
PHYSICAL REVIEW A 89, 053827 (2014)

Free-carrier-driven spatiotemporal dynamics in amplifying silicon waveguides
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We theoretically investigate the free-carrier-induced spatiotemporal dynamics of continuous waves in silicon
waveguides embedded in an amplifying medium. Optical propagation is governed by a cubic Ginzburg-Landau
equation coupled with an ordinary differential equation accounting for the free-carrier dynamics. We find that,
owing to free-carrier dispersion, continuous waves are modulationally unstable in both anomalous and normal
dispersion regimes and chaotically generate unstable accelerating pulses.
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I. INTRODUCTION

Silicon photonics is a well-established area of research
aiming at exploiting silicon as a photonic component for
the engineering of integrated optoelectronic devices. The
extraordinary optical properties of Si open up possibilities
for novel miniaturized applications, ranging from optical
interconnection to biosensing [1,2]. In the mid-infrared, Si
has a high refractive index (n � 3.5) and negligible linear
extinction. However, in the range 1 μm < λ0 < 2.2 μm,
two-photon absorption (TPA) is relevant and is responsible
for high nonlinear extinction [3]. Owing to the high refrac-
tive index, light can be tightly localized in subwavelength
Si-based waveguides [4], which tremendously enhance non-
linear processes [5], including TPA that damps optical
propagation and limits the efficiency of Si-based photonic
components [6]. As a consequence of TPA, pairs of photons
with total energy greater than the Si band gap (Eg ≈ 1.12 eV)
are absorbed, and electrons are excited to the conduction band
modifying the Si optical response [7]. In this interesting and
rather unexplored operating regime, free carriers (FCs) directly
interact with the optical field and introduce novel nonlinear ef-
fects [8]. A quite similar scenario happens in gas-filled hollow
core photonic crystal fibers (HCPCFs) in the ionization regime,
where accelerating solitons [9] and universal modulational
instability [10] have been recently observed. In this case,
the free plasma generated through ionization is responsible
for an intense blueshift of several hundreds of nanometers
of the optical pulse [11]. This tremendous dynamics occurs
on a much smaller scale (blueshift of a few nanometers) in
Si-based waveguides [8] because of the intimate presence of
TPA, which is responsible for both the creation of FCs and
for damping. In principle, losses can be reduced in hybrid
slot waveguides [12], but in this case the extraordinary effects
ensuing from FC dynamics are also reduced accordingly.

An alternative strategy for overcoming losses consists of
embedding Si waveguides in gaining media. In this context,
amplification schemes based on III–V semiconductors [13],
rare-earth-ion-doped dielectric thin films [14], and erbium-
doped waveguides [15] have been proposed and practically
realized. The paradigm model for describing optical propa-
gation in amplifying waveguides is represented by the cubic
Ginzburg-Landau (GL) equation, which governs a wide range
of dissipative phenomena [16,17]. In general, GL systems
are rich in nature and exhibit some peculiar features, e.g.,

chaos and pattern formation [18,19]. In contrast to the case of
conventional Kerr solitons arising from the balance between
nonlinearity and dispersion [20], localized stationary solutions
of GL systems, namely, dissipative solitons, result from
the exact compensation of gain and loss [21]. In a recent
work, we investigated the FC-induced dynamics of dissipative
solitons in Si-based amplifying waveguides, demonstrating the
self-frequency soliton blueshift [22].

In this paper, we theoretically investigate the propagation
of continuous waves (cw’s) in a silicon-on-insulator (SOI)
waveguide embedded in erbium-doped amorphous aluminum
oxide (Al2O3:Er+). Owing to the externally pumped active
inclusions, small optical waves are exponentially amplified,
and instability develops until the nonlinear gain saturation
comes into play, counterbalancing the linear amplification.
Taking full account of FC generation and recombination, we
calculate the stationary nonlinear cw’s of the system, and we
investigate their stability. We find that, analogous to gas-filled
HCPCFs [10], stationary cw’s are universally unstable in both
normal and anomalous dispersion regimes. However, due to the
inherent nonconservative nature of our system, modulational
instability (MI) does not generate a shower of solitons as in
Ref. [10] but an accelerating chaotic state. This scenario en-
sues from the presence of unstable dissipative solitons, which
constitute the strange attractor of the system [18]. Every sub-
pulse generated through MI is accelerated by the FC dispersion
and experiences self-frequency blueshift. In turn, the overall
dynamics accelerates in the temporal domain and blueshifts in
the frequency domain. This paper is organized as follows. In
Sec. II we describe the geometry of the system and the govern-
ing equations. In Sec. III we calculate the nonlinear stationary
cw modes that result from the thorough balance between the
gain provided by externally pumped two-level atoms and Si
TPA. In Sec. IV we analytically and numerically study MI of
cw’s. Analytical calculations predict universal MI and accel-
erating chaos, which is confirmed by numerical simulations.

II. MODEL

We consider a SOI waveguide with lateral dimensions h =
w = 525 nm surrounded by Al2O3:Er+, whose gain bandwidth
is of the order of 100 nm around the carrier wavelength λ �
1540 nm. In principle, other gain schemes involving the use of
semiconductor active materials can be considered, and the gain
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bandwidth can be increased accordingly [23]. Without any loss
of generality, we assume that the SOI waveguide is fabricated
along the [1̄10] direction and on the [110] × [001] surface.
In this case, stimulated Raman scattering (SRS) does not
occur for quasi-TM modes [7]. Initially neglecting gain of the
external medium, Si nonlinearity, and FC generation, we have
numerically calculated the linear quasi-TM mode e(r⊥), its
dispersion β0(ω0), and the effective area by using COMSOL [24].
At λ0 = 1550 nm, we then found that the second-order group
velocity dispersion (GVD) coefficient is β2 � −2 ps2/m and
the effective area is Aeff � 0.145 μm2. Nonlinear pulse propa-
gation can be modeled within the slowly varying envelope ap-
proximation (SVEA) by taking the ansatz for the electric field
E(r,t) = Re[A(z,t)e(r⊥)eiβ0z−iω0t ], where A(z,t) is the pulse
envelope, e(r⊥) is the linear mode profile, ω0 = 2πc/λ0 is the
carrier angular frequency, c is the speed of light in vacuum,
and β0 is the linear propagation constant. We approximate
the external gaining medium as a two-level system, which
is characterized by a Lorentzian spectral distribution of gain
around the carrier angular frequency ω0: G(�ω) = g0/(1 +
�ω2T 2

2 ), where g0 is the dimensionless gain peak, T2 � 40 fs
is the dephasing time of Al2O3:Er+, and �ω = ω − ω0 [25].
For small detuning �ω � ω0, the spectral gain distribution
can be approximated by G(�ω) � g0 − g2�ω2T 2

2 . FCs affect
the optical propagation by means of two mechanisms: FC-
induced dispersion (FCD) and absorption (FCA). Following
the theoretical approach developed in Refs. [26–28], the
propagation equation for the optical envelope is found as the
solvability condition of the first-order multiscale expansion
of the full vectorial Maxwell equations, which reduce to a
Ginzburg-Landau equation. In addition, owing to the presence
of FCD and FCA in Si-based waveguides, optical propagation
is coupled with a nonlinear first-order equation for the
generation of FCs, as demonstrated in Refs. [4,7,29]:

i∂ξu − s

2
∂2
τ u − igu − ig2∂

2
τ u (1)

+(1 + iK)|u|2u + (i/2 − μ)φcu = 0,
(2)

dφc

dτ
= θc|u|4 − φc

τc

,

where u represents the optical envelope and φc is the free-
carrier density. Time duration (τ = t/t0) and the propagation
coordinate (ξ = z/LD) are normalized to the pulse duration
t0 = 40 fs and dispersion length LD = t2

0 /|β2| = 0.8 mm,
respectively. The envelope amplitude (u = A/

√
P0) is normal-

ized to the square root of the power P0 = λ0Aeff/(2πn2LD) =
17.88 W, where n2 = 2.5 × 10−18 m2/W is the Kerr nonlinear
coefficient of bulk silicon [30]. In Eq. (1), the parame-
ter s = ±1 represents the sign of the GVD (s = +1 for
normal dispersion and s = −1 for anomalous dispersion),
while the parameter K = βTPAλ0/(4πn2) = 0.4 is the TPA
coefficient, where βTPA � 8 × 10−12 m/W is the bulk TPA
constant [30]. The parameter g = g0 − α is the difference
between the gain peak power and the linear loss coefficient
(αl � 0.2 dB/cm), which is renormalized to the dispersion
length (α = αlLD = 0.08). The FC density Nc is normal-
ized to φc = σNcLD, where σ � 1.45 × 10−21m2 [31]. The
parameter θc = βTPA|β2|σλ3

0/(16π3c�t0n
2
2) = 0.02 accounts

for FCA, while μ = 2πkc/(σλ0) = 3.77 accounts for FCD,
where kc � 1.35 × 10−27 m3 [30,32]. The characteristic FC
recombination time (tc = 1 ns) is also normalized to the initial
pulse width: τc = tc/t0 = 2.5 × 104. The peak gain g0 and the
gain dispersion g2 = g0T

2
2 are the control parameters of our

system, as they can be finely tuned by varying the external
pumping power used to achieve inversion of the population of
two-level atoms embedded in our system. In Table I, we list the
parameters used in the following calculations expressed both
in physical units and in the normalized dimensionless units
that we have adopted. We emphasize that the SOI waveguide
used for the calculation of these parameters is characterized by
anomalous dispersion (s = −1). For the numerical simulations
in the normal dispersion regime developed in this paper, we
have assumed hypothetically a SOI waveguide with the same
physical parameters as listed in Table I except β2 = +2 ps2/m
(s = +1).

III. NONLINEAR STATIONARY cw MODES

Owing to the externally pumped active inclusions of the
dielectric medium surrounding the SOI waveguide, small-
amplitude optical waves are amplified if the peak gain g0

TABLE I. Physical parameters used in our calculations. We considered a SOI waveguide fabricated along the [1̄10] direction and on the
[110] × [001] surface with lateral dimensions h = w = 525 nm surrounded by Al2O3:Er+. This waveguide is characterized by anomalous
dispersion, accounted for by the coefficient β2 = −2 ps2/m (s = −1). For the numerical simulations in the normal dispersion regime developed
in this paper, we have assumed hypothetically a SOI waveguide with the physical parameters listed above except β2 = +2 ps2/m (s = +1).

Physical Parameter Physical Quantity Normalized Dimensionless Value

Initial pulse duration t0 = 40 fs τ = 1
Dispersion coefficient β2 = ±2 ps2/m s = ±1
Dispersion length LD = 0.8 mm ξ = 1
Scaling peak power P0 = 17.88 W |u|2 = 1
Nonlinear coefficient n2 = 2.5 × 10−18 m2/W 1
Linear loss coefficient αl = 0.2 dB/cm α = 0.08
Two-photon absorption coefficient βT PA = 8 × 10−12 m/W K = 0.4
Scaling free-carrier density (σLD)−1 = 8.62 × 105μm−3 φc = 1
Free-carrier generation rate θc/t0 = 5 × 10−4 fs−1 θc = 0.02
Free-carrier recombination time tc = 1 ns τc = 2.5 × 104

Free-carrier dispersion coefficient μ/LD = 4.72 mm−1 μ= 3.77
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overcomes the linear loss α: g = g0 − α > 0. In turn, the vac-
uum state u = 0 is unstable since any small perturbation is am-
plified. However, as intensity grows, TPA becomes stronger,
and for a specific value of the optical amplitude it thoroughly
counterbalances linear amplification. Thus, stationary cw’s
exist only for the particular value of the optical amplitude such
that the effects of linear amplification and TPA compensate for
each other. This solution can be found by setting the ansatz

u = ρeiηξ , (3)

φc = φ0, (4)

where ρ,η are the optical amplitude and propagation constant
and φ0 = θcτcρ

4 is the stationary number of FCs such that FC
generation is exactly compensated for by FC recombination:
dφc/dτ = 0. Inserting the ansatz above into Eqs. (1) and (2),
one gets

ρ2 = −εc +
√

ε2
c + 2ρ2

0εc, (5)

η = ρ2 + 2μK
(
ρ2 − ρ2

0

)
, (6)

where εc = K/(θcτc) and ρ2
0 = g/K . In the absence of FCs

(εc → ∞), the mode amplitude ρ converges to ρ0, which
coincides with the cw mode amplitude of the uncoupled cubic
GL equation. Equation (6) constitutes the dispersion relation
of nonlinear stationary waves above threshold (g > 0). The
threshold condition can be easily found experimentally,
as the threshold crossover is typically accompanied by the
signature of spectral narrowing [33]. Below threshold (g < 0),
nonlinear stationary modes of Eqs. (1) and (2) do not exist, as
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FIG. 1. (Color online) (a) Squared amplitude ρ2 of the stationary
nonlinear cw mode as a function of the effective gain parameter g =
g0 − α given by the difference between the gain peak of the external
medium g0 and the Si loss α. (b) Dependence of the rescaled mode
amplitude ρ/ρ0 on the FC parameter εc for g = 1,g2 = 0.16. The
red dot indicates the exact value of ρ/ρ0 for the realistic parameters
listed in Table I.

the linear gain provided by the externally pumped two-level
atoms is not sufficient to overcome the linear loss of Si; in
turn, homogeneous waves are damped.

Note that the solution above does not constitute a parametric
family, but rather an isolated fixed point, as it generally occurs
in dissipative systems [16]. Indeed, there exists a unique optical
amplitude and a unique FC density such that the homogeneous
mode remains stationary. In Fig. 1(a), the stationary nonlinear
cw mode squared amplitude ρ2 is plotted against the effective
gain parameter (g = g0 − α), given by the difference between
the external gain and the Si loss. In Fig. 1(b), the mode
amplitude rescaled to the GL amplitude (ρ/ρ0) is plotted
against the FC parameter εc. Note that ρ → ρ0 in the limit
where FCs are not excited (εc → ∞). The red dot indicates
the exact value of ρ/ρ0 for g = 1,g2 = 0.16, and the realistic
parameters listed in Table I.

IV. MODULATIONAL INSTABILITY

Modulational instability (MI) of the nonlinear cw stationary
mode given in Eqs. (5) and (6) can be determined by perturbing
it with small time- and space-dependent waves:

u = [ρ + a(τ,ξ )]eiηξ , (7)

φc = φ0 + b(τ,ξ ), (8)

where a(τ,ξ ),b(τ,ξ ) are spatiotemporal perturbations of the
optical field and of the FC distribution. Plugging the ansatz
above in Eqs. (1) and (2) and retaining only linear terms, one
achieves the following set of coupled equations for a,b:

i∂ξ a = (η + ig)a +
(

s

2
+ ig

)
∂2
τ a (9)

−(1 + iK)ρ2(2a + a∗) −
(

i

2
− μ

)
(φ0a + ρb),

(10)
db

dτ
= 2θcρ

3(a + a∗) − b

τc

.

We assume that a = a1e
ϑ + a∗

2eϑ∗
, b = b0e

ϑ + b∗
0e

ϑ∗
,

where ϑ = hξ + i�τ , h is the spatial growth rate of the small
periodic perturbations, and � is their angular frequency. Note
that φc is real and positive since it represents the number of FCs
generated via TPA. Inserting the expressions above for a,b in
Eqs. (9) and (10), we achieve a set of algebraic equations for
the optical field perturbations a1,a2:

[
ih + F + T L P + T L

P ∗ + T ∗L −ih + F ∗ + T ∗L

] [
a1

a2

]
= 0, (11)

where P = (1 + iK)ρ2, T = 2ρ4θc(i/2 − μ), and

L = τ−1
c − i�

τ−2
c + �2

, (12)

F =
(

s

2
+ ig

)
�2 + 2P − η − ig +

(
i

2
− μ

)
φ0. (13)

Nontrivial solutions can be found by setting the determinant
of the coefficient matrix to zero, achieving the instability
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FIG. 2. (Color online) Contour plots for the MI spatial growth
rate h as a function of effective gain g and angular frequency � for
g2 = 0.16 and (a) the anomalous (s = −1) and (b) normal (s = +1)
dispersion regimes. Other parameters used in the calculations are
listed in Table I.

eigenvalues

h1,2 = −A0(�) ±
√

A2
0(�) − B0(�), (14)

where

A0 = Kρ2 + g2�
2 + Lθcρ

4, (15)

B0 =
(

1

4
+ g2

2

)
�4 + (2g2K + s)ρ2�2

+ 2Lθc(g2 − sμ)ρ4�2. (16)

If the real part of h1 or h2 is positive, small perturbations
are amplified during propagation, giving rise to instability.
In Figs. 2(a) and 2(b), we plot the instability parameter h =
max[Reh1,2] as a function of the effective gain g and angular
frequency � for anomalous (AD) and normal (ND) dispersion,
respectively. The interplay between nonlinear and dispersive
effects leads to instability across the central frequency by
creating sidebands. Small perturbations with angular frequen-
cies falling within these spectral regions are amplified, and
eventually the nonlinear stationary cw mode breaks up into a
train of pulses. Owing to the refractive index change induced
by FCs, these pulses are accelerated, and we found that
the instability eigenvectors are asymmetrically peaked on a
blueshifted frequency. Remarkably, FC-induced instability can
be observed in the ND regime, analogous to universal plasma-
induced instability observed in gas-filled hollow-core photonic
crystal fibers [10]. In Figs. 3(a) and 3(b) we have plotted the
maximum instability eigenvalue max�h as a function of g,g2

FIG. 3. (Color online) Contour plot of the maximum instability
eigenvalue max�h as a function of g,g2 in (a) the anomalous (s = −1)
and (b) normal (s = +1) dispersion regimes. The parameters used in
the calculations are listed in Table I.

for anomalous and normal dispersion, respectively. Note that
in both regimes, the instability parameter increases with gain
and is reduced by gain dispersion. While in AD generation
of FCs counteracts instability, in ND it is the sole crucial
term responsible for its occurrence. Note that also the vacuum
background is unstable in supercritical conditions (g > 0).

In order to confirm our theoretical predictions we have
numerically solved Eqs. (1) and (2) by using split-step fast-
Fourier-transform and Runge-Kutta algorithms. Owing to the
instabilities of the vacuum and of the stationary cw modes,
noise is amplified and chaotically generates unstable acceler-
ating pulses [see Figs. 4(a) and 5]. Note that the intensity of
the pulses is generally higher for short times and smaller for
longer times. This general behavior follows from the influence
of FCA, which is initially zero at t → −∞ and grows as time
increases. Generation of FCs affects the pulse dynamics also
via FCD, which is the sole crucial term responsible for the
acceleration towards shorter times. MI continuously generates
unstable dissipative solitons that play the role of the strange
attractor of the chaotic system, bifurcating, collapsing, and
creating other pulses due to their inherent instability. Note that
in ND (see Fig. 5) MI develops over a longer scale than in AD
[see Fig. 4(a)], as FC generation is solely responsible for MI
in ND. The characteristic duration of the chaotically generated
pulses can be analytically predicted as �τ � 2π |��|−1,
where �� is the instability frequency window that can be
calculated directly from Eq. (14). For g = 1 and g2 = 0.16, the
analytical predictions for the pulse durations are �τ ∼ 500 fs
in AD and �τ ∼ 1 ps in ND, finding agreement with numerical
simulations [see Figs. 4(a) and 5]. The temporal acceleration

053827-4



FREE-CARRIER-DRIVEN SPATIOTEMPORAL DYNAMICS . . . PHYSICAL REVIEW A 89, 053827 (2014)

−50 0 50−25 25
0

0.2

0.4

0.6

0.8

1

Δ λ (nm)

P
ow

er
 (

ar
b.

 u
ni

ts
)

(b)

FIG. 4. (Color online) (a) Accelerating chaotic spatiotemporal
dynamics in AD. The contour plot depicts the normalized optical
power in logarithmic scale 10log10(|u|2 + 0.1). (b) Output blue-
shifted spectrum (red curve) and input spectrum (dashed blue curve).
In the numerical simulation we used g = 1, g2 = 0.16 and the
parameters listed in Table I.

of the chaotically generated pulses is accompanied in the
spectral domain by a blueshift of about 10 nm, as shown in
Fig. 4(b). The main obstacle hampering further blueshifting
is represented by the finite amplifying window of the gaining
material. Thus, if other gaining media with larger spectral
windows are used, a larger blueshift can be achieved.

FIG. 5. (Color online) Accelerating chaotic spatiotemporal
dynamics in ND. In the numerical simulation we used g = 1,
g2 = 0.16 and the parameters listed in Table I. The contour
plot depicts the normalized optical power in logarithmic scale
10log10(|u|2 + 0.1).

V. CONCLUSIONS

In conclusion, in this work we have investigated analytically
and numerically the propagation dynamics of continuous
waves in an amplifying silicon-based waveguide. We modeled
optical propagation using a Ginzburg-Landau equation for the
optical field coupled with a first-order differential equation
accounting for the generation of free carriers. We have
derived the stationary nonlinear cw mode of the system,
and we have studied its stability against small perturbations,
finding universal modulational instability in both anomalous
and normal dispersion regimes. By numerically solving the
governing equations we have observed an accelerating chaotic
dynamics resulting from the inherent instabilities of the
system. Our theoretical investigations have been focused on a
realistically accessible setup, and our theoretical predictions
can be experimentally verified.
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