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We present a high-order harmonic generation theory which generalizes the strong-field approximation to
the resonant case when the harmonic frequency is close to that of the transition from the ground state to an
autoionizing state of the generating system. We show that the line shape of the resonant harmonic is a product
of the Fano-like factor and the harmonic line which would be emitted in the absence of the resonance. The
theory predicts rapid variation of the harmonic phase in the vicinity of the resonance. The calculated resonant
harmonic phase is in reasonable agreement with recent measurements. Predicting the phase locking of a group of
resonantly enhanced harmonics, our theory allows us to study the perspectives of producing an attosecond pulse
train using such harmonics.
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I. INTRODUCTION

Although high-order harmonic generation (HHG) via inter-
action of intense laser pulses with matter provides a unique
source of coherent femtosecond and attosecond pulses in the
extreme ultraviolet (XUV), the low efficiency of the process is
a serious limit to its wide application. Using the resonances of
the generating medium is a natural way to boost the efficiency,
as was already suggested in early HHG experimental [1] and
theoretical [2,3] studies. Generation of high harmonics with
frequencies close to that of the transition from the ground
state to an autoionizing state (AIS) of the generating particle
was experimentally investigated in plasma media (for a recent
review see [4,5]) and in noble gases [6,7].

A number of theories describing HHG enhancement due to
bound-bound transitions were suggested [8–12], and recently,
theories based on the specific properties of AIS were developed
[13–16]. These theories involve the rescattering model [17,18]
in which the HHG is described as a result of tunneling
ionization, classical free electronic motion in the laser field,
and recombination accompanied by the XUV emission upon
the electron’s return to the parent ion. In particular, in [16] one
of us suggested a four-step resonant HHG model. The first two
steps are the same as in the three-step model, but instead of the
last step (radiative recombination from the continuum to the
ground state) the free electron is trapped by the parent ion, so
that the system (parent ion + electron) lands in the AIS, and
then it relaxes to the ground state emitting XUV.

In addition, there are several theoretical studies in which the
HHG efficiency was calculated using the recombination cross
section. It was done heuristically [19] and analytically [20]
for the Coulomb interaction and by generalizing the numerical
results for the molecules [21].

In this paper we suggest the high-order harmonic generation
theory considering an AIS in addition to the ground state and
the free continuum treated in the theory for the nonresonant
case [22]. We show that such accurate consideration verifies
the model [16]. Moreover, we show that the intensity of the
resonant HHG is described with a Fano-like factor that includes
the scattering cross section. However, in contrast to previously
suggested theories, our approach also allows calculating the
resonant harmonic’s phase.

II. THEORY

We start with the time-dependent Schrödinger equation for
an atom or ion in an external laser field linearly polarized along
the x axis:

i
∂

∂t
�(r,t) = Ĥ�(r,t), (1)

where

Ĥ = − 1
2∇2 + V (r) − E(t)x

is the total Hamiltonian and r is the set of coordinate vectors
of the electrons in the atom (ion). The wave function can be
written as a sum of the ground state, unperturbed continuum,
and AIS:

� = �ground + �free + c(t)�AI. (2)

To solve the Schrödinger equation (1) we use the perturba-
tion method. The wave function obtained in the absence of the
AIS in the strong-field approximation (SFA) [22,23] is taken
as the unperturbed solution:

�0 = �ground + �free.

The solution �0 was found in [22] within the single-electron
approximation neglecting the interaction of the free electron
with the nucleus and other electrons:

�0(r,t) = eiIpt

(
a(t)ϕgr(r) +

∫
d3vb(v,t)χ (r)

)
, (3)

where ϕgr(r) is the ground state and χ (r) is a flat wave.
This solution can be generalized to the multielectron case as
follows. Let r1 be the radius vector of the “’active” electron
and r̃ be radius vectors of the other electrons: r = {r̃,r1}. Let

χ (r) = χ1(r1)ϕ̃gr(r̃) exp(iĨpt),

where Ĩp is the ionization potential of the parent ion. Also, let
us write formally

V ′(r) = V (r) − Ṽ (r̃),

where Ṽ (r̃) is the part of the potential which depends only on r̃.
Now the solution �0(r,t) can be found via a procedure similar
to that used in [22]. Namely, neglecting the term V ′(r)χ (r) [but
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not the term Ṽ (r̃)χ (r)] in the Schrödinger equation, we find
the equation describing b(v,t) coinciding with Eq. (4) from
[22]. Thus the obtained solution satisfies the equation

i
∂

∂t
�0 = Ĥ�0 − V ′(r)�free. (4)

Neglecting the modification of the AIS by the laser field, the
AIS can be written as a solution of the Schrödinger equation:

i
∂

∂t
�AI = Ĥ (r)�AI. (5)

Since we are planning to calculate the dipole moment of
the system which is naturally localized near the origin, below
we neglect the outgoing part of this solution and focus on the
part localized near the origin. This part can be written using
the complex energy [24–27]:

�AI(r,t) = ϕ(r) exp(−iWt). (6)

Here ϕ(r) is a stationary solution (in the absence of the
configuration interaction, see [28]), and the energy is

W = W0 − i�/2,

where W0 is the real energy of the AIS and � is the AIS width
(see [28]),

� = 2π |V1(vr )|2, (7)

where

V1(v) = 〈χ (v)|V ′(r)|ϕ〉
and vr = √

2W0. Note that � = 1/τ , τ is the lifetime of the
AIS.

Using Eqs. (1)–(5), we obtain

iċ�AI = V ′(r)�free. (8)

Multiplying this equation by ϕ∗(r) and integrating over r, we
have

ċ(t) = −iei(W+Ip)t
∫

d3vb(v,t)V ∗
1 (v). (9)

The solution of this equation is

c(t) = −i

∫ t

−∞
dt ′ei(W+Ip)t ′

∫
d3vb(v,t ′)V ∗

1 (v). (10)

We can see that the matrix element V1(v) is the parameter
which determines the amplitude of the AIS. Thus this state is
a small perturbation of the continuum when this parameter is
small (in atomic units). Note that a similar requirement appears
in the Fano theory [28] and its applications as the requirement
for the resonance to be well isolated in the continuum: � 	
W0. This condition is usually valid for the autoionizing states
of atoms and ions.

Below we find the time-dependent dipole moment of the
system:

μ(t) = 〈�(t)|x|�(t)〉.
Substituting here the wave function given with (2) and neglect-
ing the contribution of the continuum-continuum transitions
to the dipole moment (as in [22]) and the contribution of
the continuum-AIS transitions to the dipole moment (both

assumptions are valid in the case of low population of the
continuum), we obtain

μ(t) = 〈�ground|x|�free〉 + 〈�ground|x|c(t)�AI〉 + c.c. (11)

The first term describes HHG in the absence of the resonances
of the generating system [see Eq. (6) in [22]]:

μnr(t) =
∫

d3vb(v,t)d∗
nr(v) + c.c., (12)

where

dnr(v) = 〈χ (v)|x|ϕgr〉
is the dipole matrix element of the continuum-ground-state
transitions. The second term in Eq. (11) describes the effect of
the resonance on the harmonic generation:

μr (t) = e−i(W+Ip)t c(t)d∗
r + c.c.,

where

dr = 〈ϕ|x|ϕgr〉
is the dipole matrix element of the AIS-ground-state transition.
Substituting here Eq. (10), we obtain

μr (t) = −id∗
r

∫ t

−∞
dt ′ei(W+Ip)(t ′−t)

∫
d3vb(v,t ′)V ∗

1 (v) + c.c.,

(13)
where b(v,t ′) (the wave function amplitude of the electron in
the free continuum) is the same as that in Lewenstein’s theory
[see Eq. (5) in [22]].

We transform the Eq. (13) so that it is written using
nonresonant contribution (12). We suppose that V ∗

1 (v) and
d∗

nr(v) are smooth functions of the velocity, so they can be
taken outside the integral at v = vr . Introducing τ ′ = t − t ′,
we have

μr (t) = −i
V ∗

1 (vr )d∗
r

d∗
nr(vr )

∫ ∞

0
dτ ′e−i(W+Ip)τ ′

μnr(t − τ ′). (14)

Thus, the spectrum [f (ω) = ∫ ∞
−∞ f (t) exp(iωt)dt] of the

resonant contribution to the dipole moment is

μr (ω) = V ∗
1 (vr )d∗

r

d∗
nr(vr )

μnr(ω)

ω − (W0 + Ip) + i �
2

, (15)

where μnr(ω) is the spectrum of the nonresonant contribution
given by Eq. (8) in [22]. Introducing the detuning from
the resonance 
ω = ω − (W0 + Ip), we obtain the spectrum
of the total dipole moment of the system (11) taking into
account (15):

μ(ω) = μnr(ω)F (ω),
(16)

F (ω) =
[

1 + Q
�/2


ω + i�/2

]
,

where

Q = V ∗
1 (vr )d∗

r

d∗
nr(vr )�/2

. (17)

Note that the complex conjugate parameter Q∗ is close to the
Fano parameter q (which can be real or complex; see [29–31]):

Q∗ ≈ q = 〈�|x|i〉
πV ∗

E〈ψE |x|i〉 . (18)
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FIG. 1. (Color online) (a) The absolute value squared and (b) the
argument of the factor F (ω) in Eq. (16), calculated for different Q

parameters. arg Q is shown near the curves; |Q| = 5 for all the curves
except the black dashed one.

The approximate character of the equality is due to the
following facts: (i) state � is different from ϕ [see Eq. (17) in
[28]] and (ii) state ψE is different from the free wave χ (see
[28] for more details).

The factor |F (ω)|2 describes the line profile, which coin-
cides with the Fano profile when Q = q − i. Note that the
phase 2 arg(q − i) is introduced in [32] as a characteristic of
the process dynamics described by the Fano line. The condition
� 	 1, ensuring the applicability of our approach, in the case
of real Q corresponds to Q � 1; therefore the difference in
line shape |F (ω)|2 from the Fano profile is small in this case.

In Fig. 1 we present the factor F (ω), calculated for different
Q parameters. In Fig. 1 we can see the line asymmetry and
a rapid phase variation due to the resonance. Whereas the
Fano-like line shape in Fig. 1(a) is, in general, well known,
the behavior of the phases was never studied in detail. We can
see that in the vicinity of the resonance the phase variation
is about π or less; an additional approximately π or −π

phase advance is either achieved near the minimum of |F |2
[see the asymmetric lines for arg(Q) = 0, arg(Q) = −π/8]
or distributed at the wings in the case of the symmetric line.
In general, essential phase variation can take place not only

near the resonance but also far from it. In certain regions
of arg(Q) the phase behavior is extremely sensitive to this
value, unlike the line shape [compare cases arg(Q) = 0 and
arg(Q) = −π/8]. In Fig. 1 we see that for |Q| = 5 the phase
increases near the resonance for all curves. From Eq. (16)
one finds that the slope of the phase at the resonance for
high |Q| is approximately the doubled lifetime of the AIS:
∂[arg(F )]/∂ω ≈ 2/� = 2τ . This slope corresponds to the
delay in the emission of the resonant harmonic. The presence
of this delay confirms the four-step mechanism of the resonant
HHG enhancement [16], as first pointed out in the numerical
studies [33]. In the opposite case of the window resonance
(|Q| < 1) the HHG is suppressed, and the slope of the phase
is negative (see black dashed curve).

In order to apply Eq. (16) for certain resonances, the
complex values of dr , dnr, and V1 should be known to calculate
Q via Eq. (17).

We have |dr |2 = fosc

2(Ip+W0) , where fosc is the oscillator
strength of the transition. Note that fosc also defines the
resonant photorecombination cross section, so our findings
in general agree with those in the published studies describing
the HHG intensity via the photorecombination cross section
[19–21,34].

The matrix element dnr was found in [22] for different
binding potentials. Note that the normalization of the free
wave in [22,28] is different. If the normalization of [28] is
used [providing Eq. (7)], the matrix elements dnr found in [22]
should be multiplied by 1/

√
vr .

Finally, |V1|2 can be found from � [see Eq. (7)], which
was calculated or measured for many transitions. However,
calculating the phase of V1 is a separate problem which is
discussed in the Appendix.

III. RESULTS

In Fig. 2 we present analytical and numerical results of
the calculating factor F (ω) for the transition in Sn+, which

FIG. 2. (Color online) Absolute value squared (solid curves) and
argument (dashed curves) of the factor F (ω), found numerically
(curves with symbols) and analytically (curves without symbols) for
the 4d105s25p 2P3/2 ↔ 4d95s25p2(1D)2D5/2 transition in Sn+; the
transition frequency is 26.27 eV, which is close to the 17th harmonic
of a Ti:sapphire laser.
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is important because of the comparison with experiments
discussed below. The approach for calculating μ(ω) in the
presence of the resonance using the numerical time-dependent
Schrödinger equation (TDSE) solution for a model potential
is described in [35,36]. However, accurately extracting F (ω)
from this spectrum is an additional problem. To solve it we
modify the model potential to shift the resonant frequency;
the shift is much higher than �. Thus in the vicinity of the
unshifted resonance shown in Fig. 2 the spectrum calculated
with the modified potential μmod(ω) ≈ μnr(ω). We are using a
generating pulse with a peak intensity of 0.65 × 1014 W/cm2;
the pulse is relatively short (15 fs), so the spectra are quasi-
continuous, and F is calculated as F (ω) = μ(ω)/μmod(ω).

Figure 2 shows good agreement between the analytical and
numerical results. In the numerically calculated |F (ω)|2 one
can see a small shift of the resonance, which can be attributed
to the AIS Stark shift in the laser field. However, neither a
broadening of the resonant peak nor a dramatic change of
the phase behavior can be seen. Thus one can conclude that
neglecting the influence of the laser field on the AIS considered
in our theory is a reasonable approximation for resonant HHG
in metallic ions. Note that this influence can be important for
narrower resonances in He [32,37] and noble gases [38].

High-order harmonic phase measurement for the first time
allows direct experimental study of the phase behavior near
the Fano resonance. Recently, such a study for HHG from
tin plasma under resonant conditions was performed [35]
using the reconstruction of attosecond beating by interference
of two-photon transitions (RABBIT) technique [39]. It was
shown that the resonance considerably changes the relative
phase of the neighboring harmonics. The emission time τe

found with RABBIT for sideband q is linked to phases
ϕq−1 and ϕq+1 of the two neighboring harmonics as τe =
(ϕq+1 − ϕq−1)/2ω0, where ω0 is the laser frequency. Thus the
change in the emission time due to the resonance is [see Eq.
(16)]


τe = {arg[F ((q + 1)ω0)] − arg[F ((q − 1)ω0)]}/2ω0.

The emission time calculated with this correction is shown in
Fig. 3 together with the experimental and numerical results
from [35]. We can see that for the sidebands (SB) far from
the resonance (SB12 and SB14) both the theory and the
experiment show emission time in agreement with the SFA
prediction for the short electronic trajectory, whereas near
the resonance (SB16 and SB18) this is not the case. For
SB16 our theory agrees with the experiment. The change
in τe from SB16 to SB18 is negative both experimentally
and theoretically, but the measured change is smaller. Most
likely, this is so because harmonic 19 is too close to the cutoff
and the SFA prediction used in the analytical consideration
is not valid. Another probable reason is the influence of the
other resonances, which are quite numerous in Sn+. Note that,
experimentally, the RABBIT signal for SB18 was not very
stable [35].

In Fig. 4 we present the spectrum of the resonant 17th
harmonic calculated using the numerical TDSE solution as
described in [35,36] averaged for laser intensities up to
0.8 × 1014 W/cm2; the laser pulse duration is 50 fs. One
can see that different detunings from the resonance lead to
different peak harmonic intensities and, even more interesting,

FIG. 3. (Color online) Calculated and measured emission time
for high-order harmonics generated in tin plasma plumes. Triangles
show calculated results based on the present theory; the other results
are from Ref. [35]: dots and squares show the numerical results and
those of the RABBIT measurements, respectively, and the black line
shows the results of a SFA calculation.

to different harmonic line shapes: for the 793-, 796-, and
808-nm fundamentals the harmonic line consists of two peaks;
it is known for the nonresonant HHG that these peaks can
be attributed to the contributions of the short and the long
electronic trajectories (see [40] and references therein). In
Fig. 4 we can see that the long trajectory’s contribution is,
in general, weak, but it becomes more pronounced when its
frequency is closer to the exact resonance, as is the case
for the 793-nm fundamental. These results illustrate the fact
that the harmonic line shape can be well understood via the
factorization of the harmonic signal described by Eq. (16). This
straightforward factorization is a remarkable fact, considering
the complexity of the dynamics of both the free electronic wave
packet and the AIS, which determine the harmonic line shape.

FIG. 4. (Color online) The calculated harmonic spectrum in the
vicinity of the resonance for different fundamental wavelengths,
leading to different detunings from the resonance. The resonant
transition is the same as in Fig. 2.
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IV. DISCUSSION AND CONCLUSIONS

The harmonic phase variation due to the factor F (ω)
in the vicinity of a wide (i.e., covering several harmonics)
resonance can be used for compensation of the attochirp
(variation of τe as a function of the harmonic order). Namely,
for the resonant harmonics above the resonance the attochirp
is compensated for by the short electronic trajectory, and
for those below the resonance it is compensated for by the
long one. The variation of the additional emission time is
∂
τe/∂ω = ∂2 arg[F (ω)]/∂ω2 ∼ 1/�2. This estimate shows
that, in particular, resonant HHG in Xe using a 1–2-μm pump is
a good candidate for attochirp compensation via the resonance
in Xe at approximately 100 eV.

Above we have considered a single AIS. However, our
perturbation theory can be easily generalized for the case
of multiple nonoverlapping autoionizing (AI) states, keeping
the assumption that the influence of these states on the free
electronic wave packet �free remains small. Namely, to take
into account several AISs, the terms corresponding to each
state with its specific Q, 
ω, and � should be added in the
brackets in the right part of Eq. (16).

In conclusion, in this paper we present a theory which
generalizes the SFA approach for HHG to the resonant case,
considering an AIS in addition to the ground state and the
free continuum state; the latter two states are treated in the
same way as in the theories developed for the nonresonant
case. The main result is given by Eq. (16), which presents the
resonant harmonic line as a product of the Fano-like factor
and a harmonic line which would be emitted in the absence of
the AIS. Our theory allows calculating not only the resonant
harmonic intensity but also its phase. We show that there is a
rapid variation of the phase in the vicinity of the resonance.
Our calculations reasonably agree with the RABBIT harmonic
phase measurements. Our theory predicts that in the case of
a resonance covering a group of harmonics the resonance-
induced phase variation can compensate for the attochirp in a
certain spectral region. The natural progression of our studies
would be to take into account the influence of the laser field
on the AIS.
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APPENDIX

Calculating the complex matrix element V1 is a very
complex problem even for simple multielectronic systems.
Here we suggest a single-electron model where this matrix
element can be found exactly. Note that neither our approach
nor the Fano theory specifies the nature of the potential V ′(r) in
(4): the potential can include the electron-electron interaction
(as in the case of AI state), but it can be some model potential
as well.

To find the matrix element

V1(v) = 〈χ (vr )|V ′(r)|ϕqs〉

we use the fact that V ′(x) = Ĥ + 1
2∇2. Then V1(vr ) =

W 〈χ (vr )|ϕqs〉 + 〈χ (vr )| 1
2∇2|ϕqs〉. Further we present the AIS

at +∞ as an outgoing wave,

ϕqs = Aeiθχ (vr ), (A1)

and take into account that ϕqs is either symmetric or antisym-
metric and that the total flux of the AIS wave function over
the integration boundary which is far from the origin is 2A2vr .
Then upon integration of 〈χ (vr )| 1

2∇2|ϕqs〉 twice by parts we
obtain

V1(vr ) = W 〈χ (vr )|ϕqs〉 + iA
√

vre
iθ − v2

r

2
〈χ (vr )|ϕqs〉,

where W = W0 − i�/2 = v2
r /2 − i�/2. Then we find

V1(vr ) = iA
√

vre
iθ − i�〈χ (vr )|ϕqs〉/2. (A2)

The total flux of the AIS wave function equals � (see [41]);

thus A =
√

�
2vr

. Now we can see that the first term in (A2) is

proportional to
√

�, whereas the second one is proportional to
�, and thus the latter can be neglected for small �. So, finally,

we have V1(vr ) = i

√
�
2 eiθ .

To find θ we use a model potential which has a ground
state and a single quasistationary state ϕqs, with the latter
corresponding to the AIS in the real system. A one-dimensional
double-barrier structure with a gap between the barriers (see
Fig. 5) can reproduce well the essential features of the
generating system. The exact choice of the parameters of this
model potential (so that the energy of the quasistationary state
and its lifetime and the energy of the ground state fit those of
the real ion) is described below. This model allows us to solve
the Schrödinger equation without the laser field analytically.

We find the wave function between the barriers in the model
potential using the analogy with electromagnetic field in a
Fabry-Pérot interferometer. Between the barriers the wave
experiences multiple reflections from the two barriers. We

FIG. 5. (Color online) The model double-barrier potential with
a gap between the barriers. There are the ground state ϕgr and the
quasistationary state ϕqs, which reproduces the AI state in the real
atom (or ion).
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look for a solution corresponding to the incident wave of unit
amplitude. Thus the wave function between the barriers can
be written in the form

ϕqs = [C1 exp (ik′x) + C2 exp (−ik′x)] exp (iξ ), (A3)

where k′ = √
2(U + E) is the wave number in the region

between the barriers, E is the incident wave energy, and ξ

is a phase chosen so that the matrix element dr is real. Note
that the wave function in the form (A3) contains an outgoing
wave at +∞ outside the barrier as in (A1).

C1 and C2 can be found as

C1 =
√

D exp (iφd )

1 − R exp (2iφr )
, C2 =

√
DR exp [i(φr + φd )]

1 − R exp (2iφr )
.

(A4)
Here D and R are the transition and reflection coefficients for
the amplitude, respectively, and φd and φr are the phase shifts
that the wave function acquires upon transition and reflection
in the case of a single barrier. These factors have the following
form:

D = 4v2κ2

(κ2 − vk′)2 sinh2 [κ(b − a)] + κ2(v + k′)2 cosh2 κ(b − a)
,

R = (κ2 + vk′)2 sinh2 [κ(b − a)] + κ2(v − k′)2 cosh2 κ(b − a)

(κ2 − vk′)2 sinh2 [κ(b − a)] + κ2(v + k′)2 cosh2 κ(b − a)
,

(A5)

φd = arctan

(
vk′ − κ2

(v + k′)κ
tanh [κ(b − a)]

)
− vb + k′a,

φr = arctan

(
− 2k′κ(v2 + κ2) coth κ(b − a)

v2k′2 − κ4 + κ2(v2 − k′2) coth2 [κ(b − a)]

)
+ 2k′a + pi,

where v is the velocity of the incident wave with energy E and
κ = √

2(V − E).
Let us consider the dipole matrix element of the

ground-state–quasistationary-state transition defined as d̃r =
〈ϕqs exp (−iξ )|x|ϕgr〉 = dr exp (iξ ). We assume the ground
state ϕgr coincides with the ground state of the infinitely
deep potential gap as ϕgr = 1√

a
cos(qx), where q = π

2a
is

the wave number corresponding to the ionization potential
of the generating system (because in this case the barrier is
high and the tunneling probability is very low). Using the
quasistationary-state wave function (3), we find the dipole
matrix element d̃r

∗
of the ground-state–quasistationary-state

transition as

d̃r
∗ =

√
D exp (iφd )

1 + √
R exp (iφr )

(A − B), (A6)

where

A = 1√
a

(
sin (k′ + q)a

(k′ + q)2
+ sin (k′ − q)a

(k′ − q)2

)
,

B = √
a

(
cos (k′ + q)a

k′ + q
+ cos (k′ − q)a

k′ − q

)
.

Since we have defined dr as being real, then it is equal to the
absolute value of d̃r

∗
; therefore the phase ξ in (A3) can be

found as arg (−d̃r
∗
). Thus for the considered double-barrier

model we can obtain the phase ξ in the following form:

ξ = arctan

( √
R sin φr

1 + √
R cos φr

)
− φd. (A7)

On the one hand, we can obtain the wave function ϕqs at
+∞ as a plane wave between the barriers propagating to the
right in (A3) with the amplitude changed by a factor of

√
D and

acquiring the phase shift φd after tunneling through the barrier.

Thus the phase at +∞ can be found as arg (C1) + ξ + φd ,
where arg (C1) = φd + arctan ( R sin 2φr

1−R cos 2φr
) and ξ is defined in

(A7). On the other hand, the wave function outside the barrier
can be presented as in (A1). Comparing the phase of the wave
function ϕqs at +∞ in these two cases, we obtain the phase θ

in the following form:

θ = φd + arctan

(
R sin 2φr

1 − R cos 2φr

)

+ arctan

( √
R sin φr

1 + √
R cos φr

)
, (A8)

where the parameters R, φr , φd , defined by (A5), are calculated
by substituting the AIS energy for that of the quasistationary
state in our model.

We used the following considerations for choosing the pa-
rameters of the model potential shown in Fig. 5. The population
in the region between the barriers [

∫ a

−a
|ϕqs|2dx, where ϕqs is

determined by formula (A3)] has maxima corresponding to
quasistationary states. The parameters a, b, V , and U of the
model potential were chosen so that there are two states in
it and, moreover, the energy and width of the quasistationary
state, the ground-state energy, and the oscillator strength of
the quasistationary-state–ground-state transition coincide with
those of the real ion. Thus the quasistationary (autoionizing)

state energy should be equal to W0 = v2
r

2 . The procedure for
finding the parameters was as follows. First, the parameters
of the finite-depth gap (V and a) corresponding to the real
values of the energy difference between the ground state and
the AIS and the oscillator strength were found by the gradient
descent method. Then, U was selected so that the absolute
value of the ground-state energy equals the ionization potential
of the real system. Finally, parameter b was found so that the
quasistationary-state width in the model potential coincides
with that of the AI state of the ion.
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