inserting the above perturbed states into Eqs. (10)–(13)
with (g0,Q) → 0, we are left with coupled equations for
ũ±

i = u±
i ei�iz, i = 1,2. We combine the resulting linearized
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FIG. 5. (Color online) (a) Peak intensity and (b) electron density along z for the 355-nm pulse with w0 = 15 μm. Blue (dark gray) curves
refer to the forward pump; green (light gray) curves refer to the backward Stokes pulse. Dark solid curves correspond to a dynamical plasma
response, whereas the bright dashed ones refer to a stationary plasma (∂tρ = 0). In (b),(d), the black curves illustrate the electron density
computed with a dynamical plasma. (c),(d) Same quantities as in (a),(b), but for the broader beam width w0 = 60 μm.

equations for the new perturbative eigenstates vi = u+
i + ū−

i

and wi = u+
i − ū−

i , that oscillate with the transverse wave

FIG. 6. (Color online) Pump (x,t) intensity profiles for w0 = 15
μm at z = 0.05 cm and z = 0.15 cm: (a),(b) refer to a stationary
plasma; (d),(e) involve a dynamical plasma response. Graphical
resolution is 7.2 ps. (c),(f) Same quantities for the pulse with w0 = 60
μm at z = 0.35 cm; (c) stationary plasma; (f) dynamical plasma.
Graphical resolution is 7.5 ps. This explains why the maximum
intensities of Fig. 5 cannot be attained.

vector �k⊥ and are found to obey

[±∂z − ik′�]vi = −i
k2
⊥

2k0
wi, (36)

[±∂z − ik′�]wi = i

[
2

(
n2ω0

c
Iis − αKIK

is

1 − i�τrec

)
− k2

⊥
2k0

]
vi

+ i
√

IisIjs

[
4n2ω0

c
− 2αKIK−1

js

1 − i�τrec

]
vj ,

(37)

where i �= j = 1,2; + and − signs apply to the forward
and backward waves, respectively. Looking for perturbations
growing as ∼eλz, the growth rate is given by

λ+ = Re

[
k⊥√
2k0

√
2�+ − k2

⊥
2k0

]
, (38)

where

2�± = n2ω0

c
(I1s + I2s) − αK

IK
1s + IK

2s

1 − i�τrec

±
{[

n2ω0

c
(I1s − I2s) − αK

IK
1s − IK

2s

1 − i�τrec

]2
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FIG. 7. (Color online) Contour plots of the growth rate λ+
[cm−1] in the plane (k⊥/

√
2k0,�τrec) for λ0 = 355 nm, w0 = 60 μm,

and pump stationary intensity I1s ≡ I0 = 7 TW/cm2. RS = I2s/I1s

denotes the stationary Stokes-pump intensity ratio. (a) RS = 0, (b)
RS = 0.2, and (c) RS = 1.

+ 4I1sI2s

(
2n2ω0

c
− αKIK−1

1s

1 − i�τrec

)

×
(

2n2ω0

c
− αKIK−1

2s

1 − i�τrec

)}1/2

. (39)

Equation (38) is stated under the limit k′� → 0, as linear
dispersion does not directly contribute to instability. We can
notice that such a growth rate is similar to that earlier derived
by Luther and McKinstrie for a purely Kerr medium [55], i.e.,
in the limit � → +∞.

Figures 7(a)–7(c) illustrate some growth rates in the (�,k⊥)
plane. When the pump-Stokes intensity ratio Rs = I2s/I1s

is increased, the modulational instability growth rate λ+
increases. We refind the major characteristics of the inertial
plasma instability, i.e., the growth rate is everywhere positive
except for � = 0, where plane waves are stable (stationary
plasma regime). Unstable modes with maximum growth rate
occur with a frequency located around �τrec = 1, signaling
plasma destabilization of the pump wave over the free electron
lifetime. This plasma-driven instability is responsible for the
pump growth at early propagation distances in Figs. 5(a)
and 5(c).

V. PHASE MODULATIONS

A current technique for inhibiting Brillouin backscattering
is to employ broadband pump pulses with rapid phase
fluctuations [2,14,15,22,24] chosen in the form

U1(z = 0) =
√

I1(0) e−(x2+y2)/w2
0−t2N /t2N

p +im sin (2πνmt). (40)

Here, the modulation depth m � 1 and the modulation
frequency νm produce a wide enough 1/e spectral bandwidth
�ν � 2mνm in the pump, whose spectrum is then composed
of ∼2m modes [16]. When these modes are spaced by νm >

�νB = �B/2π and for small enough coherence length, each
pump mode scatters its own Stokes pulse with no interaction
between their neighbors [14,23,24]. For pump modes of equal
initial intensity ∼I1(0)/2m, the exponential Brillouin gain GT

is then decreased significantly compared to an unmodulated
pump.

Let us here recall that phase modulations with moderate
pump bandwidth (<100 GHz) are less efficient for collapsing
waves [15]. In this configuration indeed, the pump, being

strongly focused by the Kerr nonlinearities, can undergo
temporal and spatial short-scale instabilities and thus self-
focus at much shorter propagation distances [16]. To avoid
such instabilities, selecting a broad enough pump bandwidth
is necessary. By working out on the energy exchanges between
pump and Stokes waves, preventing the growth of Stokes
modes demands at least that the pump bandwidth �ν satisfies

�ν � �νcr = 1
4�Bg0I1(0)L. (41)

In addition, the modulation depth m must be chosen in such
a way that the gain does not reach the minimum Brillouin
threshold GTH ≈ 25–30 [10,11].

In Fig. 8, phase modulation has been used with m = 21
to suppress SBS for the 60-μm pump pulse with I1(0) =
26.7 GW/cm2. As expected, the larger the pump bandwidth,
the lesser the pump depletion. Figures 8(a)–8(c) show the
power profiles corresponding to the input pump (black curves),
to the laser pulse exiting the 2.5-cm-thick sample (blue curves),
and to the Stokes wave reflected at z = 0 (green curves). Input
phase modulations develop amplitude fluctuations once the
pump has been advanced in time to about half its FWHM
duration. From Ref. [16] and the approximate estimate (41),
initial intensities of about 30 GW/cm2 still suffer Brillouin
scattering with a modulation frequency as low as νm = 2 GHz.
Instead, broad bandwidths of ≈1000 GHz are requested for
this intensity level at 355 nm, which invites us to choose νm >

23.8 GHz. Using νm = 30 GHz [Figs. 8(c) and 8(f)], it is indeed
observed that a large enough modulation frequency removes
SBS. From Figs. 8(d)–8(f) the pump energy is depleted for
νm = 0 and 2 GHz, i.e., as long as Brillouin scattering remains

FIG. 8. (Color online) Power profiles for input (black curves),
transmitted pump (blue [dark gray] curves), and reflected Stokes
(green [light gray] curves) pulses for w0 = 60 μm: (a) without phase
modulation, (b) with νm = 2 GHz, and (c) νm = 30 GHz (m = 21).
(d)–(f) Corresponding partial energy decreases with same color plot
styles. Insets detail Stokes and pump fluences in the (x,y) plane at z =
0 and z = 2.5 cm, respectively. Transverse surfaces are 50 μm × 50
μm.
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FIG. 9. (Color online) (a)–(c) 60-μm pump intensity profiles in
the (x,t) plane, (d)–(f) associated Stokes waves, and (g)–(i) plasma
densities for νm = 0 (left column), νm = 2 GHz (middle), and νm =
30 GHz (right column). The selected propagation distance is z =
0.5 cm. Input beam parameters are w0 = 60 μm, λ0 = 355 nm, and
I1(0) = 26.7 GW/cm2. Graphical resolution is limited to 7.5 ps.

active. When the latter is suppressed with νm = 30 GHz,
only MPA losses are retrieved from the pump self-focusing
distance. Direct measurements of backscattered fluences, F2 ≡∫

I2(0,t)dt , yield the value F2 � 12 mJ/cm2 with νm = 0,
down to F2 � 1.14 μJ/cm2 with νm = 30 GHz. These show
a net decrease of the Stokes fluence that remains below the
damage thresholds expected at 355 nm (Fth ∼ 12–14 J/cm2).

When SBS is efficiently suppressed, plasma generation
should cease near the entrance face and, thereby, the modula-
tional instabilities amplifying the pump should disappear too.
This is confirmed by Fig. 9, that details the spatial and temporal
distributions of the pump and Stokes intensities together
with the electron density for the modulation frequencies
νm = 0, 2 GHz and 30 GHz at z = 0.5 cm. With νm = 0,
the pump wave is amplified near the front face of the
material, because strong backscattering dramatically augments
the plasma response, which induces temporal instabilities by
feedback. With νm = 2 GHz, this instability is even reinforced
by ∼ps-long peaks breaking the pump distribution along
time. With νm = 30 GHz, all instabilities disappear. SBS is
negligible at the entrance face, so that the plasma response
is limited to small values and the pump profile remains
preserved.

VI. INFRARED PUMP

In this section, we examine pulses operating at 1.064 μm
central wavelength, i.e., the fundamental of the former 3ω

wavelength. We still choose a reference pump pulse defined
by a 60-μm transverse Gaussian profile and a 0.77-ns (FWHM)
super-Gaussian profile in time. Simulations are performed
by means of the SBS-3D code with the waived transverse
resolution of �x = �y = 1.87 μm, as the filament size is

expected to increase linearly with λ0 [56]. Longitudinal and
time increments are �z � 1.5 μm and �t � 7.4 fs.

Let us first comment on pulse propagation with no phase
modulation. Accessing input powers close to four critical
powers requires intensities as high as I0 = 302 GW/cm2 (see
Table I). Compared with our former UV pulse, the collapse
distance is shortened by a factor of ∼3, due to the proportional
decrease of the Rayleigh length. Moreover, using Eq. (17),
when plasma defocusing takes place over 1 ps time interval, the
clamping intensity increases to Imax � 8.83 TW/cm2 in the IR.
When plasma is active over the recombination time �τ = 150
fs, Imax is augmented to Imax = 11.6 TW/cm2 at 1.064 μm.
Hence higher intensities are necessary to trigger plasma gener-
ation at long wavelengths and so should be the energy losses.

Figures 10(a) and 10(b) confirm these features, by showing
the peak intensity of a single pulse with no Brillouin effect
(solid curve), the pump energy dissipation due to MPA
(dashed curve), and associated free electron density. The
first observation is the higher clamping intensity reaching
about 11 TW/cm2 within a first stage (z < 1.3 cm), that
resembles the nanosecondlike clamping intensity scheme.
The second feature is the later growth of the beam intensity
up to 16 TW/cm2, which may signal an instability driving
the nanosecond pulse to an ultrashort dynamic. The peak
plasma density only reaches ∼8 × 1018 cm−3 [Fig. 10(b)].
These behaviors are representative of ionization at long carrier
wavelength, which is more difficult to achieve than in the UV
(8 IR photons against 3 UV photons).

Figure 10(c) details the two-peaked structure characterizing
the quasistationary interplay between multiphoton ionization
and self-focusing for a single wave. This structure forms a
second, thinner parabola in the (z,t) plane when z = 1 cm
[Fig. 10(d)]. At z � 1.5 cm, the pulse profile decays into
multiple, short temporal peaks associated with an ultrashort
pulse dynamic and plasma-driven instability [Fig. 10(e)].
Evaluation of the filament diameter is φp � 7.5 μm, being
three times the UV filament diameter, as expected.

Figures 10(a) and 10(b) also display the self-focusing of
another isolated pump wave with weaker initial intensity of
162 GW/cm2 (Pin = 2Pcr) and related plasma response. Here,
the local numerical noise and input intensity are not sufficient
to trigger short-time instabilities.

We employ the latter beam configuration to examine the
effect of Brillouin scattering over 2 cm of fused silica.
Introducing g0 �= 0 causes an efficient backscattering over
the sample thickness L = 2 cm (Fig. 11). Again, an early
instability leads to a premature amplification of the pump pulse
[Fig. 11(c)]. A stationary plasma, in contrast, regularizes this
early stage of propagation and better preserves the pump dis-
tribution [see Fig. 11(d) whose Stokes component is displayed
in Fig. 11(e)]. Plasma instabilities develop near the entrance
face of the silica window, which forces the pump beam to
diverge at short propagation distances. Even at small density
levels [< 1017 cm−3, see inset of Fig. 11(b)], we checked that
in the longitudinal range z < 0.5 cm, unstable modes triggered
by a dynamical plasma can develop with relevant growth rate
λ+ ∼ 0.1 cm−1 whenever the pump intensity is of the order of
1 TW/cm2 while RS exceeds unity (e.g., RS = 5).

Figures 12(a) and 12(b) show the power profile of the initial
pump, the exiting power, and the backscattered power through
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FIG. 10. (Color online) (a) Peak intensity (left axis, solid curve) and energy variations (right axis, dashed curve) of a single (g0 = 0),
infrared Gaussian pulse with 60-μm beam width and 0.77 ns FWHM duration self-focusing in silica with I0 = 302 GW/cm2 (blue [dark gray]
curves) and I0 = 162 GW/cm2 (red [light gray] curves). (b) Corresponding plasma densities. (c)–(e) (x,t) intensity profiles of the single pulse
with I0 = 302 GW/cm2 at various distances showing the two peaks resulting from early defocusing in the nanosecond propagation regime
(primary parabola), the formation of secondary parabola, and their decay into picosecond peaks (instability).

FIG. 11. (Color online) (a) Peak intensity of an infrared pump pulse with 60-μm beam width and 0.77 ns FWHM duration self-focusing
with Brillouin effect (I0 = 162 GW/cm2) over L = 2 cm. The solid dark (dynamical plasma) and dashed bright (stationary plasma) blue (dark
gray) curves refer to the pump pulse; the green (light gray) curves refer to the Stokes wave. (b) Corresponding plasma density; inset zooms short
propagation distances. (c)–(e) (x,t) intensity profiles of pump pulses (c) with and (d) without a dynamical plasma response at z = 0.12 cm;
(e) shows the Stokes intensity corresponding to the latter regime. Graphical resolution is ∼6 ps.
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FIG. 12. (Color online) Power distributions of an infrared pulse
with 60-μm beam width, I0 = 162 GW/cm2 (a) without and with
phase modulation driven by (b) νm = 72 GHz and m = 21, and (c)
νm = 214 GHz and m = 7. The black curve is the power entering
a 2-cm-thick silica sample; the blue (dark gray) curve is the power
exiting the sample and the green (light gray) curve is the Stokes
power at the entrance of the sample. (d)–(f) Partial energy variations
(d) without and (e),(f) with phase modulations. Insets show (x,y)
fluence profiles of the pump at z = 2 cm and of the Stokes wave at
z = 0. Transverse surfaces are 50 μm × 50 μm.

2 cm of silica for the 2Pcr pump pulse undergoing phase
modulations. On the basis of Ref. [16], a total bandwidth of
about 3000 GHz is needed to suppress SBS at 1064 nm for
input intensity levels ∼160 GW/cm2. So, using a modulation
depth m = 21, a modulation frequency νm = 72 GHz should
be in principle sufficient. Additionally, we tested a lesser
number of modes, choosing m = 7, and higher modulation
frequency of 214 GHz. With these values, Figs. 12(b) and 12(c)
display evidence that again in the IR domain backscattering
can be totally suppressed by appropriate phase modulations. In
Figs. 12(d)–12(f), the fluence patterns shown as insets reveal a
reflected fluence of 25 mJ/cm2 without phase modulation and
below 10−7 mJ/cm2 with phase modulation. When a broad
enough bandwidth is employed, the scenario of a single-wave
collapse is retrieved.

VII. ROBUSTNESS OF PHASE MODULATIONS VERSUS
RANDOM NOISE

A remaining issue is to evaluate the robustness of the pre-
vious phase modulations to keep the Stokes wave at negligible
levels in the presence of amplitude fluctuations in the pump
pulse. Such fluctuations may be induced by some local noise in
the laser source or by smoothing techniques delivering speckle
patterns that affect stochastically the averaged intensity of the
pump. One can thus wonder whether such disturbances in
the pump may alter the efficiency of phase modulations. To
clear up this issue, we repeated the simulation employing a

FIG. 13. (Color online) (a),(b) Power distributions of the UV and
IR pulses used in (a) Fig. 8 and (b) Fig. 12, but for a pump pulse
affected by 1% amplitude random noise. (c),(d) Partial energies and
fluence patterns. Transverse surfaces are 50 μm × 50 μm in the (x,y)
plane. (e),(f) Peak intensities of the pump (blue [dark gray] solid
curves) and Stokes pulse (green [light gray] solid curves).

355-nm, phase-modulated pump pulse with 30-GHz frequency
modulation and m = 21 modulation depth, but being initially
affected by a 1% amplitude random noise. We did the same
for the 1.064 μm pump pulse with νm = 214 GHz and m = 7.

Figure 13 shows the power profiles of the pump and Stokes
pulse under the previous conditions. We clearly see the reemer-
gence of a Stokes component, simply due to the initial noise in
the pump for both laser wavelengths. It is important to notice
that the backscattered fluence is now able to reach ∼12 J/cm2

at 355 nm (0.6 J/cm2 at 1.064 μm), thus approaching damage
thresholds. The same information can be inferred from the indi-
vidual pulse energies as the pump reloses an important fraction
of energy due to an efficient Brillouin effect. In terms of
intensities, Figs. 13(e) and 13(f) display evidence of the reap-
pearance of strong backscattering accompanied by early insta-
bilities that shift the nonlinear focus backward upon the propa-
gation axis and enhance the level of clamping intensities. This
applies to initially perturbed UV pulses as well as to perturbed
IR pulses. Hence initial fluctuations in the pump, even at weak
amplitude levels, are able to break the efficiency of phase mod-
ulations at nonlinear focus, trigger instabilities earlier over the
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propagation axis, and backscatter an important amount of
Stokes intensity.

Our results complete those published in Refs. [15,16],
where phase modulations were applied on clean, i.e., unper-
turbed, pulses. In [15], 100 GHz bandwidths were shown
to produce modulational instabilities shortening the self-
focusing distance of the pump and amplifying backscattered
components. In [16], an efficient suppression of SBS was
achieved by using broader bandwidths. Here, we focused on
the action of dynamical ionization. We demonstrated that, with
active SBS, an inertial plasma source can also destabilize
self-focusing pump and Stokes waves when the ionization
threshold is reached. This plasma-driven instability is linked to
the change in the refractive index caused by the backscattered
wave and, therefore, it can be turned off at early propagation
distances by appropriate phase modulations. However, this
technique may be fragile during the damage creation process
when the latter is induced by noisy laser pulses.

VIII. CONCLUSION

In summary, we have numerically investigated the coupling
between Kerr-self-focusing, stimulated Brillouin scattering,
and plasma generation driven by nanosecond pulses in fused
silica. We examined the effect of a dynamical ionization on
the pump and Stokes waves self-focusing inside the bulk
material at ultraviolet and infrared wavelengths. The plasma
response here consists of multiphoton ionization saturated by
electron recombination. We reported the occurrence of plasma-
driven modulational instabilities which emerge when the input
pulses are not necessarily subject to external perturbations,
after a regime of quasistationary interplay between Kerr
focusing and multiphoton ionization. The instability stage has
been modeled through a plane-wave stability analysis [21],
revealing the existence of unstable temporal modes whose
optimal frequency is close to the inverse of the electron
recombination time. Confirmed numerically, such instabilities
develop from the Kerr compression of the pulse along the
self-focusing stage. They originate from the finite lifetime of
the plasma over which the most compressed part of initially
long pulses tends to be broken in. This instability favors
the production of more ultrashort peaks in the wave profile.
Thereby, the nanosecond pulse dynamic transforms itself
into a femtosecond one. In the presence of small temporal
fluctuations, the quasistationary stage disappears and the
pulse enters an ultrashort filamentation regime during its first
self-focusing stage.

By switching on the Brillouin effect, we measured strong
backscattering when letting unperturbed Gaussian pulses
propagate over a few cm of silica. Because of the temporal per-
turbations induced by acoustic waves and scattering process,
a self-focusing pulse undergoes an ultrashort dynamic without
the need of external noise. The main difference with the
single-wave configuration is that plasma-driven instabilities
already occur at short distances, since they are also excited by
the Stokes waves which attain a high intensity at the entrance
face of the sample. By simple feedback, the pump wave gets
destabilized and reaches in turn high intensity levels at short
propagation distances. The existence of such plasma-driven
instabilities occurring over electron recombination times has
been justified by a two-plane-wave stability analysis.

To get rid of these sources of damage, phase modulations
usually provide efficient tools breaking the pump into a train
of picosecond subpulses along which acoustic waves have
no time to be excited. We here demonstrated that phase
modulations can still significantly reduce the backscattered
fluence level even with an inertial plasma response. High
modulation depth combined with large enough modulation
frequency can inhibit SBS. In that case, not only backscattering
but also early plasma contributions vanish, which permits
one to preserve the distribution of the pump pulse. However,
we must keep in mind that weak fluctuations in the input
broadband pump can alter the action of phase modulations by
causing an enhancement of Brillouin backscattering, which
should limit the efficiency of this smoothing technique.

In conclusion, this work provides a numerical investigation
of coupled nanosecond pulses undergoing a dynamical plasma
response. It shows that optically driven plasma generation
contributes to enhance the level of potential instabilities when
long pump pulses go across Kerr media. However, phase
modulations can still remain an efficient means for suppressing
not only SBS, but also plasma-induced instabilities, provided
that they supply a broad enough bandwidth and are applied to
clean enough laser pumps.
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[56] L. Bergé, Opt. Express 16, 21529 (2008).

053834-14

http://dx.doi.org/10.1364/OE.17.002826
http://dx.doi.org/10.1364/OE.17.002826
http://dx.doi.org/10.1364/OE.17.002826
http://dx.doi.org/10.1364/OE.17.002826
http://dx.doi.org/10.1103/PhysRevA.2.60
http://dx.doi.org/10.1103/PhysRevA.2.60
http://dx.doi.org/10.1103/PhysRevA.2.60
http://dx.doi.org/10.1103/PhysRevA.2.60
http://dx.doi.org/10.1364/JOSAB.2.001606
http://dx.doi.org/10.1364/JOSAB.2.001606
http://dx.doi.org/10.1364/JOSAB.2.001606
http://dx.doi.org/10.1364/JOSAB.2.001606
http://dx.doi.org/10.1109/3.159517
http://dx.doi.org/10.1109/3.159517
http://dx.doi.org/10.1109/3.159517
http://dx.doi.org/10.1109/3.159517
http://dx.doi.org/10.1088/1367-2630/12/10/103049
http://dx.doi.org/10.1088/1367-2630/12/10/103049
http://dx.doi.org/10.1088/1367-2630/12/10/103049
http://dx.doi.org/10.1088/1367-2630/12/10/103049
http://dx.doi.org/10.1103/PhysRevA.83.063829
http://dx.doi.org/10.1103/PhysRevA.83.063829
http://dx.doi.org/10.1103/PhysRevA.83.063829
http://dx.doi.org/10.1103/PhysRevA.83.063829
http://dx.doi.org/10.1103/PhysRevA.85.029902
http://dx.doi.org/10.1103/PhysRevA.85.029902
http://dx.doi.org/10.1103/PhysRevA.85.029902
http://dx.doi.org/10.1103/PhysRevA.85.029902
http://dx.doi.org/10.1103/PhysRevA.65.013806
http://dx.doi.org/10.1103/PhysRevA.65.013806
http://dx.doi.org/10.1103/PhysRevA.65.013806
http://dx.doi.org/10.1103/PhysRevA.65.013806
http://dx.doi.org/10.1103/PhysRevA.70.061802
http://dx.doi.org/10.1103/PhysRevA.70.061802
http://dx.doi.org/10.1103/PhysRevA.70.061802
http://dx.doi.org/10.1103/PhysRevA.70.061802
http://dx.doi.org/10.1016/j.jcp.2012.10.034
http://dx.doi.org/10.1016/j.jcp.2012.10.034
http://dx.doi.org/10.1016/j.jcp.2012.10.034
http://dx.doi.org/10.1016/j.jcp.2012.10.034
http://dx.doi.org/10.1103/PhysRevE.72.016618
http://dx.doi.org/10.1103/PhysRevE.72.016618
http://dx.doi.org/10.1103/PhysRevE.72.016618
http://dx.doi.org/10.1103/PhysRevE.72.016618
http://dx.doi.org/10.1109/JQE.1986.1073005
http://dx.doi.org/10.1109/JQE.1986.1073005
http://dx.doi.org/10.1109/JQE.1986.1073005
http://dx.doi.org/10.1109/JQE.1986.1073005
http://dx.doi.org/10.1364/JOSAB.4.001397
http://dx.doi.org/10.1364/JOSAB.4.001397
http://dx.doi.org/10.1364/JOSAB.4.001397
http://dx.doi.org/10.1364/JOSAB.4.001397
http://dx.doi.org/10.1364/JOSAB.5.000358
http://dx.doi.org/10.1364/JOSAB.5.000358
http://dx.doi.org/10.1364/JOSAB.5.000358
http://dx.doi.org/10.1364/JOSAB.5.000358
http://dx.doi.org/10.1103/PhysRevA.42.5514
http://dx.doi.org/10.1103/PhysRevA.42.5514
http://dx.doi.org/10.1103/PhysRevA.42.5514
http://dx.doi.org/10.1103/PhysRevA.42.5514
http://dx.doi.org/10.1103/PhysRevLett.87.213902
http://dx.doi.org/10.1103/PhysRevLett.87.213902
http://dx.doi.org/10.1103/PhysRevLett.87.213902
http://dx.doi.org/10.1103/PhysRevLett.87.213902
http://dx.doi.org/10.1103/PhysRevE.72.036412
http://dx.doi.org/10.1103/PhysRevE.72.036412
http://dx.doi.org/10.1103/PhysRevE.72.036412
http://dx.doi.org/10.1103/PhysRevE.72.036412
http://dx.doi.org/10.1109/3.477753
http://dx.doi.org/10.1109/3.477753
http://dx.doi.org/10.1109/3.477753
http://dx.doi.org/10.1109/3.477753
http://dx.doi.org/10.1103/PhysRevLett.29.907
http://dx.doi.org/10.1103/PhysRevLett.29.907
http://dx.doi.org/10.1103/PhysRevLett.29.907
http://dx.doi.org/10.1103/PhysRevLett.29.907
http://dx.doi.org/10.1063/1.1655139
http://dx.doi.org/10.1063/1.1655139
http://dx.doi.org/10.1063/1.1655139
http://dx.doi.org/10.1063/1.1655139
http://dx.doi.org/10.1103/PhysRevLett.73.1990
http://dx.doi.org/10.1103/PhysRevLett.73.1990
http://dx.doi.org/10.1103/PhysRevLett.73.1990
http://dx.doi.org/10.1103/PhysRevLett.73.1990
http://dx.doi.org/10.1143/JJAP.38.6309
http://dx.doi.org/10.1143/JJAP.38.6309
http://dx.doi.org/10.1143/JJAP.38.6309
http://dx.doi.org/10.1143/JJAP.38.6309
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.1103/PhysRevE.58.6606
http://dx.doi.org/10.1103/PhysRevE.58.6606
http://dx.doi.org/10.1103/PhysRevE.58.6606
http://dx.doi.org/10.1103/PhysRevE.58.6606
http://dx.doi.org/10.1016/0079-6727(75)90003-8
http://dx.doi.org/10.1016/0079-6727(75)90003-8
http://dx.doi.org/10.1016/0079-6727(75)90003-8
http://dx.doi.org/10.1016/0079-6727(75)90003-8
http://dx.doi.org/10.1103/PhysRevLett.87.203901
http://dx.doi.org/10.1103/PhysRevLett.87.203901
http://dx.doi.org/10.1103/PhysRevLett.87.203901
http://dx.doi.org/10.1103/PhysRevLett.87.203901
http://dx.doi.org/10.1088/0034-4885/70/10/R03
http://dx.doi.org/10.1088/0034-4885/70/10/R03
http://dx.doi.org/10.1088/0034-4885/70/10/R03
http://dx.doi.org/10.1088/0034-4885/70/10/R03
http://dx.doi.org/10.1103/PhysRevA.27.1393
http://dx.doi.org/10.1103/PhysRevA.27.1393
http://dx.doi.org/10.1103/PhysRevA.27.1393
http://dx.doi.org/10.1103/PhysRevA.27.1393
http://dx.doi.org/10.1103/PhysRevE.71.065601
http://dx.doi.org/10.1103/PhysRevE.71.065601
http://dx.doi.org/10.1103/PhysRevE.71.065601
http://dx.doi.org/10.1103/PhysRevE.71.065601
http://dx.doi.org/10.1016/j.physd.2006.06.006
http://dx.doi.org/10.1016/j.physd.2006.06.006
http://dx.doi.org/10.1016/j.physd.2006.06.006
http://dx.doi.org/10.1016/j.physd.2006.06.006
http://dx.doi.org/10.1103/PhysRevA.81.013817
http://dx.doi.org/10.1103/PhysRevA.81.013817
http://dx.doi.org/10.1103/PhysRevA.81.013817
http://dx.doi.org/10.1103/PhysRevA.81.013817
http://dx.doi.org/10.1063/1.871783
http://dx.doi.org/10.1063/1.871783
http://dx.doi.org/10.1063/1.871783
http://dx.doi.org/10.1063/1.871783
http://dx.doi.org/10.1063/1.862795
http://dx.doi.org/10.1063/1.862795
http://dx.doi.org/10.1063/1.862795
http://dx.doi.org/10.1063/1.862795
http://dx.doi.org/10.1103/PhysRevA.27.3135
http://dx.doi.org/10.1103/PhysRevA.27.3135
http://dx.doi.org/10.1103/PhysRevA.27.3135
http://dx.doi.org/10.1103/PhysRevA.27.3135
http://dx.doi.org/10.1103/PhysRevE.65.026611
http://dx.doi.org/10.1103/PhysRevE.65.026611
http://dx.doi.org/10.1103/PhysRevE.65.026611
http://dx.doi.org/10.1103/PhysRevE.65.026611
http://dx.doi.org/10.1016/S0167-2789(01)00208-1
http://dx.doi.org/10.1016/S0167-2789(01)00208-1
http://dx.doi.org/10.1016/S0167-2789(01)00208-1
http://dx.doi.org/10.1016/S0167-2789(01)00208-1
http://dx.doi.org/10.1088/0031-8949/33/6/001
http://dx.doi.org/10.1088/0031-8949/33/6/001
http://dx.doi.org/10.1088/0031-8949/33/6/001
http://dx.doi.org/10.1088/0031-8949/33/6/001
http://dx.doi.org/10.1088/0031-8949/33/6/002
http://dx.doi.org/10.1088/0031-8949/33/6/002
http://dx.doi.org/10.1088/0031-8949/33/6/002
http://dx.doi.org/10.1088/0031-8949/33/6/002
http://dx.doi.org/10.1137/S0036139997322407
http://dx.doi.org/10.1137/S0036139997322407
http://dx.doi.org/10.1137/S0036139997322407
http://dx.doi.org/10.1137/S0036139997322407
http://dx.doi.org/10.1063/1.873794
http://dx.doi.org/10.1063/1.873794
http://dx.doi.org/10.1063/1.873794
http://dx.doi.org/10.1063/1.873794
http://dx.doi.org/10.1063/1.1654772
http://dx.doi.org/10.1063/1.1654772
http://dx.doi.org/10.1063/1.1654772
http://dx.doi.org/10.1063/1.1654772
http://dx.doi.org/10.1016/j.physleta.2010.11.044
http://dx.doi.org/10.1016/j.physleta.2010.11.044
http://dx.doi.org/10.1016/j.physleta.2010.11.044
http://dx.doi.org/10.1016/j.physleta.2010.11.044
http://dx.doi.org/10.1364/JOSAB.7.001125
http://dx.doi.org/10.1364/JOSAB.7.001125
http://dx.doi.org/10.1364/JOSAB.7.001125
http://dx.doi.org/10.1364/JOSAB.7.001125
http://dx.doi.org/10.1364/OE.16.021529
http://dx.doi.org/10.1364/OE.16.021529
http://dx.doi.org/10.1364/OE.16.021529
http://dx.doi.org/10.1364/OE.16.021529



